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Introduction
An effective numerical strategy for solving partial differential equations (PDEs) is to 
approximate them by radial basis functions (RBFs), which approximate the numerical 
solution when implemented that makes the process computationally efficient. The radial 
basis function was developed for finding the solution of interpolation matrices and later 
implemented for solutions of partial differential equations. One of the important char-
acteristics of RBF is that these are easy to use and works well by dynamic and irreg-
ular domains. In numerical analysis and statistics, RBF approaches have a wide range 
of applications. Numerical solutions of PDEs, geomodelling, machine learning, price 
options, neural networks, data mining, and image processing are just a few examples of 
these applications.

There are several numerical techniques that are available to solve a moddelled partial 
differential equation. But each method has its own advantage and disadvantage, such as 
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finite difference method is a simple and easy to implement technique. But it becomes 
quite complex for irregular domains; Finite element method is most popular due to most 
flexible over complex domains but involves a lot of integration; finite volume method 
is widely used in computational fluid dynamics, surface integral over control volumes 
but has complexity involved. Some researchers have developed the computational tech-
niques on the base of the above defined techniques that has been implemented for find-
ing the numerical solutions of PDEs, includes quadrature technique [1], B-spline finite 
element methods [2], RBF methods [3], exponential B-spline with PSO [4], the modi-
fied cubic B-spline differential quadrature method [5, 6]. Some other approaches involve 
finite difference method, Kansa’s approach for solution of parabolic, elliptic, and hyper-
bolic PDEs, RBF collocation method as pseudo-spectral methods, etc. [7–10].

The numerical solutions of fractional ordinary equations (ODEs) and PDEs are most 
demanding area of today’s research for which various numerical methods has been pro-
posed by many researchers. Maayah [11] proposed the multistep Laplace optimized 
decomposition method for fractional system of ODEs in which Runge–Kutta method 
of order four applied for testing the efficiency of the proposed method and Arora G. 
[12] presented residual power series method for fractional relaxation–oscillation equa-
tion. Arqub[13] presented the Dirichlet model by computational approach based on the 
reproducing kernel in a time-fractional sense.

There are a number of the partial differential equations that has been generated as a 
result of mathematical modelling when the domain is uniformly distributed. In such 
cases, there is a need to find the solution in the presence of non-uniform data, which is 
not easy to handle and leads to complexity. To solve this problem, mesh-free methods 
are used. Radial basis function method is one of useful technique in the mesh-free meth-
ods. RBF methods are modern ways to approximate multivariate functions, especially in 
the absence of grid data. They have been known, tested, and analysed for several years 
now, and many positive properties have been identified [14]. The implementation of RBF 
techniques in approaching multivariate scattered data has been highly appreciated.

Hardy[15] introduced the RBF method in context of the quadric surfaces dealing with 
the topological approach. Hardy was the first to develop the multi-quadric (MQ) approx-
imation technique. Franke [16] experimented with scattered data interpolation. He eval-
uates methods into the form of time, storage, exactness, and ease of implementation, 
and also considers multi-quadric (which is a type of RBF) to be one of the best. Micchelli 
[17]made a step forward in by demonstrating that multi-quadraic surface interpolation 
is always solvable. The MQ approach has the benefit of obtaining the interpolant using 
a linear combination of basic functions that are only dependent on the distance from a 
specific node, which is known as the centre.

In order to solve a PDE, Edward Kansa invented the Kansa method [18] in 1990. It first 
used the multi-quadraic, a widely supported interpolant. Despite being used in many 
different applications, the Kansa technique has certain drawbacks, such as asymmetri-
cal traits of the interpolation matrix, which results in a poorly conditioned matrix for a 
large number of nodes. As an upgradation to the Kansa method, Fasshauer presented a 
Hermite-based methodology in 1996. The collocation matrices produced by this method 
are typically more symmetric and have a lower condition number [19]. The symmetric 
RBF collocation method does have some drawbacks. In comparison to an unsymmetric 
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technique, the symmetric collocation approach is more challenging to implement. 
Larsson and Fornberg [20] and Power and Barraco [21] compared the symmetric and 
unsymmetric approaches. Other methods, such as pre-conditioning the interpolation 
matrix[22], the domain decomposition method [23], etc. have been suggested to over-
come the aforesaid difficulties. These techniques can help to some extent by lessening 
the matrix’s poor conditioning. The local approach is another really promising option 
to address these types of Kansa method issues. Only the local approximation should 
be taken into consideration for collocation in this strategy rather than all the nodes 
throughout the entire domain.

