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Abstract 

In this paper, interesting properties of the generalized topological spaces, generated 
by the monotonic maps σ = (clδ ◦ intδ), α = (intδ ◦ clδ ◦ intδ), π = (intδ ◦ clδ) and 
β = (clδ ◦ intδ ◦ clδ), for any generalized topological space (X , gδ) are deduced and 
analyzed. Special subfamilies of the family of monotonic maps Ŵ(X) are studied and 
interesting results regarding generalized topologies are obtained.
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Introduction
In [4], Á. Csázsá r introduced the generalized topological spaces. He showed that each 
monotonic map δ : P(X) → P(X) (δ(A) ⊂ δ(B), for each A ⊂ B) defines a generalized 
topology gδ on X, containing all the subsets O,   that satisfy δ(O) ⊃ O. The family of all 
monotonic maps δ is denoted by Ŵ(X). Moreover, each generalized topology g on the set 
X defines a monotonic map δg , such that δg (O) ⊃ O, for every O ∈ g .

To learn about the studies of the γ−generalized topological spaces (X , gγ ), see the 
references [4–8]. Moreover, to learn about the studies of the generalized continuity of 
functions on the γ−generalized topological spaces (X , gγ ), which is generated by the 
monotonic functions γ ∈ {intδ , clδ , σ ,α,π ,β}, see the references [1–3, 9–13], where gδ 
is a given generalized topology on X.  In addition to that the properties of interior and 
closure operators are outlined in [14].

The outline of this manuscript is as follows: In the first section, some properties of the 
subclasses of the family of monotonic maps Ŵ(X) , whose elements generate the same 
generalized topology, are studied. Moreover, the relations between the family � ⊂ Ŵ(X) 
of all monotonic maps γ ∈ Ŵ(X), for which there exists a function f : X → X such that 
γ (A) = f −1(A);A ∈ P(X), and the generalized topologies on X are studied.
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In the second section, the study of some properties and examples on the family of all 
monotonic maps Ŵ(X) are outlined.

In the third section, the generalized topologies generated by the monotonic maps: 
σ = (clδ ◦ intδ), α = (intδ ◦ clδ ◦ intδ), π = (intδ ◦ clδ), β = (clδ ◦ intδ ◦ clδ) are studied.

In the fourth section, some interesting relations between the elements of the subfamily 
{intδ , clδ , σ ,α,π ,β} ⊂ Ŵ(X), for any δ−Csázsá r generalized topological space (X , gδ) , are 
found.

Study of special classes of the family of all monotonic maps Ŵ(X)
Equivalence classes on the family of all monotonic maps Ŵ(X)

Definition 1 Consider the following binary operations on the family Ŵ(X), where 
γ , δ ∈ Ŵ(X) and A is a subset of X :  

1 (γ ◦ δ)(A) = γ (δ(A)).

2 (γ ∩ δ)(A) = γ (A) ∩ δ(A).

3 (γ ∪ δ)(A) = γ (A) ∪ δ(A).

It is clear that for every γ , δ ∈ Ŵ(X), the maps γ ◦ δ, γ ∩ δ, γ ∪ δ are monotonic maps and 
are elements of Ŵ(X).

Definition 2 (Equivalent relation on the family Ŵ(X) ) The maps γ , δ ∈ Ŵ(X) are called 
equivalent maps, if the family of all γ−open sets is identical with the family of all δ−open 
sets (gδ = gγ ), and we write γ ≈ δ.

Each equivalence class of this relation is characterized by its family of open sets,which 
forms a generalized topology. The equivalence class, which contains the map δ , will be 
denoted by Ŵδ(X) or simply Ŵδ .

Theorem 3 The interior operator intδ of the generalized topology gδ is the smallest ele-
ment of the class Ŵδ . Moreover, for every A ⊂ X :

Proof The proof is obtained through the following steps: 

1 Let Iδ(A) = γ∈Ŵδ
γ (A), for every A ⊂ X .

 It is clear that γ (A) ⊃ Iδ(A) =
⋂

γ∈Ŵδ
γ (A), for every γ ∈ Ŵδ and A ⊂ X . Moreover, 

Iδ ∈ Ŵ(X).

2 Let A be an open set in the class Ŵδ , then for every γ ∈ Ŵδ , we have A ⊂ γ (A) and 
A ⊂ Iδ(A). Therefore, every open set in Ŵδ is an open set relative to Iδ .

intδ(A) =
⋂

γ∈Ŵδ

γ (A)
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 Now, if C is an open set relative to Iδ , i.e. C ⊂ Iδ(C) =
⋂

γ∈Ŵδ
γ (C). It follows that 

C ⊂ γ (C); for each γ ∈ Ŵδ . Therefore, C is γ−open set for all γ ∈ Ŵδ and the family 
of open sets in Ŵδ is identical with the family of open sets of Iδ and so Iδ ∈ Ŵδ . Hence 
Iδ is the smallest element in Ŵδ .

3 It is clear that intδ is a monotonic map, then intδ ∈ Ŵ(X), ; moreover, the relation 
O ⊂ intδ(O) is valid only for the elements of gδ . Then, intδ ∈ Ŵδ .

4 Since intδ ∈ Ŵδ , then intδ(B) ⊃ Iδ(B); for every B ⊂ X .

5 We shall show that intδ(B) ⊂ Iδ(B); for every B ⊂ X .

 Let B ⊂ X , then intδ(B) ⊂ B. Since intδ ∈ gδ and Iδ ∈ Ŵδ , then
 intδ(B) ⊂ Iδ(intδ(B)) ⊂ Iδ(B).

 From 1 up to 5, it follows that Iδ = intδ . Therefore, gδ is the smallest element of the 
class Ŵδ.

Definition 4 Let Ŵδ be an equivalence class for any δ−generalized topology on the set 
X. Every γ ∈ Ŵδ defines the map

Definition 5 To each equivalence class Ŵδ , there exists an associated class

Theorem 6 Let (X , gδ) be a generalized topological space, then the following properties 
are satisfied: 

1 Ŵδ ⊂ Ŵ(X).

2 For any δ−closed subset B,  it follows that θγ (B) ⊂ B, for all γ ∈ Ŵδ .

Proof

1 Let A ⊂ B, then X − A ⊃ X − B. Therefore, γ (X − A) ⊃ γ (X − B), for every γ ∈ Ŵδ , 
then 

 Which means that θγ is a monotonic map and θγ ∈ Ŵ(X). Consequently, Ŵδ ⊂ Ŵ(X).

2 Let A = X − B be an open set in gδ , then A = X − B ⊂ γ (A) = γ (X − B), for all 
γ ∈ Ŵδ . Consequently, B ⊃ X − γ (X − B) = θγ (B).

Theorem 7 The closure operator clδ of the generalized topology gδ is the largest element 
of the class Ŵδ . Moreover, for every B ⊂ X :

�

θγ (B) = X − γ (X − B);B ⊂ X .

Ŵδ = {θγ : γ ∈ Ŵδ}.

θγ (A) = X − γ (X − A) ⊂ X − γ (X − B) = θγ (B).

�

clδ(B) = θintδ (B) =
⋃

γ∈Ŵδ

θγ (B).
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Proof The proof is obtained through the following two steps: 

1 Since the interior monotonic map intδ , where intδ(C) =
⋃

C⊃A∈gδ
A defines the map 

θintδ , where θintδ (B) = X − intδ(X − B), then θintδ ∈ Ŵδ . Consequently, 

 which means that the monotonic map θintδ is the largest monotonic map in the asso-
ciated class Ŵδ .

2 Let B ⊂ X , then 

 Since 

 then θintδ (B) = clδ(B), for any B ⊂ X , which implies that θintδ = clδ .

The subfamily � ⊂ Ŵ(X) corresponding to the family of functions XX

Let XX be the family of all functions f : X → X . Then, for every f ∈ XX , there exists 
γf ∈ Ŵ(X), which is defined as follows: for each A ∈ P(X)

Definition 8 The map � : XX → Ŵ(X) is defined by �(f ) = γf .

