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Abstract 

We initiate the study of domination and inverse domination in labeled graphs. In this 
paper, we determined the cardinality of maximal independent and minimum variant 
dominating (total dominating/independent dominating/co-independent dominat-
ing) sets and their inverse in divisor graph and in two new labeling definitions called 
0-mod-difference and 1-mod-difference graphs.

Introduction
Consider G(E,V ) be a finite, undirected and simple graph. The independence number of 
G denoted by β(G)  is the maximum cardinality over all independent sets. The domina-
tion number of G denoted by γ (G) is the minimum cardinality over all dominating sets. 
The inverse domination number of G denoted by γ−1(G) is the minimum cardinality 
over all inverse dominating sets.

We consider a finite undirected and simple graph G(E,V ) with a set V (G) of vertices 
and a set E(G) of edges.

A subgraph H of a graph G is said to be induced (or full) subgraph if, for any pair of 
vertices x and y of H , xy is an edge of H if and only if xy is an edge of G . If H is an 
induced subgraph of G and S is a set of its vertices then H is said to be an induced sub-
graph by S and denoted by G[S].

A set I ⊆ G is an independent set or stable set in graph G if no two of its vertices are 
adjacent. An independence number of G denoted by β(G)  is the maximum cardinality 
over all independent sets.

A set D ⊆ V (G) is a dominating set in G if N (v) ∩ D �= ∅ ; for every vertex 
v ∈ V (G)− D. the domination number of G , denoted by γ (G ) , is a minimum cardinality 
over all dominating sets in G.

A dominating set D ⊆ V (G) is an independent dominating set in G if D is an independ-
ent set in G.The independence domination number of G , denoted by γi(G) , is a minimum 
cardinality of independent dominating sets in G.

A dominating set D ⊆ V (G) is a total dominating set in G if N (v) ∩ D �= ∅ ; for every 
vertex v ∈ v(G) . This means that G[D] has no isolated vertex. A minimum cardinality 
over all total dominating sets in G is the total domination number of G and is denoted by 
γt(G) [10].
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A dominating set D ⊆ V (G) is a connected dominating set in G, if G[D] is connected. 
The connected domination number of G , denoted by γc(G), is a minimum cardinality 
over all connected dominating sets in G [8].

A dominating set D ⊆ V (G) is a co-independent dominating set in G if the comple-
ment of D is an independent set. The co-independence domination number of G , denoted 
by γcoi(G), is a minimum cardinality over all co-independent dominating sets of G [10].

Let D ⊆ V (G) be a minimum dominating (independent dominating/total dominating/
connected dominating/co-independent dominating) set in graph G . If V − D contains 
a dominating (an independence dominating/total dominating/connected dominating/
co-independence dominating) set ID of G , where ID is called an inverse dominating 
(an independent dominating/total dominating/connected dominating/co-independent 
dominating) set with respect to D . The inverse domination (an independence domina-
tion/total domination/connected domination/co-independence domination) number of 
G , denoted by ( γ−1(G), γi

−1(G), γt
−1(G), γc

−1(G)andγcoi
−1

(G) ) is the minimum car-
dinality over all inverse dominating (an independent dominating/total dominating/con-
nected dominating/co-independent dominating) sets of G [6].

A graph labeling is an assignment of integers to the vertices or edges, or both, subject 
to certain conditions. Santhosh and Singh [7] call a graph G(V ,E)  with vertex set  V  and 
edge set E a divisor graph if V  is labeled by a set of integers and for each edge uv ∈ E 
either the label assigned to u divides the label assigned to v or vice versa. We studied 
the notion “divisor graph” in the sense that its vertices can be labeled with distinct inte-
gers 1, 2, . . . , |V | such that for each edge uv ∈ E either the label assigned to u divides the 
label assigned to v or vice versa. Also, we introduce two new definitions labeling called 
0-mod-difference and 1-mod-difference.