Most RBFs have a parameter called the shape parameter, that determines the struc-
ture of the RBF. Some RBFs have the best accuracy when the form parameter is set to 
small values, but this results in improper conditioning of the matrix. An approach for 
the RBF’s stable computation for all values of the form parameter [24] was put forth by 
Fornberg and Wright in 2004. In 2007, Fornberg and Piret significantly enhanced the 
method to create the new RBF-QR method, which completely eliminates the matrix’s 
improper condition in cases of nearly flat basis function [25]. In order to maximise 
the benefits of RBFs, the method continues to be improved by fusing RBF with other 
widely used approaches. Shu in 2003 gave an approach to combine the meshfree nature 
of RBF and the high accuracy and simplicity of differential quadrature (DQ) method by 
proposing a hybrid method known as RBF-DQ method [26]. This technique has been 
used by researchers to solve PDEs in fluids (such as Navier–stokes, Shallow water prob-
lems). Tolstykh in 2003 used local set of nodes to generate the radial basis finite dif-
ference approach[27], this hybrid method termed as RBF-FD. Its discretizations are 
completely mesh-free and very simple to use, even when local refinements are required 
[28]. Another promising approach is the RBF-PUM to solve PDEs, which combines the 
partition of unity method with RBF [29]. The idea of RBF-PUM method is to partition 
the domain into overlapping sub-domains. The local approximation is done on the sub-
domains and combines to get the global approximation. RBF-PUM reduces the compu-
tational cost while maintaining high accuracy. The approximation done on the points of 
the sub-domain for finding the solution by the local approximation and whole is used for 
the global approximation. The computational complexity minimises by the RBF-PUM 
corresponding the maintenance of the and.

The paper is arranged as follows: In Section 2 “Radial basis function”, the radial basis 
function is discussed. The third section presented a review of radial basis function meth-
ods that are used for finding the solutions of PDEs. In last section, conclusion of the 
paper is presented followed by the discussion of RBF methods. Wherever possible, we 
attempted to provide the mathematical formulation of the RBF  methods. To the best 
of the authors’ understanding, there is no such investigation that presents all the RBF 
techniques.

Radial basis function
A function Φ: ℝt → ℝ is called radial if there exist a function of one variable: [0,∞) → R 
such that �(x) = ϕ(x), here Euclidean norm ‖.‖ is used and t ∈ N . Φ(r) is a univariate 
continuous real valued radial basis function whose value based upon distance value that 
is measure from any fixed centre point or the origin [14].
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From the definition, it is clear that Φ is a special function, which is radially sym-
metric and only depends on the distance between points. The application of radial 
basis function to the high dimensional problem is easy as the interpolation problem 
is insensitive to the space dimension. In all space dimensions, one can work with 
the function φ that is univariate instead of using a multivariate function Φ. We are 
centring on types of radial basis functions that are distinguished by the smoothness-
piecewise smooth RBFs which are free from shape parameter � and infinitely differ-
entiable which have parameters called the shape parameter.

Types of RBFs

There are various types of RBFs. Some recognised RBFs are as follows:

1.  Infinitely smooth RBFs—These RBFs are based on the shape parameter � > 0 that 
controls the shape or outline of the RBF. If � is tending to 0 then form of RBFs 
becomes flat.Table1 presents different types of infinitely smooth RBFs.

2.  Piecewise smooth RBFs—these RBFs have no shape parameter. Different types of 
piecewise smooth RBFs are shown in Table 2.