The map � is an injective map: Let �(f ) = �(g) and x ∈ X . If f (x) = y, then 
x ∈ γf ({y}) = γg ({y}). It follows that g(x) = y = f (x). But x ∈ X is an arbitrary element, 
then f = g .

Definition 9 The subfamily � of the family of monotonic maps Ŵ(X) is defined as:

The subfamily � ⊂ Ŵ(X) has a close relationship to the family of continuous functions 
on the topological spaces on X.

Lemma 10 The monotonic map γ ∈ Ŵ(X) is an element of �, if and only if it satisfies the 
following conditions: 

(a) γ ({y1}) ∩ γ ({y2}) = ∅, for all y1, y2 ∈ X and y1  = y2.

(b) 
⋃

y∈X γ ({y}) = X .

θintδ (B) = X − intδ(X − B) = X −
⋂

γ∈Ŵδ

γ (X − B) =
⋃

γ∈Ŵδ

(X − γ (X − B)) =
⋃

γ∈Ŵδ

θγ (B).

θintδ (B) = X − intδ(X − B) = X −
⋃

(X−B)⊃A∈gδ

A =
⋂

A∈gδ ,B⊂X−A

(X − A) =
⋂

(X−D)∈gδ ,B⊂D

D.

clδ(B) =
⋂

(X−D)∈gδ ,B⊂D

D,

�

γf : P(X) → P(X); γf (A) = f −1(A).

� =
{

γf ∈ Ŵ(X) : f ∈ XX
}

= �(XX ) ⊂ Ŵ(X).
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(c) γ (
⋃

i∈I Ai) =
⋃

i∈I γ (Ai) and γ (
⋂

i∈I Ai) =
⋂

i∈I γ (Ai), where I is an arbitrary 
indexed set.

 Then, γ = f −1, where f is a function from X to itself, where f (x) = y; if x ∈ γ ({y}).

Proof Let γ ∈ �, then there exists f ∈ XX and γ = γf .

(a)  Let y1, y2 ∈ X such that y1  = y2, then 

(b)  
⋃

y∈X γ ({y}) =
⋃

y∈X γf ({y}) =
⋃

y∈X f −1({y}) = f −1(
⋃

y∈X {y}) = f −1(X) = X.
(c)  

 Moreover, 

Lemma 11 The subfamily � ⊂ Ŵ(X) is closed relative to the composition binary 
operation.

Proof Let γf , γg ∈ �. Since γf (A) = f −1(A) and γg (B) = g−1(B), for all A,B ⊂ X , then

For each G ⊂ P(X), define the family �G ⊂ P(�) as:

Definition 12 The subfamily G ⊂ P(X) is called invariant relative to HG if HG is the 
maximal element of the family �G with respect to the inclusion relation.

Remark 13 The family HG is not empty for every G ⊂ P(X), since the identity function 
idX (A) = A, for all A ∈ P(X) belongs to every HG .

For each G ⊂ P(X), define the subfamily FG of the family XX as:

γ ({y1}) ∩ γ ({y2}) = γf ({y1}) ∩ γf ({y2}) = f −1(y1 ∩ y2) = f −1(∅) = ∅.

γ

(

⋃

i∈I

Ai

)

= γf

(

⋃

i∈I

Ai

)

= f −1

(

⋃

i∈I

Ai

)

=
⋃

i∈I

f −1(Ai) =
⋃

i∈I

γf (Ai) =
⋃

i∈I

γ (Ai).

γ

(

⋂

i∈I

Ai

)

= γf

(

⋂

i∈I

Ai

)

= f −1

(

⋂

i∈I

Ai

)

=
⋂

i∈I

f −1(Ai) =
⋂

i∈I

γf (Ai) =
⋂

i∈I

γ (Ai).

�

(γf ◦ γg )(A) = (f −1 ◦ g−1)(A) = (g ◦ f )−1(A) = γg◦f (A).

�

�G =
{

H ⊂ � : h(G) ⊂ G ∀ h ∈ H
}

FG =
{

f ∈ XX : γf ∈ HG

}
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Theorem 14 If G ⊂ P(X) is a generalized topology on X,  then the family FG is the fam-
ily of generalized continuous functions on the topological space (X, G).

Proof The proof is clear, since: If f ∈ FG and A ∈ G, then γf ∈ HG , which implies 
that γf (A) = f −1(A) ∈ G. Therefore, f : (X ,G) → (X ,G) is a generalized continuous 
function. �
Lemma 15 All the elements h ∈ � satisfy the relations:

for any arbitrary family {Ai ⊂ X : i ∈ K } ⊂ P(X), where K is an arbitrary index set.

Proof The proof is straightforward, since for any function f ∈ XX ,

Theorem 16 If G and G0 are subsets of P(X) and G ⊂ G0, then HG ⊂ HG0
, if each ele-

ment of G0 can be written as arbitrary unions of finite (arbitrary) intersections of elements 
of G.

Proof Let G,G0 be subsets of P(X),  where G ⊂ G0. Let G,G0 be invariant relative to HG 
and HG0

 respectively. Then, h(G) ⊂ G; h ∈ HG . Let g ∈ G0, then from the assumption, g 
can be written in the form: g =

⋃

i∈I0

⋂

ji∈Ki
Aji ; where Aji ⊂ G, for all i, j. Consequently, 

if h ∈ HG , then from Lemma (1.15), it follows that

since A∗
ji
= h(Aji) ∈ G. Then, h ∈ HG0

, and so HG ⊂ HG0
.  �

Corollary 17 If G is a subset of P(X),  then HG ⊂ Hτ(G), where τ (G) is the (generalized 
topology) topology on the set X, generated by G as a (generalized base) sub-base. Since the 
elements of τ (G) are obtained from the elements of G,  using (arbitrary unions) arbitrary 
unions and arbitrary finite intersections.

The following example shows that in general, if G,G0 are subsets of P(X),   where 
G ⊂ G0. Then it is not necessary that HG ⊂ HG0

.

h

(

⋃

i∈K

Ai

)

=
⋃

i∈K

h(Ai), h

(

⋂

i∈K

Ai

)

=
⋂

i∈K

h(Ai),

f −1

(

⋃

i∈K

Ai

)

=
⋃

i∈K

f −1(Ai), f −1

(

⋂

i∈K

Ai

)

=
⋂

i∈K

f −1(Ai).

�

h(g) = h





�

i∈I0

�

ji∈Ki

Aji



 =
�

i∈I0

�

ji∈Ki

h(Aji) =
�

i∈I0

�

ji∈Ki

A∗
ji
⊂ G0,
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Example 18 Let X =
{

a, b, c
}

,G1 = {{a}} and G2 = {{a}, {b}}. Consider 
the function f : X → X , where f (a) = a, f (b) = c and f (c) = b. Then, 
γf (G1) = f −1(G1) = {{a}} = G1, which implies that γf ∈ HG1

. But 
γf (G2) = f −1(G2) = {{a}, {c}} �⊂ G2, which implies that γf  ∈ HG2

. Therefore, 
HG1

 ⊂ HG2
.

It is clear that the element {b} ∈ G2 can’t be obtained from the elements of G1, using 
the union and intersection operations. This justifies why HG1

 is not contained in HG2
, 

although G1 ⊂ G2.

The following example shows that in general, if G ⊂ P(X). Then HG  = Hτ(G), where 
τ (G) is the generalized topology generated by G.

Example 19 Let X =
{

a, b, c
}

. Choose G = {{a}, {b}}. Then, τ (G) = {∅, {a}, {b}, {a, b}}. 
Consider the function g : X → X , where g(a) = b, g(b) = b and g(c) = c. Then, the 
action of γg is defined as follows: γg (G) = g−1(G) = {∅, {a, b}} �⊂ G, then γg  ∈ HG , 
γg (τ (G)) = g−1(τ (G)) = {∅, {a, b}} ⊂ τ (G), then γg ∈ Hτ(G). Therefore, HG  = Hτ(G)).

Theorem 20 Let G1,G2 ⊂ P(X), then HG1
∩HG2

⊂ HG1∩G2
.