There are more than 75 models of domination listed in the appendix of Haynes [5]. For 
more details about parameters of domination number, we refer to [2, 3]. In this paper, 
we study different formulas of cardinality of independence and domination (total domi-
nation, independence domination, co-independence domination) in divisor, 0-mod-
difference and 1-mod-difference graph. The inverse domination (total domination, 
independence domination, co-independence domination) number of divisor (0-mod-
difference/1-mod-difference graph) graph also determined.

Any notion or definition of graph labeling which is not found here could be found in [1].

Some new methods
In the following sections, we will study three new methods. The following are new 
notions.

Definition 1.1. [9] Let G(V ,E)  be a simple graph of order n and f : V → {1, 2, . . . , n} 
be a bijection. For each edge uv , if either f (u)\f (v) ( f (u) divides f (v) ) or f (v)\f (u)  
( f (v) divides f (u) ) then f  is called a divisor labeling and G is called a divisor graph. A 
graph which is not divisor is called a non-divisor graph.

Definition 1.2. Let G(V ,E)  be a simple graph of order n and f : V → {1, 2, . . . , n} be 
a bijection. A graph  G(V ,E) with vertex set V  is said to be 0-mod-difference if for each 
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edge uv ∈ E,
∣

∣f (u)− f (v)
∣

∣ ≡ 0(modm) where 2 ≤ m ≤ ⌊n2 ⌋ . A graph which is not 0-mod-
difference is called a non-0-mod-difference graph [11].

Definition 1.3. Let G(V ,E)  be a simple graph of order n and f : V → {1, 2, . . . , n} 
be a bijection. A graph  G(V ,E) with vertex set V  is said to be 1-mod-difference if for 
each edge uv ∈ E,

∣

∣f (u)− f (v)
∣

∣ ≡ 1(modm) where 2 ≤ m ≤ ⌊n2 ⌋ . A graph which is not a 1
-mod-difference is called a non-1-mod-difference graph.

Definition 1.4. A maximal divisor /0-mod-difference/1-mod-difference graph of n 
vertices is a divisor/0-mod-difference/1-mod-difference graph such that adding any new 
edge yields a non-divisor (0-mod-difference/1-mod-difference) graph. Figure  1 gives a 
maximal divisor graph of order 10.

Definition 1.5. [4] Let x be a nonnegative real number. The Gauss ̓ s func-
tion π(x) is defined to be the number of primes not exceeding x . i.e , 
π(x) = |{p : p is prime, 2 ≤ p ≤ x}|.

Note 1.6. In all definitions in this article, we define the labeling function by:

Divisor graph

Theorem 2.1. If G is a maximal divisor graph then,

 (i) β(G) = ⌈n2 ⌉.
 (ii) γ (G) = γi(G) = γc(G) = 1

 (iii) γt(G) = 2

 (iv) γcoi(G) = ⌊n2 ⌋; n > 3

Proof

 (i) Consider I =
{

v ∈ G : f (v) > ⌊n2 ⌋
}

 . Then, I is an independence set, since for each 
vertex v ∈ I , the vertex of label 2f (v) does not belong to G (see Fig. 1), therefore 
β(G) ≥ |I | = ⌈n2 ⌉ . If we assume that there is a set A such that |A| > |i| then A must 
contain at least two adjacent vertices, since each vertex v which  f (v) ≤ ⌊n2 ⌋ is adja-
cent to a vertex of label 2f (v) . Thus, β(G) = ⌈n2 ⌉.

 (ii) It is obvious, since the vertex of label one is adjacent to all vertices of G.
 (iii) Let D1 = {v1, v2} . D1 is a dominating set in G with no isolated vertex and it is clear 

that it is the minimum total dominating set so γt(G) = 2.

 (iv) Consider D2 = v ∈ G : f (v) ≤ ⌊n2 ⌋  . D2 contains a vertex of label one there-
fore it is the dominating set in G and v − D2 is an independent set by (i). Thus, 

f (vi) = i, i = 1, . . . , n
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γcoi(G) ≤ ⌊n2 ⌋ . If we assume that there is a set c such that |c| < |D2| then c may be a 
dominating set, but v − c cannot be an independent set by (i). Thus, γcoi(G) = ⌊n2 ⌋.

Note 2.2. 