The summary of the different types of RBF presented above can also be presented 
as Fig. 1.

From the analysis of the Fig. 2 and the Fig. 3, it seems that change in the value of 
the shape parameter results in achange in the shape of the radial function. Figure 2 
represents the shape of Gaussian RBF with respect to the different values of shape 
parameter 1; 0.5; 0.2. And Fig.  3 shows the change in the shape of inverse multi-
quadric RBF at the value of shape parameter 1; 0.5; 0.

Table1 Types of infinitely smooth RBFs with � > 0 and r ∈ x

RBFs Definition

Gaussian function (GS) ϕ(r) = e
−(�r)2

Multi-quadric (MQ)
ϕ(r) = 1+ (�r)2

Inverse multi-quadric (IMQ) ϕ(r) = 1

1+(�r)2

Inverse quadric (IQ) ϕ(r) = 1√
1+(�r)2

Table 2 Some piecewise smooth RBFs with r ∈ x

RBFs Definition

Thin plate spline (TPS) ϕ(r) = r
2
ln (r)

Linear radial function (LR) ϕ(r) = r

Cubic function ϕ(r) = r
3

Monomial ϕ(r) = r
2k−1; k ∈ N
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Radial Basis Function 
(RBF)

Infinitely smooth 
RBFs 

Gaussian Function 
(GS) RBFs  

Multiquadric (MQ) 
RBFs 

Inverse Multiquadric 
(IMQ) RBFs

Inverse quadric (IQ) 
RBFs

Piecewise smooth 
RBFs 

Thin Plate Spline (TPS) 
RBFs

Linear radial function 
(LR) RBFs

Cubic function RBFs

Monomial RBFs

Fig. 1 Various types of RBFs

Fig. 2 Gaussian RBF with different values of shape parameter

Fig. 3 Inverse multi quadratic RBF with different values of shape parameter
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RBF methods for solving PDEs
RBF methods are known for their easy way of implementation and simplicity in approxi-
mation of multivariate scattered data. For solving partial differential equations, a recent 
historic and chronologically development strategy (Fig. 4) of RBF methods has been dis-
cussed as follows:

Solutions of PDEs with Kansa collocation method

One of the mesh-free approaches is the Kansa method, often known as the RBF colloca-
tion method. Compared to mesh methods, mesh-free methods have a lot of advantages. 
They are cost saving since they do not require domain or surface discretization. Kansa 
[18] introduced an asymmetric approach in. Kansa technique is an RBF-based approach 
for solving PDEs.

By mathematically, Consider x ∈ ℝd and in Rd, d ∈ N,consider the norm ‖ ⋅‖ that is 
Euclidian norm, the radial basis functions of the form �(�x − xi�) that supposed to be 
strictly positive definite. The RBF approximation can be written by using  nodes that 
are spotted arbitrary in the domain Ω ⊂ ℝd and assigning a collection of neighbourhood 
nodes  xi that are integrated in the supportive domain to every x as follows:

where αi is unknown coefficients and N represents the numbers of node points. By sub-
stituting this solution u(x) in PDE gives the linear system of equations as

The Kansa collocation method can be summarized as:
 (i) Consider a PDE with boundary conditions on specific domain.
 (ii) Assume its solution as a linear combination of RBFs with node points.

(1)u(x) =

N
∑

i=1

αi∅(x − xi)

(2)AX = B where X = [α(x1),α(x2),α(x3), . . . . . . . . . . . . α(xN )]
T

RBF Methods for Solving PDEs

Kansa-Collocation Method (E. Kansa,1990)

Symmetric collocation method (SCM) (G. Fasshauer, 1997)

Modified collocation method (MCM) (W.Chen, 2001)

Local radial basis collocation method (B.Šarler and R.Vertnik, 2006)

Differential Quadrature Method (RBF-DQ) (S. Chang,2002)

Partition of Unity Method(RBF-PUM) (H.Wendland,2002)

Fig. 4 The various RBF methods
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 (iii) Implement the assumed solution at given equation and boundary conditions.
 (iv) Resultant in the form of linear system of equations.