Proof Let γ ∈ HG1
∩HG2

, then γ ∈ HGi , i ∈ {1, 2}. It follows that γ (Gi) ⊂ Gi, i ∈ {1, 2}. 
Consequently, γ (G1 ∩ G2) = γ (G1) ∩ γ (G2) ⊂ G1 ∩ G2. It follows that γ ∈ HG1∩G2

. 
Therefore, HG1

∩HG2
⊂ HG1∩G2

. 

Example (1.17) shows that the inverse statement of Theorem (1.19) is not valid. Since 
G1 ∩ G2 = G1 and HG1∩G2

= HG1
�⊂ HG2

.

Remark 21 If H ⊂ Ŵ(X) and γ ∈ Ŵ(X), then γ ◦H and H ◦ γ can be defined as:

Definition 22 Let G ⊂ P(X), then the ordered pair ≺ G,HG ≻ is called an invariant 
system.

Theorem  23 If ≺ G,HG ≻ is an invariant system and f ∈ XX is a one-to-
one correspondence, then ≺ f (G), γf −1 ◦HG ◦ γf ≻ is an invariant system and 
Hf (G) = γf −1 ◦HG ◦ γf .

Proof Since ≺ G,HG ≻ is an invariant system, 
then h(G) ⊂ G; h ∈ HG . Consequently, we have: 
(γf −1 ◦ h ◦ γf )(f (G)) = γf −1(h(γf (f (G)))) = f (h(f −1(f (G)))) ⊂ f (h(G)) ⊂ f (G). 
Therefore, γf −1 ◦ h ◦ γf ∈ Hf (G), for all h ∈ HG . Hence, γf −1 ◦HG ◦ γf ⊂ Hf (G).

Now, we show that γf −1 ◦HG ◦ γf  is a maximal element of the family

�

γ ◦H = {γ ◦ h : h ∈ H}, H ◦ γ = {h ◦ γ : h ∈ H} ⊂ Ŵ(X).

�f (G) =
{

H ⊂ � : h(f (G)) ⊂ f (G) ∀ h ∈ H
}

.
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Let γf −1 ◦HG ◦ γf ⊂ H, where H ∈ �f (G), and let h ∈ H, then h(f (G)) = h

(γf −1(G)) ⊂ f (G). It follows that γf (h(γf −1(G))) ⊂ γf (γf −1(G)) = G. Hence 
γf ◦ h ◦ γf −1 ∈ HG , and so

Therefore, H = γf −1 ◦HG ◦ γf , and γf −1 ◦HG ◦ γf  is a maximal element of 
the family �f (G). Consequently, γf −1 ◦HG ◦ γf = Hf (G), which implies that 
≺ f (G), γf −1 ◦HG ◦ γf ≻ is an invariant system. 

Corollary 24 

(1) If f ∈ XX is a one-to-one correspondence function, then f −1 ∈ XX is a one-to-one 
correspondence. Using Theorem (2.7), it follows that 

 is an invariant system.
(2) Each one-to-one correspondence function f and invariant system ≺ G,HG ≻ define a 

sequence of invariant systems: 

Remark 25 From the study of the invariant systems ≺ G,HG ≻, it is shown that there 
exists a one-to-one correspondence between the family of G−continuous functions and 
the family of f (G)−continuous functions: h ↔ γf −1 ◦ h ◦ γf ; h ∈ HG , where f ∈ XX is 
any one-to-one correspondence function.

Study of some properties and examples on Ŵ(X)

Definition 26 [7]. Let (X, g) be a generalized topological space, then � ⊂ g is called a 
base for g if: every A ∈ g can be constructed as a union of some members of �.

Moreover, any subfamily � ⊂ P(X) generates the unique generalized topology g on 
X,  where

and g is the smallest generalized topology on X,  containing �.

Theorem 27 Let γ1 ∈ Ŵγ1 and γ2 ∈ Ŵγ2 . Then: 

γf −1 ◦ γf ◦ h ◦ γf −1 ◦ γf = h ∈ γf −1 ◦HG ◦ γf .

�

≺ f −1(G), γf ◦HG ◦ γf −1 ≻

{

≺ f n(G), γf −n ◦HG ◦ γf n ≻ : n ∈ N
}

.

g = G(�) =







A ⊂ X : ∃ �◦ ⊂ �, A =
�

Bi∈�◦

Bi







,
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1 gγ1◦γ2 ⊃ gγ1 ∩ gγ2 , and if γ1, γ2 ∈ Ŵδ , then gγ1◦γ2 ⊃ gδ , but, in some cases the equality 
holds.

2 gγ1∪γ2 ⊃ G{gγ1 , gγ2}, but the equality is valid for some special cases, where G{gγ1 , gγ2} 
is the generalized topology, which is generated by the family gγ1 ∪ gγ2 .

3 gγ1∩γ2 = gγ1 ∩ gγ2 . Moreover, if γ1, γ2 ∈ Ŵδ , then gγ1∩γ2 ∈ Ŵδ .

 Then, the intersection operation forms a binary operation on Ŵδ .

Proof

1 Let O ∈ gγ1 ∩ gγ2 , then O ⊂ γ1(O) and O ⊂ γ2(O) Consequently, 
(γ1 ◦ γ2)(O) = γ1(γ2(O)) ⊃ γ1(O) ⊃ O, then O ∈ gγ1◦γ2 . Therefore, 
gγ1◦γ2 ⊃ gγ1 ∩ gγ2 .

 See Example (2.1), in which, gδ  = gδ2 if δ = γ and gδ = gδ2 if δ = γ 2

2 Let O ∈ gγ1 ∪ gγ2 , then O ⊂ γ1(O) or O ⊂ γ2(O). Consequently,
 (γ1 ∪ γ2)(O) = γ1(O) ∪ γ2(O) ⊃ O, then O ∈ gγ1∪γ2 . Therefore, gγ1∪γ2 ⊃ gγ1 ∪ gγ2 .

 Since G{gγ1 , gγ2} is the smallest generalized topology on X,   containing gγ1∪γ2 , then 
gγ1∪γ2 ⊃ G{gγ1 , gγ2}.

 See Example (2.2), for the equality case.
3 Let O ∈ gγ1 ∩ gγ2 , then O ⊂ γ1(O) and O ⊂ γ2(O). Consequently,
 O ⊂ γ1(O) ∩ γ2(O) = (γ1 ∩ γ2)(O), then O ∈ gγ1∩γ2 and gγ1∩γ2 ⊃ gγ1 ∩ gγ2 .

 Now, et O ∈ gγ1∩γ2 , then O ⊂ (γ1 ∩ γ2)(O) = γ1(O) ∩ γ2(O). Consequently, 
O ⊂ γ1(O) and O ⊂ γ2(O), then O ∈ gγ1 ∩ gγ2 and gγ1∩γ2 ⊂ gγ1 ∩ gγ2 .

 Therefore, the intersection operation is a binary operation on Ŵδ .

In the following example, a map γ ∈ Ŵδ is constructed to have the following 
properties: 

(i)  γ 2 = γ ◦ γ �∈ Ŵγ , but, γ 3 ∈ Ŵγ .

(ii)  gγ (2n+1) = gγ = G{O0,O1 ∪ O2} ∈ Ŵγ ; n ∈ {0, 1, 2, 3, . . .}.

(iii)  gγ 2n = gγ 2 = G{O0,O1,O2} ⊃ gγ (2n+1) = gγ and gγ 2  ∈ Ŵγ ; n ∈ {1, 2, 3, . . .}.

Example 28 Let X be a non-empty set and O0,O1,O2 be non-empty mutually disjoint 
subsets of X. Define the map γ : P(X) → P(X) as follows:

γ (A) = O0; if A ⊃ O0 and A does not contain O1,O2.

γ (A) = O2; if A ⊃ O1 and A does not contain O0,O1.

γ (A) = O1; if A ⊃ O2 and A does not contain O0,O2.