(1) If G is a divisor graph and β(G) > ⌈n2 ⌉ , γ (G) > 1 or  γi(G) > 1 then G is not a max-
imal divisor graph.

(2) If G is a divisor graph and γc(G) > 1 or there is no connected dominating set in G 
then G is not a maximal divisor graph.

(3) If G is a divisor graph and γt(G) > 2 or there is no total dominating set in G then G 
is not a maximal divisor graph.

(4) If  β(G) < ⌈n2 ⌉ then G is a non-divisor graph.

Theorem 2.3. If G is a maximal divisor graph then

 (i) γ−1(G) = γi
−1(G) = π(n)

 (ii) G  has no inverse total (connected/co-independence) dominating set.

Proof

 (i) Consider ID =
{

vi ∈ G; f (vi) = p, p ≤ n,wherepisaprimenumber
}

. ID is a domi-
nating set in G and ID ⊆ v − D where  D is a minimum dominating set ( D = {v1} ) 
in G. Therefore |ID| ≥ γ−1(G) ( see Fig. 1). If we assume that there is a set A such 
that |A| < |ID| then there is at least a vertex of prime label which is not belonging 
to the set A , so it cannot dominate this vertex. Therefore, , |ID| = γ−1(G). Since ID 
is an independence set then γ−1(G) = γi

−1(G) = π(n).
 (ii) G  has no inverse total (connected) dominating set, since there is an isolated vertex 

in G[V − D] where D is a total (connected) dominating set, and there is no inverse 
co-independence set in G since all co-independence sets in G contain adjacent ver-
tices.
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Fig. 1 Maximal divisor graph of order 10
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0‑mod‑difference graph

Theorem 3.1. Maximal 0-mod-difference graph is partitioned into m complete induced 
subgraphs.

Proof
Let Si =

{

vj ∈ v; j ≡ i(mod m), i = 0, 1, . . . ,m− 1
}

 . It is clear that G[Si], i = 0, 
1, . . . ,m− 1 are disjoint graphs and ∪m−1

i=0 Si = v(G) . For each vi1 and vi2

∈ Si, i = 0, 1, . . . ,m− 1 there is an edge vi1vi2 ∈ E(G)  since 
∣

∣f
(

vi1
)

− f
(

vi2
)
∣

∣ ≡ 0(mod m) 
so G[Si] is a complete induced subgraph ∀i.

Example 3.2.
Figure 2; n = 9;m = 3 and Fig. 3; n = 10,m = 3 are illustrate the previous theorem.

Theorem 3.3. If G(n, q) is a 0-mod-difference graph and n ≡ r(modm) then

Proof
Since the maximal 0-mod-difference is partitioned into m complete induced subgraphs 
(Theorem  3.1),so If n ≡ r(mod m) , then there is r complete induced subgraphs of order 
⌊ n
m⌋ + 1 and the others of order ⌊ n

m⌋ , since if n ≡ 0(mod m) , then mdividesn  without resi-
due (see Fig. 2), so all complete subgraphs have the same order equal to n/m.

If n ≡ 1(mod m) , then mdividesn  with residue one which is the vertex  vn , and it is clear 
that vn ∈ S1 , since n ≡ 1(mod m) , therefore S1  is of order ⌊ n

m⌋ + 1 and the others are of 
order ⌊ n

m⌋  (se Fig. 3). If n ≡ 2(mod m) , then mdividesn with residue two which are verti-
ces    vn  and vn−1 , vn−1 ∈ S1 , since n− 1 ≡ 1(mod m) and vn ∈ S2 , since n ≡ 2(mod m) , 
therefore S1  and S2 are of order ⌊ n

m⌋ + 1 and the others are of order ⌊ n
m⌋(see Fig. 4) and so 

on. The number of edges of any complete graph  Kt is  t(t−1)
2  , then the maximal number 

of edges in G is r (⌊
n
m ⌋+1)(⌊ n

m ⌋)
2 + (m− r)

⌊ n
m ⌋(⌊ n

m ⌋−1)
2 = 1

2⌊
n
m⌋

(

m⌊ n
m⌋ −m+ 2r

)

. Thus 
q ≤ 1

2⌊
n
m⌋

(

m⌊ n
m⌋ −m+ 2r

)

.