Various problems have been solved by this approach successfully. By using this 
approach, Zhou et  al.[30] solved shallow water modelling problem, convection diffu-
sion problems solved by Chen et al. [31], and also solved fractional diffusion equation 
by using Kansa method, Kovacevic et  al. [32] solved Stefan problem, time dependent 
heat conduction problems solved by Chantasiriwan[33], Duan et al. [34] solved electro-
static problems using Kansa method. The Kansa methods have disadvantages due to use 
in solving various PDEs. Main disadvantage of this method is computational cost that 
becomes very high due to the unsymmetric interpolation matrix. The accuracy of this 
method is less in the domain closest to the boundary. To get the better accuracy and 
hence reduce the errors, the very simplest way is to raise the interpolation points that 
lead to high condition number matrix. But by increasing the points that are now taken in 
the entire domain, the resultant matrix turns into ill conditioned. This resulted the need 
of modification in this method and hence gives rise to following three methods:

Symmetric collocation method (SCM)

After modification in the Kansa method, a new method comes in existence, which is 
known as Symmetric collocation method. This method is based upon Hermite interpo-
lation and proposed by Fasshauer [19] and also invent the RBF expansion for approxi-
mating the function. After applying the collocation conditions, there is a requirement 
of a non-singular  symmetric collocation matrix. Symmetric and non-symmetric tech-
niques had been applied for different applications. These methods are compared by 
Power &Barraco [21] and find the result as the symmetric collocation technique is sur-
passing the non-symmetric (Kansa method) technique due to the lower computational 
cost. But the implementation of Kansa scheme is unproblematic. The symmetric colloca-
tion method is also used by Leitao [35] to solve 2-dimensional elastostatic problems.

Modified collocation method (MCM)

As the Modified collocation method is the upgraded structure of symmetric method 
whose resultant is that the interpolation matrix is symmetric. Chen [36] proposed a 
method in which Green second identity is used, called modified collocation method.

Ill-conditioned interpolate matrix is the main concern for using Kansa technique to 
find the results of the various PDEs. To resolve the issue like domain decomposition 
method, compactly supported RBF and pre-conditioning, numerous techniques were 
projected. Process of transformation of a set of linear equation into a new system that 
is constructive approach for iterative solution is called pre-conditioning. This trans-
formation produced by a matrix, which is known as pre-conditioner. Assessment of 
the conditioned number is also balanced by pre-conditioning, and it also helpful in the 
improvement of convergence. In the domain decomposition method, a problem with 
huge point of global domain is divided into sub-domains weather these are overlying 
or uncorrelated. To avoid the ill-conditioned solutions of the problems on sub-domain 
except the large domain, this process is very effective.
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Local radial basis collocation method

Another method to remove the complex behaviour of the interpolation matrix is local 
radial basis collocation method (LRBFCM). Local approximation is the main base of this 
process and depicted by Chen et al. [37].

To see the procedure of this method, takingthe Elliptic partial differential equation for 
mathematical formulation with domain D given by L[u(x)] = f (x), x ∈ D with boundary 
conditions u(x) = g(x), x ∈ ∂D.Let the local approximation u(xs) of the solution u(x) and 
{xs}Ns=1 ∈ D then

where xs is collocation point, n is the neighbourhood of the point xs including itself, and 
∅ is a radial basis function. Here, coefficients αs

k to be determined. For the distinct val-
ues of collocation nodes, non-singularity will become necessary condition for resultant 
matrix.