γ (A) =
⋃

i∈ℓ γ (Oi); if A ⊃
⋃

i∈ℓOi, where ℓ ⊂ {0, 1, 2}.

γ (A) = ∅; if A does not contain O0 or O1 or O2.

The map γ satisfies the following: 

(i)  γ (O0) = O0.

(ii)  γ (O1 ∪ O2) = γ (O1) ∪ γ (O2) = O2 ∪ O1.

�
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(ii)  γ (O0 ∪ O1 ∪ O2) = O0 ∪ O1 ∪ O2.

(iv)  γ (A)  ⊃ A; if A  ∈ G{O0,O1 ∪ O2}.

 Therefore, the topology

The four steps (shown above) which constructs the map γ will be denoted by the follow-
ing notation:

The map γ 2  ∈ Ŵγ , since: γ 2(Oi) = Oi; i ∈ {0, 1, 2}, and γ 2  ⊃ A, for any 
A ⊂ X ,A �∈ G{O0,O1,O2}.

Therefore,

Therefore,

The map γ 2 can be constructed using the following symbols:

The map γ 3 ∈ Ŵγ , since

γ 3(O0) = O0,     γ 3(O1) = O2,     γ 3(O2) = O1,     γ 3(O1 ∪ O2) = O2 ∪ O1, and γ 3(A)  ⊃ A, 
for any A ⊂ X and A  ∈ G{O0,O1 ∪ O2}.

Therefore,

Consequently,

and

and

A general construction of Example (2.3) can be illustrated in the following theorem.

gγ = G{O0,O1 ∪ O2} = {∅,O0,O1 ∪ O2,O0 ∪ O1 ∪ O2}.

γ : O0 ↑;O1 → O2 → O1.

gγ 2 = G{O0,O1,O2} = {∅,O0,O1,O2,O0 ∪ O1,O0 ∪ O2,O1 ∪ O2,O0 ∪ O1 ∪ O2}.

gγ 2 = G{O0,O1,O2} = {∅,O0,O1,O2,O0 ∪ O1,O0 ∪ O2,O1 ∪ O2,O0 ∪ O1 ∪ O2}.

γ 2 : [O0,O1,O2] ↑ .

gγ 3 = gγ = G{O0,O1 ∪ O2} = {∅,O0,O1 ∪ O2,O0 ∪ O1 ∪ O2}.

gγ (2n+1) = gγ = G{O0,O1 ∪ O2} ∈ Ŵγ ; n ∈ {0, 1, 2, 3, . . .}.

gγ 2n = gγ 2 = G{O0,O1,O2} ⊃ gγ (2n+1) = gγ

gγ 2  ∈ Ŵγ ; n ∈ {1, 2, 3, . . .}.
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Theorem 29 Let X be a non-empty set and O0,O1,O2, . . . ,On be non-empty mutually 
disjoint subsets of X. Define the map γ : P(X) → P(X) as follows:

γ (A) = O0; if A ⊃ O0 and A does not contain any of the subsets Oi; 1 ≤ i ≤ n.

γ (A) = Oi+1; if A ⊃ Oi and A does not contain any of the subsets Os; s �= i, 0 ≤ s ≤ n, 
and 1 ≤ i ≤ n− 1.

γ (A) = O1; if A ⊃ On and A does not contain any subset of Os, 0 ≤ s < n.

γ (A) =
⋃

i∈ℓ γ (Oi); if A ⊃
⋃

i∈ℓOi, where ℓ ⊂ {0, 1, 2, 3, 4, . . . , n}.

γ (A) = ∅; if A does not contain any set Oi, i ∈ {0, 1, 2, 3, . . . , n}.

The map γ can be defined as:

Then, for any positive integer numbers n, s, k,  it follows that: 

1 

2 

 whenever 1 ≤ s ≤ n− 1 and n = ks, k > 1.

3 

 whenever s ≥ n and s = kn.

4 

 whenever (s ≥ n and s  = kn) or (s ≤ n− 1 and n  = ks, k > 1).

Proof

1 The definition of the map γ implies that 

 and γ (A)  ⊃ A, for all A ⊂ X;

 Therefore, the generalized topology generated by the monotonic map γ is 

 or 

2 Let s be any positive integer such that 1 ≤ s ≤ n− 1, then 

γ : O0 ↑;O1 → O2 → O3 → O4 → .... → On → O1.

gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ · · · ∪ On}.

gγ  = gγ s = G{O0,O1 ∪ O1+s ∪ O1+2s ∪ · · · ∪ On−s+1, . . . ,Os ∪ O2s ∪ O3s ∪ · · · ∪ On},

gγ  = gγ s = G{O0,O1,O2,O3, . . . ,On},

gγ = gγ s = G{O0,O1 ∪ O2 ∪ O3 ∪ · · · ∪ On},

γ (O0) = O0, γ (O1 ∪ O2 ∪ O3 ∪ · · · ∪ On) = O1 ∪ O2 ∪ O3 ∪ ...... ∪ On

A  ∈ {∅,O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On,O0 ∪ O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}.

gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}

gγ = {∅,O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On,O0 ∪ O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}.
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(i) Let n = ks, k ∈ {2, 3, 4, . . .}, then: 

 Moreover, γ (A)  ⊃ A, for all A ⊂ X;

 or 

 or 

 Therefore, γ s can be defined as: 

 And so, the generalized topology generated by the monotonic map γ s is 

(ii) Let n  = ks, k ∈ {2, 3, 4, . . .}, then: 

 Moreover, γ (A)  ⊃ A, for all A ⊂ X;

 Therefore, the generalized topology generated by the monotonic map γ s is 

γ s(Oi) =







O0 : i = 0,

Os+i : 1 ≤ i ≤ n− s,
Oi−n+s : n− s + 1 ≤ i ≤ n.

γ (O0) = O0.

γ (O1 ∪ O1+s ∪ O1+2s ∪ ...... ∪ On−s+1) = O1 ∪ O1+s ∪ O1+2s ∪ ...... ∪ On−s+1.

γ (O2 ∪ O2+s ∪ O2+2s ∪ ...... ∪ On−s+2) = O2 ∪ O2+s ∪ O2+2s ∪ ...... ∪ On−s+2.

γ (O3 ∪ O3+s ∪ O3+2s ∪ ...... ∪ On−s+3) = O3 ∪ O3+s ∪ O3+2s ∪ ...... ∪ On−s+3..

.

.

γ (Os ∪ O2s ∪ O3s ∪ ...... ∪ On) = Os ∪ O2s ∪ O3s ∪ ...... ∪ On.

A  ∈ {∅,O0,O1 ∪ O1+s ∪ O1+2s ∪ ...... ∪ On−s+1}

A  ∈ {O2 ∪ O2+s ∪ O2+2s ∪ ...... ∪ On−s+2,O3 ∪ O3+s ∪ O3+2s ∪ ...... ∪ On−s+3}

A  ∈ {O4 ∪ O4+s ∪ O4+2s ∪ ...... ∪ On−s+4, . . . ,Os ∪ O2s ∪ O3s ∪ ...... ∪ On}.

γ s : O0 ↑;O1 → O1+s → O1+2s → ..... → On−s+1 → O1,

O2 → O2+s → O2+2s → ..... → On−s+2 → O2,

O3 → O3+s → O3+2s → ..... → On−s+3 → O3,

.

.

Os → O2s → O3s → ..... → On → Os.

gγ  = gγ s = G{O0,O1 ∪ O1+s ∪ O1+2s ∪ .... ∪ On−s+1, ....,Os ∪ O2s ∪ O3s ∪ .... ∪ On}.

γ (O0) = O0.

γ (O1 ∪ O2 ∪ ...... ∪ On−s ∪ On−s+1 ∪ On−s+2 ∪ .... ∪ On−1 ∪ On)

= O1+s ∪ O2+s ∪ ...... ∪ On ∪ O1 ∪ O2....Os−1 ∪ Os

= O1 ∪ O2 ∪ ...... ∪ On−s ∪ On−s+1 ∪ On−s+2 ∪ .... ∪ On−1 ∪ On.