Theorem 3.4. If G is a maximal 0-m-mod-difference graph, then

(i) β(G) = m

(ii) γ (G) = γi(G) = m

(iii) γcoi(G) = n−m

(iv) γt(G) = 2m

(v) G has no connected dominating set.

q ≤
1

2
⌊
n

m
⌋

(

m⌊
n

m
⌋ −m+ 2r

)
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Proof

(i) Let D1 =
{

vi0; vi0onlyonevertexbelongtoSi, i = 0, 1, . . . ,m− 1
}

 . By Theorem  3.1 
Si, i = 0, 1, . . . ,m− 1 are the vertices of complete subgraphs. It is clear that 
β(G[Si]) = 1 therefore |D1| ≤ β(G) . If we assume that there is a set A such that 
|A| > |D1| then A contains at least two vertices belonging to the same set from Si , 
since the graph of this set is a complete induced subgraph then these vertices are 
not independent (see Figs. 2, 3, 4). Thus, β(G) = |D1| = m.

(ii) By the same manner in (i) {vi0} is a dominating set in [Si] ∀i , so γ (G[Si]) = 1 . 
Therefore, |D1| ≥ γ (G) . If we assume that there is a set B such that |B| < |D1| then 
B does not contain at least one vertex belong to a set from Si, i = 0, 1, . . . ,m− 1 , 
so B cannot dominate the vertices of this set, since every G[Si] is a complete 
induced subgraph. Thus, γ (G) = |D1| = m . Since D1 is an independent set then 
γ (G) = γi(G) = m.

(iii) Let D2 =
{

∀vj ∈ Siexceptonevertex, i = 0, 1, . . . ,m− 1
}

 . So D2 is a dominating set 
and v − D2 is an independent set therefore |D2| ≥ γcoi(G) . If we assume that there 
is a set c2 such that |c2| < |D2| then v(G)− c2 cannot be an independence set since 
it contains at least two vertices in the same set from Si, i = 0, 1, . . . ,m− 1 then 
these vertices are adjacent. Thus, γcoi(G) = |D2| = n−m.

(iv) Let D3 =
{

onlytwoverticesfromSi, i = 0, 1, . . . ,m− 1
}

 . D3 is a total dominating 
set since it is a dominating set and has no isolated vertex so |D3| ≥ γt(G) . If we 
assume that there is a set  c3 such that |c3| < |D3|.Then  c3 contains at least one iso-
lated vertex from one set from Si, i = 0, 1, . . . ,m− 1 or it has no any vertex from 
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Fig. 2 Case n = 9; m = 3
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Fig. 3 Case n = 10; m = 3



Page 7 of 13Elsakhawy  Journal of the Egyptian Mathematical Society            (2023) 31:4  

at least one set from Si, i = 0, 1, . . . ,m− 1 . So c3 is not a total dominating set in G . 
Thus, γt(G) = |D2| = 2m.

(v) G has no connected dominating set since G is a disconnected graph by Theo-
rem 3.1.

Theorem 3.5. If G is a maximal 0-mod-difference graph, then

 (i) γ−1(G) = γi
−1(G) = m

 (ii) γcoi
−1(G) = m if and only if n = 2m.

 (iii) γt−1(G) = 2m  if and only if ⌊ n
m⌋ ≥ 4.

Proof

 (i) Let ID1 =
{

vj ∈ Si; vj ∈ v − D1, i = 0, 1, . . . ,m− 1
}

 where D1 is a dominating set 
in G (Theorem 3.4). Similar to manner in Theorem 3.4 (i) ID1 is a minimum domi-
nating set in G , so γ−1(G) = |ID1| = m . And since ID1 is an independent set in G, 
then 

 (ii) If γcoi−1(G) = m then there is a minimum co-independent inverse set in G ( ID2 ) 
such that ID2 ⊆ v − D2   where D2   is a minimum co-independent dominating 
set in G (Theorem 3.4) then ID2 ∩ Si = 1∀i . Now if  D2 ∩ Si > 1 for some i then 
V − ID2 contains at least two vertices belonging to Si and these sets are complete 
subgraphs therefore V − ID2 is not an independent set. Thus, D2 ∩ Si = 1 implies 
that Si contain only two vertices ∀i then n = 2m (see Fig. 5).