The above discussed LRBFCM is used for finding the solutions of diffusion equations, 
and this method is intended by using local collocation. As the collocation performed on 
local domain of influence that minimise the size of the collocation matrix. This approach 
followed by many authors and applied for finding the solutions of large dimensional 
problems such as fluid flow and heat transfer problems, convective diffusive solid liq-
uid stages change problems, Darcy-flow, and also for transport phenomena. Further for 
find the solution of hyperbolic partial differential equation numerically, this method is 
improved by Siraj [38]. For improving accuracy in this modified approach, multi-quad-
ric RBF is used with consistent related arrangement. For approximate the time deriva-
tive, the finite difference formula of first order is numerically used. While comparing 
with Kansa collocation method, this method was found to be more stable for numerical 
problems.

Solution of PDEs with differential quadrature method (RBF‑DQ)

Bellman et al. [39] proposed an approach—the differential quadrature that approximate 
derivative of the function rather than function itself. In this technique, a smooth func-
tion is considering whose partial derivative is estimated on a node seeing as linear sum-
mation of the values of function that lies in the domain, which is similar to the concept 
of integral quadrature. The derivative at the node  xi can be written as

Instead of using Lagrange’s interpolation, radial basis function is used by Shu and Wu 
[40] in differential quadrature approach for finding the value of weighting coefficients 
and hence the method is named as RBF-DQ method. The RBF-DQM can be applied 
in two different ways to solve the PDEs as Global and Local of RBF-DQ method are 
given by Shu et al. [41, 42] In Global version, all nodes are used in the whole domain 
for estimating the derivative at a point. The ill conditioning problem occurs, and the 

(3)u
(

xs
)

=

n
∑

k=1

αs
k∅(x

s − xsk)

(4)f n(xi) =

N
∑

i=1

anijf
(

xj
)

; i = 1, 2, 3, . . .N
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computational cost becomes high by using huge set of nodes. And in local radial basis 
function differential quadrature (LRBFDQ) method local approach is used which takes 
all the neighbourhood points of the specific point known as supporting nodes.

2-D Navier–Stokes equations solved by Shu et al. [41]. by the use of LRBFDQ method 
and then Shu et al. [43] apply it for compressible flows. This method is applied for the 
boundary level problems by Shen [44]. Two-dimensional transient heat conduction 
problems are also solved by this method in the work of Soleimani et al. [45]. Integrated 
radial basis function network used by Shu& Wu [40] with the concept of differential 
quadrature named as IRBF-DQ method. And one-dimensional burger’s equation succes-
sively solved with this method. By using LRBFDQ, Dehghan and Nikopour [46] find the 
solutions of the boundary value problems  using multi-quadric (MQ) radial basis func-
tion. Dehghan also applied two different methods—OCSP method and OVSP method 
for finding the value of � plays a significant role in RBF.

Solution of PDEs with partition of unity method (RBF‑PUM)

Babuska and Melenk [47] proposed the partition of unity finite element (PUM) method 
in 1997 for finding the solutions of PDEs. By the proposal of the partition of unity 
method the region is fractionalized into intersecting local domains. For choosing a 
family of compactly supported, a continuous function, this approach is important. The 
RBF-PUM method is a best way to decrease the computational cost with attaining the 
higher accuracy. The main advantage of this approach in high dimensional problems is 
to hold the geometrical flexibility, to overcome computation cost and to facilitate adap-
tive approximation.

In this method, local approximation is defined on sub-domains then merge to struc-
ture global approximation by using weight functions, which figure out the method of 
partition of unity. In this method,  RBF is employed for  the local approximation. The 
partition of unity method (PUM) combines with RBF by Wendland [29] for solving 
problems on large extent. Consider elliptic problem of partial differential equation for 
mathematical interpretation on domain D with the boundary condition as follows:

Algorithm for spherical interpolation proposed by Cavoretto and Rossi [48] for finding 
the numerical solution of problem using basis function that further projected a method 
by the use of the partition of unity method. The author uses spherical radial basis func-
tion mainly in local approximation. In this process, many operations can be performed 
equivalently. Further in the extension of this work, Cavoretto and Rossi [49] intended 
an algorithm of partition of unity method in which domain is partitioning into nodes 
or cell. This procedure principally based upon cell search. Also the author extended 
this 2-dimensional algorithm to 3-dimensional by using cube partition searching pro-
cedure. Applications of partition of unity method investigate by Safdari et al. [50] for the 
solutions of parabolic partial differential equation. For this work, 2-D diffusion equa-
tions were considered, and pseudo-spectral and finite difference methods are compared 
with RBF-PUM. After comparison, researcher initiate that RBF-PUM gives more exact 