A  ∈ {∅,O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On,O0 ∪ O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}.
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 or 

3 Let s be any positive integer such that s = kn, k ∈ {1, 2, 3, . . .}, then 

 Therefore, the map γ s can be defined as: 

 And so the generalized topology generated by the monotonic map γ s is 

4 Let s be any positive integer such that 

 then 

 Moreover, this case is the case [2].

Corollary 30 Using Theorem (2.4), the following results can be obtained easily: 

1 If n is a prime number, then there exists only two generalized topologies on X,  which 
can be constructed as follows:

(i) gγ  = gγ s = G{O0,O1,O2, . . . ,On−1,On}, whenever s is divisible by n.
(ii) gγ s = gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}, whenever s is not divisible by 
n.

2 If s is a prime number and n > s, then there exist only two generalized topologies on X,  
which can be constructed as follows:

(i( gγ  = gγs = G{O0,O1 ∪ O1+s ∪ O1+2 s ∪ .... ∪ On−s+1, . . . ,Os ∪ O2 s ∪ O3 s ∪ .... ∪ On}, 
whenever n is divisible by s.
(ii) gγ s = gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}, whenever n is not divisible by 
s.

3 If s, n are prime numbers, and n  = s, then there exists only one generalized topology 
on X,  which can be constructed as follows: 

gγ s = gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}

gγ s = {∅,O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On,O0 ∪ O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}.

γ s(Oi) = Oi, i ∈ {0, 1, 2, 3, . . .}.

γ s : [O0,O1,O2, . . . ,On−1,On] ↑ .

gγ s = G{O0,O1,O2, . . . ,On−1,On}.

s ≥ n, s = kn+ r, k ∈ {1, 2, 3, . . .}, 1 ≤ r ≤ n− 1,

γ s(Oi) = γ nk+r = γ r(Oi) = Oi+r , 1 ≤ i ≤ n, 1 ≤ r ≤ n− 1.

�
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The following example shows that in general gγ1∪γ2 �= G{γ1, γ2}, for some γ1 ∈ Ŵγ1 and 
γ2 ∈ Ŵγ2 . Moreover, the equality will be valid for some special cases.

Example 31 Let X be non-empty set and O1,O2,O3,O4 be non-empty mutually 
disjoint subsets of X. Suppose that O1,O2 are disjoint, O2 = O3 ∪ O4 and O3 ∩ O4 = ∅.

Define the three monotonic maps γ1, γ2, γ3 : P(X) → P(X) as follows:

γ1(A) = O1, for all A ⊃ O1 and A ∩ O2 = ∅.

γ1(A) = O3, for all A ⊃ O2 and A ∩ O1 = ∅.

γ1(A) =
⋃

Oi⊂A,i∈ℓ γ1(Oi), where ℓ ⊂ L = {1, 2}.

γ1(A) = ∅, for all A ⊂ X and A does not contain any set Oj , j ∈ {1, 2}.

γ2(A) = O1, for all A ⊃ O1 and A does not contain O2.

γ2(A) = O4, for all A ⊃ O2 and A does not contain O1.

γ2(A) =
⋃

Oi⊂A,i∈ℓ γ2(Oi), where ℓ ⊂ L = {1, 2}.

γ2(A) = ∅, for all A ⊂ X and A does not contain any set Oj , j ∈ {1, 2}.

γ3(A) = O1, for all A ⊃ O1.

γ3(A) = ∅, for all A ⊂ X and A does not contain O1.

Therefore,
γ1(O1) = γ2(O1) = γ3(O1) = O1, and γi(A)  ⊃ A, for all A ⊂ X ,A �∈ {∅,O1}, i ∈ {1, 2, 3}.

which implies that gγ1 = gγ2 = gγ3 = {∅,O1}.

Hence, gγ1 , gγ2 and gγ3 are different monotonic maps, defining the same generalized 
topology. At the same time, we have the following:

(γ1 ∪ γ2)(O1) = γ1(O1) ∪ γ2(O1) = O1.

(γ1 ∪ γ2)(O2) = γ1(O2) ∪ γ2(O2) = O3 ∪ O4 = O2.

(γ1 ∪ γ3)(O1) = γ1(O1) ∪ γ3(O1) = O1.

(γ1 ∪ γ3)(A) �⊃ A, for all A ⊂ X and A  ∈ {∅,O1}.

Therefore,

Then,

And

gγ s = gγ = G{O0,O1 ∪ O2 ∪ O3 ∪ ...... ∪ On}.

gγ1∪γ2 = G{O1,O2} = {∅,O1,O2,O1 ∪ O2}, gγ1∪γ3 = {∅,O1}.

G{gγ1 , gγ2} = gγ1 ∪ gγ2 = gγ1∪γ3 = {∅,O1} ⊂ gγ1∪γ2 .

gγ1 ∪ gγ2 �= gγ1∪γ2 , gγ1 ∪ gγ3 = gγ1∪γ3 .
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Obtainment of generalized topologies generated by special monotonic maps
Let gδ be a given generalized topology on X,  which is generated by the monotonic map δ, 
whose generalized interior and generalized closure are denoted by intδ and clδ respectively. 
It is known that the monotonic maps intδ ◦ intδ = intδ and clδ ◦ clδ = clδ . But the composi-
tion of the monotonic functions intδ ◦ clδ and clδ ◦ intδ have different behaviors.

σ−generalized topological space (X , gσ )

Theorem  32 Let gδ be a given generalized topology on X,   which is generated by the 
monotonic map δ. The non-empty elements of the generalized topology gσ which is defined 
by the map σ = clδ ◦ intδ consists of all subsets A ⊂ X , having non-empty intδ(A) and 
(each δ−open subset O ∈ gδ intersects intδ(A) ) or (each δ−open subset O ∈ gδ , which does 
not intersect intδ(A), does not intersect A also).

Proof Let A ⊂ X . Then: 

1 If intδ(A) = ∅, then σ(A) = ∅.

2 If intδ(A)  = ∅, then 

 Therefore, the set A ⊂ X is σ−open subset ( the class of all g−semi-open sets) if 
σ(A) ⊃ A. This statement is valid in the following cases:

(a) For every A,  for which intδ(A)  = ∅ and 
⋃

O∈gδ ,intδ∩O=∅O = ∅, which means 
that each δ−open subset O intersects intδ(A).
(b) For every A,  for which intδ(A)  = ∅ and 

⋃

O∈gδ ,intδ∩O=∅O �= ∅, and 

 Therefore, 

 This means that each δ−open subset O,  which does not intersect intδ(A), does 
not intersect also with A.

σ(A) =clδ(intδ(A) =
�

O∈gδ

{X − O : intδ(A) ⊂ X − O}

=
�

O∈gδ

{X − O : intδ(A) ∩ O = ∅}

=X −
�

O∈gδ

{O : intδ(A) ∩ O = ∅}

=







X :
�

O∈gδ ,intδ∩O=∅O = ∅

�

O∈gδ ,intδ∩O=∅(X − O) :
�

O∈gδ ,intδ∩O=∅O �= ∅

A ⊂
⋂

O∈gδ ,intδ∩O=∅

(X − O) = X −
⋂

O∈gδ ,intδ∩O=∅

O.

A ∩
⋂

O∈gδ ,intδ∩O=∅

O = ∅.

�
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Remark 33 The set X is σ−open, if X is δ−open or there exists a subset A ⊂ X with 
non-empty δ−interior, and intersects each δ−open subset O ∈ gδ .

Notation 34 Throughout the rest of our study, the three special generalized topological 
spaces (X , giδ), i ∈ {1, 2, 3}, will be defined as follows: 

1 Let (X , g1δ) be a 1δ−generalized topological space on the non-empty set X,  where g1δ 
is generated by the non-empty subsets O1,O2,O3,satisfying the following conditions:

 O1 ∩ O2 = {x1},O2 ∩ O3 = {x2} and O3 ∩ O1 = {x3}. Moreover, x1  ∈ O3, x2  ∈ O3 
and x3  ∈ O2.