 Conversely If n = 2m then |Si| = 2∀i (see Fig. 5), then γcoi−1(G) = m.
 (iii) If ⌊ n

m⌋ ≥ 4  that means |Si| ≥ 4 . Let Hi = {vi1, vi2} where vi1 and vi2  are any two 
vertices belong to Si and Hi ⊆ v − D3  where D3i s the minimum total dominating 
set in G (Theorem  3.4) (see Fig.  6). Consider ID3 = ∪{Hi, i = 0, 1, . . . ,m− 1} as 
same manner in Theorem 3.4 (iv) ID3 is the minimum total dominating set in G so 
γt

−1(G) = 2m.

γ−1(G) = γi
−1(G) = m

10
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Fig. 4 Case n = 11; m = 4



Page 8 of 13Elsakhawy  Journal of the Egyptian Mathematical Society            (2023) 31:4 

Conversely If γt−1(G) = 2m then there is a minimum dominating set in G which contain 
at least two vertices in Si and belonging to v − D3 where D3 is a total dominating set in G 
(see Fig. 6; m = 3 ), so |Si| ≥ 4∀i then ⌊ n

m⌋ ≥ 4.

1‑mod‑difference graph

Lemma 4.1. If G is a 1-mod-difference graph, then �(v) ≤ ⌊ n
m⌋ + 1

Proof
Let vj ∈ G there are two cases as follows:

 (i) (i) If f (vj) ≤ m and j ≡ i(modm) , then vj joins with all vertices of labels which are 
congruent to i + 1  (mod m) and with the vertex vj−1 congruent to i − 1(modm) , 
except the vertex v1 , since v0 does not exist and vm which are joined with the vertex 
vm−1 and all vertices of labeled in class [1] except{1} . So the maximum number of 
vertices can be joined with vertex  vj in this case is less than or equal to ⌊ n

m⌋ + 1.
 (ii) If f

(

vj
)

≥ m+ 1 and j ≡ i(modm) , then vj would join with

(1) All labeled vertices vr which are congruent to i − 1  (mod m) and f
(

vj
)

> f (vr) , 
the maximum number of these vertices is less than or equal ⌈ j

m⌉.
(2) All labeled vertices f (vw) congruent to i + 1  (mod m) and f

(

vj
)

< f (vw) , the 
maximum number of these vertices is ⌈n−j

m ⌉.

By 1 and 2, it is clear that deg
(

vj
)

≤ ⌈
j
m⌉ + ⌈

n−j
m ⌉ ≤ ⌊ n

m⌋ + 1

Theorem 4.2. If G is a maximal 1-mod-difference graph, then γ (G) = m.

Proof
Let D = {vi, i = 1, 2, . . .m} , ∀vi ∈ D , vi is adjacent to all vertices of labeling that belong to 
class [i + 1]= 

{

vj : f
(

vj
)

≡ i + 1(modm)
}

 (see Figs. 7, 8, 9). So D is a dominating set since 
V = ∪m−1

i=0 [i] . Now if there is a set of cardinal equal to m− 1 then the number of vertices 
can be dominated by m− 1 vertices is (m− 1)

(

⌊ n
m⌋ + 1

)

− (m− 2) < n , by Lemma 4.1, 
since m− 2 is the minimum number of common edges when we have  m− 1 successive 
vertices. Thus, D is the minimum dominating set in G.

Theorem 4.3. If G is a maximal 1-mod-difference graph, then γ−1(G) = m.

Proof
Consider ID = {vi, i = m+ 1,m+ 2, . . . , 2m} , any m successive vertices constitute mini-
mum dominating set, since these vertices are adjacent to all classes in G , and it is clear 
that ID ⊆ V − D , where D is the minimum dominating set in G (Theorem  4.2). Thus, 
γ−1(G) = m.
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Corollary 4.4. If G is a maximal 1-mod-difference graph, then

Proof
It is clear, since the set D in Theorem 4.2 and ID  in Theorem 4.3 are connected set.