(5)L[u(x)] = f (x), x ∈ D

(6)u(x) = g(x), x ∈ ∂D
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solution than that of pseudo-spectral method. This method can be applied to irregu-
lar shaped domains due to their restricted nature. The constancy of this method was 
proved by the assistance of abstract and investigational methods. Further improvement 
in partition of unity method is done by Heryudono et al. [51]. The resultant matrix of 
this method is ill conditioned, asymmetrical but efficient pre-conditioner is required. 
Distinct pre-conditioning approaches based on LU factorization are compared and dis-
cussed by researcher.

RBF methods with shape parameters

In RBF research field, optimizing the shape parameter � is continuously a major area. In 
this regard, a number of studies have been conducted. There are some methods for find-
ing best shape parameter � listed in the Table 3. 

Huang et al. [52] used arbitrary precision computing to determine the relation among 
the value of � and the exactness of the solutions in their investigation. According to their 
research, method of finding the solution of radial basis functions by 100-digit preci-
sion arithmetic is used to avoid the singularity due to round-off error occurs in regular 
16-digit precision arithmetic when the parameter value is small. They devised error for-
mulations with respect to the value of � and grid spacing based on the numerical data 
obtained. Guo & Jung [53, 54 ] calculated the best value of � for discretization approach 
by Taylor series. The higher-order derivative components that arose in the ideal form 
parameter that was optimised were calculated using a polynomial reconstruction 
approach. Homayoon et al. [55] used RBF-based differential quadrature method (RBF-
DQ) for finding the results of shallow water and long wave’s problems. Here, leave-one-
out cross-validation (LOOCV) approach being implemented for getting the optimal 
value of � which represented by Table 4.

Table 3 Approaches of finding best shape parameter

Approaches Author Shape parameter value

Trial and error Rolland L. Hardy [15]
0.815d; d = 1

N

N
∑

k=1

di

di is the distance between point and 
neighbourhood

Richard Franke [16] 1.25D√
N

 ; D is the diameter of minimal circle

G. E. Fasshauer (2002) [64] 2√
N

The power function Neyman and Pearson [65] –

Leave-one-out cross-validation 
(LOOCV)

Rippa S. [58] –

Table 4 A chronological scheme of leave-one-out cross-validation (LOOCV) technique

Researcher Year Findings

D. M. Allen [56] 1974 For ridge regression

Peter Craven and Grace Wahba [57] 1979 For smoothing splines

S. Rippa [58] 1999 Optimised RBF’s shape parameter �

Gregory E. Fasshauer and Jack G. Zhang 
[59]

2007 Extensions of LOOCV approach
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There is no specific technique or process to controlling the shape parameter ʎ for 
RBF kernel methods. The shape parameter can be chosen through numerical evalua-
tions of RBFs to stabilise the solution, that is exceedingly hard and time consuming. 
Timesli&Saffah [60] build an algorithm for determining the optimal value of shape 
parameter � rapidly and instantly determines the appropriate value of  � . The strategy 
for determining the best possible value of � is depending upon the idea of combining 
the RBF method, numerical continuation approach and high-order algorithm Taylor 
expansion. In this algorithm, author use the description of � = αds , here any coeffi-
cient α is used and ds = domain. So

where distance is calculated by di among ith-point & neighbourhood points. Timesli 
and Saffah [60] aim to reduce the inaccuracy at order 1 of the higher order mesh-free 
algorithm. Marko Urleb [61] proposed a strategy for finding an optimized value of 
shape parameter � for unknown results of PDEs with initial and boundary conditions. 
In this procedure, Gershgorin’s theorem, multi-quadric RBF and the Newton method 
are implemented for optimal values of diffusion equations and then made a comparison 
with the results of finite element method. The proposed processwas presented for find-
ing the optimal value � using Gershgorin’s theorem (regarding eigen values of matrix), 
MQ RBF) and the Newton method for evaluating the zeros of a function.