2 Let (X , g2δ) be a 2δ−generalized topological space on the non-empty set X,  where g2δ 
is generated by the disjoint non-empty subsets {O1,O2}.

3 Let (X , g3δ) be a 3δ−generalized topological space on non-empty set X,  where g3δ is 
generated by the non-empty subsets O1,O2,O3,O4, satisfying the below:

 O1 ∩ O2 = {x1}, O2 ∩ O3 = {x2},O3 ∩ O4 = {x3} and O4 ∩ O1 = {x4}. Moreover, 
O1 ∩ O3 = ∅ and O2 ∩ O4 = ∅.

σ−generalized topological spaces which are defined by special generalized topological spaces 

(X , giδ), i ∈ {1, 2, 3}

By using Theorem  32, the σ−generalized topological spaces can be constructed as 
follows: 

1 The σ−generalized topology gσ on g1δ is defined as follows:

 Let A  = ∅ be σ−open subset, then int1δ(A)  = ∅, and it contains at least one 1δ−open 
subset Oi0 ∈ g1δ . Consequently, int1δ(A) intersects all the elements of g1δ . Therefore, 
the family of σ−open subset of g1δ consists of each subset of X,  containing at least 
one of the non-empty elements of g1δ .

 It is clear that X is σ−open set, but X is 1δ−open only if X = O1 ∪ O2 ∪ O3.

2 The σ−generalized topology gσ on g2δ is defined as follows:
 Let A  = ∅ be σ−open subset, then int2δ(A)  = ∅, and it contains one element of 

{O1,O2,O1 ∪ O2}. Therefore, the family of σ−open subset of g2δ consists of the fol-
lowing subfamilies:

(i) Any subset of X,  containing O1 ∪ O2.

(ii) Any subset of X,  containing O1 and does not intersect O2.

(iii) Any subset of X,  containing O2 and does not intersect O1.

  It is clear that X is σ−open set, but X is 2δ−open only, if X = O1 ∪ O2.

3 The σ−generalized topology gσ on g3δ is defined as follows:
 Let A  = ∅ be σ−open subset, then int3δ(A)  = ∅, and it contains at least one element 

of {O1,O2,O3,O4}. Therefore, the family of σ−open subset of g3δ consists of the fol-
lowing subfamilies:
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(i) A is σ−open subset if int3δ(A) contains at least two elements of 
{O1,O2,O3,O4}, since int3δ(A) intersects all the elements of g3δ .
(ii) If int3δ(A) contains O1 only (or O3 only), then A is σ−open subset if it con-
tains O1 and does not intersect O3 (or if it contains O3 and does not intersect 
O1).

(iii) If int3δ(A) contains O2 only (or O4 only), then A is σ−open subset if it 
contains O2 and does not intersect O4 (or if it contains O4 and does not inter-
sect O2).

  It is clear that X is σ−open set, but X is 3δ−open only, if 
X = O1 ∪ O2 ∪ O3 ∪ O4.

α−generalized topological space (X , gα)

Theorem  35 Let gδ be a given generalized topology on X,   which is generated by the 
monotonic map δ. The non-empty elements of the generalized topology gα on X,  which is 
defined by the map α = intδ ◦ clδ ◦ intδ consists of all subsets A ⊂ X , satisfying the follow-
ing conditions: 

1 If X  ∈ gδ and O ∩ intδ(A) �= ∅, for all O ∈ gδ . Then, A ∈ gα if: 

2 If X ∈ gδ and O ∩ intδ(A) �= ∅, for all O ∈ gδ . Then, A ∈ gα if: 

 This means that X ∈ gδ ⇒ X ∈ gσ ∩ gα .

3 If intδ(A)  = ∅, and 

 Then, A ∈ gα if: 

4 If intδ(A)  = ∅, 
⋃

O∈gδ ,O∩intδ(A)�=∅O ⊃ A,

 and 

α(A) =
⋃

O∈gδ

O ⊃ A ⊃ intδ(A).

α(A) = X ⊃ A ⊃ intδ(A).

⋃

O∈gδ ,O∩intδ(A)�=∅,∃U∈gδ ,U∩intδ(A)=∅,U∩O �=∅

O = ∅.

α(A) =
⋃

O∈gδ ,O∩intδ(A)�=∅

O ⊃ A ⊃ intδ(A).

⋃

O∈gδ ,O∩intδ(A)�=∅,∃U∈gδ ,U∩intδ(A)=∅,U∩O �=∅

O �= ∅
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 Then, A ∈ gα if: 

Proof

(a)  Let A ⊂ X such that intδ(A) = ∅, then α(A) = ∅. Hence, ∅ ∈ gα .

(b)  Let A ⊂ X such that intδ(A)  = ∅, then: 

 The subset A is α−open subset, if α(A) ⊃ A. This statement is valid in the following 
cases: 

1 For every A ⊂ X , for which intδ(A)  = ∅, X  ∈ gδ ,
⋃

O∈gδ ,intδ∩O=∅O = ∅ (i.e. each δ−
open subset O intersects intδ(A)), and 

 (Therefore, X is not α−open set if it is not δ−open set).
2 Let X ∈ gδ , then A is α−open subset for all A ⊂ X , since α(A) = X ⊃ A ⊃ intδ(A). 

Therefore, X is α−open set if it is δ−open set.
3 For every A ⊂ X , for which intδ(A)  = ∅, and 

 (i.e. each δ−open subset O,  intersecting intδ(A) does not intersect any δ−open sub-
set U,  for which U ∩ intδ(A) = ∅).

 Then, A ∈ gα if: 

4 For every A ⊂ X , for which intδ(A)  = ∅, and 

A ∩
⋃

O∈gδ ,O∩intδ(A)�=∅,∃U∈gδ ,U∩intδ(A)=∅,U∩O �=∅

O = ∅.

α(A) =
⋃

O∈gδ ,O∩intδ(A)�=∅,U∩O=∅∀U∈gδ ,U∩intδ(A)=∅

O ⊃ A ⊃ intδ(A).

α(A) =intδ(σ (A)) = intδ







X :
�

O∈gδ ,intδ∩O=∅O = ∅

�

O∈gδ ,intδ∩O=∅(X − O) :
�

O∈gδ ,intδ∩O=∅O �= ∅

=























�

O∈gδ ,intδ∩O �=∅O : X �∈ gδ ,
�

O∈gδ ,intδ∩O=∅O = ∅

X : X ∈ gδ ,
�

O∈gδ ,intδ∩O=∅O = ∅

�

O∈gδ ,O∩intδ(A)�=∅,U∩O=∅∀U∈gδ ,U∩intδ(A)=∅O :
�

O∈gδ ,intδ∩O=∅O �= ∅

α(A) =
⋃

O∈gδ

O ⊃ A ⊃ intδ(A).

⋃

O∈gδ ,O∩intδ(A)�=∅,∃U∈gδ ,U∩intδ(A)=∅,U∩O �=∅

O = ∅.

α(A) =
⋃

O∈gδ ,O∩intδ(A)�=∅

O ⊃ A ⊃ intδ(A).



Page 19 of 27Kamel and Dib  Journal of the Egyptian Mathematical Society            (2023) 31:3  

 (i.e. each δ−open subset O,  intersecting intδ(A), intersects some δ−open subset U,  
for which U ∩ intδ(A) = ∅).

 Then, A ∈ gα if intδ(A)  = ∅ and 

Remark 36  
The map α = intδ ◦ clδ ◦ intδ is called controlled by the generalized topology gδ . It can be 
denoted by αδ .

α−generalized topological spaces which are defined by special generalized topological spaces 

(X , giδ), i ∈ {1, 2, 3}

By using Theorem  35, the α−generalized topological spaces can be constructed as 
follows: 

1 The α−generalized topology gα on g1δ is defined as follows:

 Let A  = ∅ be α−open subset, then int1δ(A)  = ∅, then it contains at least one 1δ−
open subset Oi0 ∈ g1δ . Consequently, int1δ(A) intersects all the elements of g1δ . 
Therefore, the family of α−open subset of g1δ consists of:

(i) Each subset A of X,  containing at least one of the non-empty elements of 
g1δ (if X is 1δ−open set).
(ii) Each subset A,   containing at least one 1δ−open subset and 
A ⊂ O1 ∪ O2 ∪ O3 (if X is not 1δ−open set).