Theorem 4.5. If G is a maximal 1-mod-difference graph where m = 2 , then γi(G) = ⌊n2 ⌋.

Proof
To get an independent set S , we cannot take any set that contains vertices of odd and 
even labels together. Since if vi,vj ∈ D1  such that  vi is odd labels and vj is even labels, 
then 

∣

∣f
(

vj
)

− f (vi)
∣

∣ ≡ 1(mod2) , these vertices are adjacent. Thus,  S is not an independ-
ent set. Then, S contains either vertices of odd labels or even labels. The cardinal of all 
vertices of even labels is less than or equal to the cardinal of odd labels, then let  D1  be 
the set of all vertices of even labels,  D1 is a dominating set, since if we take any vertex 
of D1 , this vertex is adjacent to all vertices of odd labels and it is an independent, since 
∀vj, vi ∈ D1,

∣

∣f
(

vj
)

− f (vi)
∣

∣ ≡ 0(mod2) , thus  γi(G) ≤ |D1| = ⌊n2 ⌋  (see Figs. 10, 11). Now if 
there is a set A = D1 − {vr} , where {vr} ∈ D1, then A cannot dominate the vertex vr , there-
fore A cannot be a dominating set in G. Thus, γi(G) = ⌊n2 ⌋.

γc(G) = γt(G) = γ−1
c (G) = γ−1

t (G) = m
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Fig. 5 n = 2m; m = 5

Fig. 6 m = 3
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Theorem  4.6. If G is a maximal 1-mod-difference graph where m = 2 , then    
γ−1
i (G) = ⌈n2 ⌉.

Proof
Consider ID1 =

{

∀vj; vjisanoddvertex
}

 , as the same manner in the previous theorem   
ID1 is the minimum independent dominating set in V − D1 , where D1 is an independent 
dominating set in G (Theorem 4.5),(see Figs. 10, 11). Thus, γ−1

i (G) = ⌈n2 ⌉.

Corollary 4.7. If G is a maximal 1-mod-difference graph where m = 2 , then   
γcoi(G) = ⌊n2 ⌋   and γ−1

coi (G) = ⌈n2 ⌉.

Fig. 7 |D| = m = 11

Fig. 8 |D| = m = 15

Fig. 9 |D| = m = 16



Page 11 of 13Elsakhawy  Journal of the Egyptian Mathematical Society            (2023) 31:4  

Proof
We showed that the set D1 in Theorem 4.5 is the dominating set in G and V − D1 = ID1 is 
an independent by Theorem 4.6, if we assume there is a set A ⊆ V  with cardinal less than 
D1 , so A may be still dominating set but V − A is not an independent set since it contains 
vertices of odd and even labels) (see Figs. 8, 9). Thus, γcoi(G) = ⌊n2 ⌋ . As the same manner 
with alternate two sets D1andID1 , we get γ−1

coi (G) = ⌈n2 ⌉.

Theorem 4.8. If G is a maximal 1-mod-difference graph where m = 3 , then.

Proof
Consider S =

{

vi; f (vi) ∈ [1]− {1}
}

  and D = {v2} ∪ S . The vertex v2  is adjacent to ver-
tex v1  and all vertices which there labels belong to class 0 ([0]) and the vertex v4 ∈ S is 
adjacent to all vertices which there labels belong to class 2 ([2]) except {2} , and S covers to 
all vertices of labeled in [1]− {1} . Thus, D is the dominating set in G and it is an inde-
pendent, since ∀vi, vj ∈ S , 

∣

∣f (vi)− f (v2)
∣

∣ ≡ 2(mod3) and 
∣

∣f (vi)− f
(

vj
)∣

∣ ≡ 0(mod3) (see 

Figs. 7, 8). Thus, γi(G) ≤ |D| =

{

⌊n3 ⌋, ifn ≡ 0(mod3)
⌊n3 ⌋ + 1, ifn ≡ 1, 2(mod3)

}

 . If there is an independent 

set A ⊆ V  with |A|< |D| , then A is not a dominating set. Thus, we get the result.