As in the findings of the finite element method, other methods those have or have 
not � given the exactness of obtained optimal method. The main purpose is to validate 
the exactness and strength of the procedure comparative to others. In the presented 
procedure, an iteration algorithm is given by calculating a matrix, which is obtained 
by the multi-quadric functions outer side of the time loop in which the value of the 
operator L on the MQ basis function is defined by matrix W over domain Ω\ ∂Ω and 
the boundary operator B on the MQ basis function on ∂Ω.

A novel higher-order RBF-FD schema with an  optimal variable shape parameter 
was proposed by Nga Y. L. et  al.[62] for the numerical results of various PDEs. For 
the solutions of partial differential equations, RBFs with multi-quadric kernels have 
generally  been used. A user-friendly shape parameter was used in the MQ kernel 
and the exactness of the result depends upon the shape parameter value. In proposed 
approach, RBF finite difference method based on MQ is calculated in  a polynomial 
structure, i.e., the RBF finite difference (RBF-FD) method is used for approximating 
the second derivative that contains a shape parameter, which affects the accuracy of 
the PDE solution. The best value of the  shape parameter is found by removing the 
RBF-FD scheme’s leading error term, which improves solution accuracy and speeds 
up convergence. Combined compact differencing and finite difference techniques are 
used to determine the ideal shape parameter. The best shape parameter is discovered 
to vary across the domain, according to the analysis. As a result, compared with the 
RBF-FD method that uses the value of the shape parameter, the accuracy of the solu-
tion of PDEs is high when employing the localized shape parameter. Generally, the 
solutions derived by employing the shape parameter calculated from the  combined 

(7)ds =
1

N

N
∑

i=1

di;
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compact differencing (CCD) scheme give more accuracy, but they come with a  high 
computational cost. However, as the number of iterations of the shape parameter is 
restricted to two, the current RBF finite differencing (FD) with the shape parameter 
by the  combined compact differencing technique is as effective as applying the  FD 
scheme, according to the cost-effectiveness analysis.

When the RBFs are going to almost flat and the selection of the value of shape param-
eter is done correctly, RBF approximation is capable to produce an appropriate estima-
tion for huge collection of data points that provides smooth result for specified tangled 
points. In research work of Kazeem et  al. [63], the inverse multi-quadric (IMQ) RBF 
function was included for writing and implementing a technique for the solution of par-
tial differential equations. Preference is given to the selection of shape parameters, which 
must be made carefully. The approach as an algorithm that runs a series of interpolation 
tests while adjusting the range of the shape parameters, and then chooses the optimal 
shape parameter with the resultant as the smallest root mean square error (RMSE). Mat-
lab was used for all of the computational work. The selected problems of interpolation, 
and it root-mean-square errors (RMSEs) are tabularised and diagrammed.

Conclusion
This article provides an overview of the radial basis function and the approaches 
based upon RBFs for finding the solution of the various PDEs. We make an attempt to 
highlight some of the current developments of the RBF methods and the approaches 
for finding the optimised value of shape parameter. This review is intended to famil-
iarise the reader with RBF approaches as collocation methods, the local collocation 
RBF approaches, global approximation, RBF-DQ method, and RBF-PUM. These 
strategies aid in the lowering of computational costs and are particularly useful in 
the solution of large-scale problems. The minimal value of shape parameter leads to 
good accuracy for smooth RBFs, while the near flat radial basis leads to poor condi-
tioning of the interpolation matrices. To overcome this issue, several algorithms were 
proposed that are listed in this work. The given approaches can be further improved 
by investigating the optimal value of the shape parameter for the better accuracy 
and steadiness of RBF approximations. The efficiency of RBF techniques for solving 
higher-order PDEs are still being investigated.
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