2 The α−generalized topology gα on g2δ is defined as follows:
 Let A  = ∅ be σ−open subset, then int2δ(A)  = ∅, then it contains one element of 

{O1,O2,O1 ∪ O2}. Therefore, the family of α−open subsets of g2δ consists of the fol-
lowing subfamilies:

(i) A = O1 ∪ O2, if X is not 1δ−open set.
(ii) Any subset A of X,  containing O1 ∪ O2, if X is 2δ−open set.
(iii) The subset A of X,  if A = O1 or A = O2.

  Therefore, gα = g2δ , if X is not 2δ−open set. This result is true for 
every gδ generated by a family of disjoint subsets, when X is not δ−open set.

3 The α−generalized topology gα on g3δ is defined as follows:

⋃

O∈gδ ,O∩intδ(A)�=∅,∃U∈gδ ,U∩intδ(A)=∅,U∩O �=∅

O �= ∅.

α(A) =
⋃

O∈gδ ,O∩intδ(A)�=∅,U∩O=∅∀U∈gδ ,U∩intδ(A)=∅

O ⊃ A ⊃ intδ(A).

�
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 Let A  = ∅ be α−open subset, then int3δ(A)  = ∅, then it contains at least one element 
of {O1,O2,O3,O4}. Therefore, the family of α−open subset of g3δ consists of the fol-
lowing subfamilies:

(i) The subset A of X,   if int3δ(A) contains at least two elements of 
{O1,O2,O3,O4}, since int3δ(A) intersects all the elements of g3δ if: X is 3δ−
open set, or A ⊂ O1 ∪ O2 ∪ O3 ∪ O4 and X is not 3δ−open set.
(ii) The subset A of X,  if A = O1 or A = O2 or A = O3 or A = O4.

π−generalized topological space (X , gπ )

Notation 37 Let gδ be a given generalized topology on X,   which is generated by the 
monotonic map δ. Each subset A ⊂ X divides the elements of the generalized topology 
gδ into two classes:

For each O ∈ △A, we define

And

It is clear that the family {△A,∇A}, for all A ⊂ X forms a partition for the δ−general-
ized topology gδ on X. Moreover, (△A = ∅ ⇒ ∇A = gδ) and (∇A = ∅ ⇒ △A = gδ).

Theorem  38 Let gδ be a given generalized topology on X,   which is generated by the 
monotonic map δ. The non-empty elements of the generalized topology gπ on X ( the fam-
ily of all π−preopen sets), which is defined by the monotonic map π = intδ ◦ clδ consists of 
all non-empty subsets A ⊂ X , satisfying the following conditions: 

 (i) ∇A = ∅ and X is δ−open set.
 (ii) If ∇A = ∅, and X is not δ−open set and A ⊂

⋃

O∈gδ
O.

 (iii) If ∇A �= ∅, △A �= ∅, and A ⊂
⋃

O∈△A,O∩U=∅;U∈∇A
O.

Proof Consider the action of the map π on the subset A of X : 
Let A = ∅, then π(A) = ∅. Hence, ∅ ∈ gπ .

Let A  = ∅, then we get

△A = {O ∈ gδ : A ∩ O �= ∅}, ∇A = {U ∈ gδ : A ∩ U = ∅}.

UO =
⋃

U∈∇A,U∩O �=∅

U .

εA =







x ∈ A : x �∈
�

O∈gδ

O







.
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The nonempty subset A is π−open subset, if π(A) ⊃ (A). Therefore, the subset A is π−
open subset in the following cases: 

(i)  If ∇A = ∅ and X ∈ gδ . Then, A is π−open subset, since π(A) = X ⊃ A.

(ii)  If ∇A = ∅, and X is not δ−open set. Then, A is π−open subset if A ⊂
⋃

O∈gδ
O.

(iii)  If △A �= ∅ and ∇A �= ∅, then the nonempty subset A is π−open subset, if: 

π−generalized topological spaces which are defined by special generalized topological spaces 

(X , giδ), i ∈ {1, 2, 3}

By using Theorem  38, the π−generalized topological spaces can be constructed as 
follows: 

1 The π−generalized topology gπ on g1δ is defined as follows:

 A is π−open subset:

(i) If A intersects each of the subsets {O1,O2,O3} and X is 1δ−open set.
(ii) If A intersects each of the subsets {O1,O2,O3} and X is not 1δ−open set, 
then A ⊂ O1 ∪ O2 ∪ O3.

2 The π−generalized topology gπ on g2δ is defined as follows:
 A is π−open subset in the following cases:

(i) A ∩ O1 �= ∅,A ∩ O2 = ∅ and π(A) = O1 ⊃ A.

(ii) A ∩ O2 �= ∅,A ∩ O1 = ∅ and π(A) = O2 ⊃ A.

(iii) A ∩ O1 �= ∅,A ∩ O2 �= ∅ and π(A) = O1 ∪ O2 ⊃ A.

3 The π−generalized topology gπ on g3δ is defined as follows:

π(A) =intδ(clδ(A)) = intδ



















�

U∈gδ
(X −U) : △A = ∅.

�

U∈∇A
(X − U) : △A �= ∅,∇A �= ∅.

X : ∇A = ∅, .

=



































∅ : △A = ∅ or △A �= ∅,∇A �= ∅,UO �= ∅;O ∈ △A.

�

UO=∅,O∈gδ
O : △A �= ∅,∇A �= ∅, ∃O ∈ △A,UO = ∅.

X : ∇A = ∅,X ∈ gδ .

�

O∈gδ
O : ∇A = ∅,X �∈ gδ .

π(A) =
⋃

UO=∅,O∈gδ

O =
⋃

O∈△A,O∩U=∅;U∈∇A

O ⊃ A.

�
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 A is π−open subset in the following cases:

(i) If it is included in O1 and intersects O2,O4.

(ii) If it is included in O2 and intersects O1,O3.

(iii) If it is included in O3 and intersects O2,O4.

(iv) If it is included in O4 and intersects O3,O1.

(v) If it is included in O1 ∪ O2 ∪ O3 ∪ O4 and intersects all the elements 
{O1,O2,O3,O4}.

Remark 39 Consider the following case: If ∇A �= ∅ and UO  = ∅, for some 
O ∈ △1A ⊂ △A. It follows that A is not π−open subset. Since if UO  = ∅, for some 
O ∈ △1A ⊂ △A, then the points of A in O are not included in π(A) =

⋃

UO=∅,O∈△A
O. 

Then, A is not included in π(A) and is not π−open subset.

β−generalized topological space (X , gβ)

Theorem  40 Let gδ be a given generalized topology on X,   which is generated by the 
monotonic map δ. The non-empty elements of the generalized topology gβ on X,  which is 
defined by the monotonic map β = clδ ◦ intδ ◦ clδ consists of all non-empty subsets A ⊂ X , 
satisfying the following conditions: 

1 If for some O0 ∈ gδ , A intersects O0 and A intersects each O ∈ gδ , intersecting O0. 
Moreover, A ⊂

⋃

U∩A�=∅,U∈gδ
(X − U).

2 If A intersects every O ∈ gδ .

Proof Consider the action of the map β on the subset A of X : 
Let A = ∅, then β(A) = ∅. Hence, ∅ ∈ gβ .

Let A  = ∅, then we get:

β(A) =clδ(π(A)) = clδ



































∅ : △A = ∅ or △A �= ∅,∇A �= ∅,UO �= ∅;O ∈ △A.

�

U∈∇A
(X − O) : △A �= ∅,∇A �= ∅, ∃O ∈ △A,UO = ∅.

X : ∇A = ∅,X ∈ gδ .

�

O∈gδ
O : ∇A = ∅,X �∈ gδ .

=



















∅ : △A = ∅ or △A �= ∅,∇A �= ∅,UO �= ∅;O ∈ △A.