γi(G) =

{

⌊n3 ⌋, ifn ≡ 0(mod3)
⌊n3 ⌋ + 1, ifn ≡ 1, 2(mod3)

}

Fig. 10 |D1| = n = 11,m = 2
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Fig. 11 |D1| = n = 10,m = 2
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Theorem 4.9. If G is a maximal 1-mod-difference graph where m = 3 , then 

Proof
Consider S =

{

vi; f (vi) ∈ [3]
}

  and ID = {v1} ∪ S , it is obvious that ID ⊆ V − D , where 
D is the minimum independent dominating set in G (Corollary  4.7). The vertex v1 is adja-
cent to all vertices which their labels belong to class 2 ([2]); the vertex v3 ∈ S is adjacent to 
all vertices which their labels belong to class 1 ([1]) except {1} . S covers all vertices which 
their labels belong to class 3 [0] . Thus, ID is the dominating set in G and it is an inde-
pendent, since ∀vi ∈ S , 

∣

∣f (vi)− f (v1)
∣

∣ ≡ 2(mod3) and 
∣

∣f (vi)− f
(

vj
)
∣

∣ ≡ 0(mod3) . Thus,  
γ−1
i (G) ≤ |ID| = ⌊n3 ⌋ + 1 (see Figs. 7, 8). If there is an independent set A ⊆ V − D with 

|A|< |D| , then A is not a dominating set. Thus, γ−1
i (G) = ⌊n3 ⌋ + 1.

Corollary 4.10. If G is a maximal 1-mod-difference graph where m = 3 , then 

Proof
Consider M = V − D , where D is the set is in Theorem 4.8, it is clear that M is the domi-
nating set and D is an independent set. Thus, 

Theorem 4.11. If G is a maximal 1-mod-difference graph, then

Proof
Consider I =

{

vi ∈ G; viisanoddlabeledvertex
}

 ∀vj , vk ∈ I ,
∣

∣f
(

vj
)

− f (vk)
∣

∣ ≡ w(modm) 
where w is 0 or even number less than m, then I is an independent set. Now if we add any 
vertex vh ∈ V − I  to the set I, then vh is an even labeled vertex, then vh−1 is an odd labeled 
vertex, so vh−1 ∈ I . Therefore, 

∣

∣f (vh)− f
(

vh−1

)∣

∣ ≡ 1(mod(m)) that means  I ∪ {vh} is not 
an independent set in G. Thus β(G) = ⌈n2 ⌉.

Example 4.12.
The maximal 1-mod-difference graphs of order 11 and 15 where m = 3 , as shown 
in Figs.  7, 8, D1 = {v2, v4, v7, v10} , is the minimum independent dominating set in 
G1 , and ID1 = {v1, v3, v6, v9} , is the minimum independent sets in V (G1)− D , so 
γi(G1) = γ−1

i (G1) = 4 ,, D2 = {v2, v4, v7, v10, v13} , is the minimum independent 

γ−1
i (G) = ⌊

n

3
⌋ + 1

γcoi(G) ≤

{

n− ⌊n3 ⌋, ifn ≡ 0(mod3)
n− ⌊n3 ⌋ − 1, ifn ≡ 1, 2(mod3)

}

γcoi(G) ≤ |M| =

{

n− ⌊n3 ⌋, ifn ≡ 0(mod3)
n− ⌊n3 ⌋ − 1, ifn ≡ 1, 2(mod3)

}

β(G) =
n

2
, if m is even.
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dominating set in G2 , and ID1 = {v1, v3, v6, v9, v12, v15} , is the minimum independent sets 
in V (G2)− D , so γi(G2) = 5andγ−1

i (G2) = 6.

Conclusion and discussion
In this work, we obtain the necessary condition(s) for a graph to be a maximal divisor 
graph and for a graph to be 0-mod-difference graph, also for a graph to be maximal 
o-mod-difference graph and finally for a graph to be maximal 1-mod-differnce graph.

These results will lead us to discuss in the future work to the independence and domi-
nation in multi-rooted graph.
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