�

UO=∅,O∈gδ
O : △A �= ∅,∇A �= ∅, ∃O ∈ △A,UO = ∅.

X : ∇A = ∅.
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The nonempty subset A is β−open subset, if β(A) ⊃ (A). Therefore, the subset A is β−
open subset in the following two cases: 

1 If for some O0 ∈ gδ , A intersects O0 and A intersects each O ∈ gδ , intersecting O0. 
Moreover, A ⊂

⋃

U∩A�=∅,U∈gδ
(X − U).

2 If A intersects every O ∈ gδ .

Remark 41 The nonempty subset A is β−open subset, if A intersects every O ∈ gδ . It 
follows that X is β−open set.

β−generalized topological spaces which are defined by special generalized topological spaces 

(X , giδ), i ∈ {1, 2, 3}

By using Theorem  40, the β−generalized topological spaces can be constructed as 
follows: 

1 The β−generalized topology gβ on g1δ is defined as follows:

 A is β−open subset:

(i) If A intersects each of the subsets {O1,O2,O3} and X is 1δ−open set.
(ii) If A intersects each of the subsets {O1,O2,O3} and X is not 1δ−open set, 
then A ⊂ O1 ∪ O2 ∪ O3.

2 The β−generalized topology gβ on g2δ is defined as follows:
 A is β−open subset in the following cases:

(i) A ∩ O1 �= ∅,A ∩ O2 = ∅. Therefore, each subset of O1 is β−open subset.
(ii) A ∩ O2 �= ∅,A ∩ O1 = ∅. Therefore, each subset of O2 is β−open subset.
(iii) A intersects O1 ∪ O2.

3 The β−generalized topology gβ on g3δ is defined as follows:
 A is β−open subset in the following cases:

(i) If it intersects three subsets only of {O1,O2,O3,O4}, and A ⊂ X − Oi or 
A ∩ Oi = ∅, for only one element i in the family {1, 2, 3, 4}.
(ii) If it intersects all the elements of g3δ .

�
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Properties of the composition binary operation on the monotonic functions 
intδ , clδ , σ ,α,π ,β

Let (X , gδ) be any δ−generalized topological space, generated by δ ∈ Ŵδ . Then, for any 
A ⊂ X , the definitions of the monotonic maps σ ,α,π and β , implies the following 
relations: 

1 α(A) = intδ(σ (A)).

2 β(A) = clδ(π(A)).

3 intδ(A) ⊂ intδ(σ (A)), clδ(π(A)) ⊂ clδ(A).

4 σ(A) = σ(intδ(A)), π(A) = π(clδ(A)).

Theorem  42 Let (X , gδ) be any δ−generalized topological space, generated by δ ∈ Ŵδ . 
Then, for any A ⊂ X , the following conditions are satisfied: 

1 π(X − A) = X − σ(A).

2 σ(X − A) = X − π(A).

3 α(X − A) = X − β(A).

4 β(X − A) = X − α(A).

Proof The proof is straightforward, using the relations: intδ(X − A) = X − clδ(A) and 
clδ(X − A) = X − intδ(A). �
Theorem 43 Let (X , gδ) be any δ−generalized topological space, generating by δ ∈ Ŵδ . 
Then, for any A ⊂ X , and γ ∈ {σ ,α,π ,β}, it follows that γ (A) = γ 2(A).

Proof

1 

 Since intδ(A) ⊂ σ(A), then intδ(A) ⊂ intδ(σ (A)), which implies that for any V ∈ gδ , 
if intδ(σ (A)) ∩ V = ∅, then intδ(A) ∩ V = ∅. Therefore σ 2(A) ⊂ σ(A).

 Conversely, let x ∈ σ(A) and x  ∈ σ 2(A), then there exists V ∈ gδ such that x ∈ V  and 
intδ(σ (A)) ∩ V = ∅. Since intδ(A) ⊂ σ(A), then intδ(A) ∩ V = ∅, which contradicts 
x ∈ σ(A). Hence x ∈ σ 2(A), and σ 2(A) ⊃ σ(A), which implies that σ 2(A) = σ(A).

2 π2(A) = π(π(A)) = π(X−σ(X−A)) = X−σ(σ(X−A)) = X−σ 2(X−A) = X−σ(X−A) = π(A).

σ(A) =
⋂

V∈gδ

{X − V : intδ(A) ∩ V = ∅},

σ 2(A) =
⋂

V∈gδ

{X − V : intδ(σ (A)) ∩ V = ∅}.
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3 α2(A) = α(α(A)) = α(intδ(σ (A))) = intδ(σ (intδ(σ (A)))) = intδ(σ (σ (A))) = intδ(σ (A)) = α(A).

4 β2(A) = β(β(A)) = β(clδ(π(A))) = clδ(π(clδ(π(A)))) = clδ(π(π(A))) = clδ(π(A)) = β(A).

Theorem 44 Let (X , gδ) be any δ−generalized topological space, generated by δ ∈ Ŵδ .

The composition operation ◦ on the set of all functions is a binary operation on the family 
of monotonic maps {intδ , clδ , σ ,α,π ,β}.

Proof One can construct the following table easily. 

◦ intδ clδ σ π α β

intδ intδ π α π α π

clδ σ clδ σ β σ β

σ σ β σ β σ β

π α π α π α π

α α π α π α π

β σ β σ β σ β

Therefore, the composition operation ◦ is a binary operation on the family of monotonic 
maps {intδ , clδ , σ ,α,π ,β}.  �

Corollary 45 Let (X , gδ) be any δ−generalized topological space, generated by δ ∈ Ŵδ .

For any γ ∈ {intδ , clδ , σ ,α,π ,β}, it follows that: 

1 β ◦ γ = σ ◦ γ .

2 π ◦ γ = α ◦ γ .

3 γ ◦ σ = γ ◦ α.

4 γ ◦ π = γ ◦ β .

5 intδ ◦ γ ◦ intδ = α; γ �= intδ .

6 clδ ◦ γ ◦ clδ = β; γ �= clδ .

7 σ ◦ γ ◦ σ = σ .

8 π ◦ γ ◦ π = π .

9 α ◦ γ ◦ α = α.

10 β ◦ γ ◦ β = β .

Proof The proof can be constructed from the above table in Theorem 44. 
The relation between the γ−generalized topological spaces, where 

γ ∈ {intδ , clδ , σ ,α,π ,β}, can be studied in the following theorem.

�

�
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Theorem  46 Let (X , gδ) be any δ−generalized topological space, generated by δ ∈ Ŵδ , 
and (X ,DX ) be the discrete space, then: 

1 gintδ = gδ ⊂ gα ⊂ gσ ⊂ gβ ⊂ gclδ = DX .

2 gα ⊂ gπ ⊂ gβ .

Proof The proof is easy, since for all A ⊂ X , it follows that: 

(a)  intδ(A) ⊂ A ⊂ clδ(A).

(b)  intδ(A) ⊂ α(A) ⊂ σ(A) ⊂ β(A) ⊂ clδ(A).

(c)  α(A) ⊂ π(A) ⊂ β(A).

Conclusion
In this paper, the family of monotonic functions Ŵ(X) have the following properties: 

1 The monotonic map intδ ∈ Ŵ(X) is the smallest monotonic map in the equivalence 
class of all monotonic maps Ŵδ , which is defined by the same generalized topology δ. 
Moreover, the monotonic map clδ ∈ Ŵ(X) is the largest monotonic map in the asso-
ciated equivalence class Ŵδ to the class Ŵδ .

2 Using the invariant systems ≺ G,HG ≻, it is shown that there exists a one-to-one 
correspondence between the family of G−continuous functions and the family of 
f (G)−continuous functions: h ↔ γf −1 ◦ h ◦ γf ; h ∈ HG; for any one-to-one corre-
spondence f ∈ XX .

3 The family of monotonic maps {intδ , clδ , σ ,α,π ,β}, for every δ−Csázsá r generalized 
topological space (X , gδ) is closed under the composition operation and has interest-
ing relations (see article 4).
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