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Abstract

In the present work, we introduce the notion of a generalized Jordan triple derivation
associated with a Hochschild 2–cocycle, and we prove results which imply under some
conditions that every generalized Jordan triple derivation associated with a Hochschild
2–cocycle of a prime ring with characteristic different from 2 is a generalized derivation
associated with a Hochschild 2–cocycle.
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Introduction
Let R denote an associative ring with center Z(R). A ring R is said to have characteristic n
if n is the least positive integer such that nx = 0 for all x ∈ R, and of characteristic not n if
nx = 0, x ∈ R, then x = 0. An additive subgroup L of R is called a Lie ideal of R if [u, r]∈ L
for all u ∈ L, r ∈ R. A Lie ideal L is said to be a square-closed Lie ideal of R if u2 ∈ L for
all u ∈ L. An R-bimodule M is a left and right R-module such that x(my) = (xm)y for all
m ∈ M and x, y ∈ R. Recall that a ring R is called prime if xRy = (0) implies that either
x = 0 or y = 0, and R is called semiprime if xRx = (0) implies x = 0. An additive mapping
d : R → R is called a derivation if d(xy) = d(x)y+xd(y) for all x, y ∈ R. d is called a Jordan
derivation in case d(x2) = d(x)x+xd(x) for all x ∈ R. Moreover, d is called a Jordan triple
derivation if d(xyx) = d(x)yx + xd(y)x + xyd(x) for all x, y ∈ R. It is obvious to see that
every derivation is a Jordan derivation and is a Jordan triple derivation but the converse is
in general not true. A classical result of Herstein [1] asserts that any Jordan derivation of
a prime ring with characteristic different from 2 is a derivation. In [2], Bres̆ar has proved
Herstein’s result in the case of a semiprime ring. Also, he has shown in [3] that any Jordan
triple derivation of a 2-torsion free semiprime ring is a derivation. An additive map f of
a ring R is called a generalized derivation if there is a derivation d of R such that for all
x, y in R, f (xy) = f (x)y + xd(y) and is called a generalized Jordan derivation if there is a
Jordan derivation d such that f (x2) = f (x)x+ xd(x) for all x ∈ R. Furthermore, f is said to
be a generalized Jordan triple derivation if there is a Jordan triple derivation d of R such
that for all x, y in R, f (xyx) = f (x)yx + xd(y)x + xyd(x). In [4], Jing and Lu have proved
in a prime ring R of characteristic not two that every generalized Jordan derivation of R
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is a generalized derivation, and also every generalized Jordan triple derivation on R is a
generalized derivation.
Let θ and φ be endomorphisms of a ring R. f is called a (θ ,φ)−derivation if f (xy) =

f (x)θ(y) + φ(x)f (y) for all x, y ∈ R. f is called a Jordan (θ ,φ)–derivation if f (x2) =
f (x)θ(x) + φ(x)f (x) for all x ∈ R. f is called a Jordan triple (θ ,φ)−derivation if f (xyx) =
f (x)θ(y)θ(x) + φ(x)f (y)θ(x) + φ(x)φ(y)f (x) for all x, y ∈ R. In [5], Liu and Shiue have
proved that every Jordan triple (θ ,φ)−derivation on a 2-torsion free semiprime ring R is
a (θ ,φ)−derivation, where θ and φ are automorphisms. An additive mapping f : R → R
is said to be a left (right) centralizer, if f (xy) = f (x)y (f (xy) = xf (y)) for all x, y ∈ R. f is
called a centralizer, if f is both a left and right centralizer. In [6], Vukman and Kosi-Ulbl
have shown that if R is a 2-torsion free semiprime ring and f is an additive mapping of R
such that 2f (xyx) = f (x)yx + xyf (x) for all x, y ∈ R, then f is a centralizer.
An additive mapping f : R → R is said to be a left (right) θ−centralizer associated with

a function θ of R, if f (xy) = f (x)θ(y) (f (xy) = θ(x)f (y)) for all x, y ∈ R. f is called a
θ−centralizer, if f is both a left and right θ−centralizer. Daif, El-Sayiad, and Muthana in
[7] have proved that if R is a 2−torsion free semiprime ring and f is an additive mapping
of R such that 2f (xyx) = f (x)θ(yx)+θ(xy)f (x) for all x, y ∈ Rwith θ(Z(R)) = Z(R), where
θ is a nonzero surjective endomorphism on R, then f is a θ−centralizer.
Now let R be a ring and M be an R-bimodule. A biadditive map α : R × R → M

is called a Hochschild 2–cocycle, if xα(y, z) − α(xy, z) + α(x, yz) − α(x, y)z = 0 for all
x, y, z ∈ R, and α is called symmetric if α(x, y) = α(y, x) for all x, y ∈ R. Nakajima [8]
has introduced a new type of generalized derivations and generalized Jordan derivations
associated with Hochschild 2–cocycles in the following way. An additive map f : R → M
is called a generalized derivation associated with a Hochschild 2–cocycle α if f (xy) =
f (x)y + xf (y) + α(x, y) for all x, y ∈ R, and f is called a generalized Jordan derivation
associated with α if f (x2) = f (x)x + xf (x) + α(x, x) for all x ∈ R. If α = 0, then f means
the usual derivation and Jordan derivation. He has given the following examples:
(1) If f is a generalized derivation associated with a derivation d, then the map α1 :

R × R � (x, y) �→ x(d − f )(y) ∈ M is biadditive and satisfies the 2–cocycle condition.
Hence, f is a generalized derivation associated with α1.
(2) If f : R → M is a left centralizer, then by f (xy) = f (x)y+ xf (y)+ x(−f )(y), we have a

2–cocycle α2 : R × R → M defined by, α2(x, y) = x(−f )(y), and hence, f is a generalized
derivation associated with α2.
(3) Let f be a (θ ,φ)−derivation. Then, the map α3 : R × R � (x, y) �→ f (x)(θ(y) − y) +

(φ(x) − x)f (y) ∈ M, is biadditive and satisfies the 2–cocycle condition. Since f (xy) =
f (x)y + xf (y) + α3(x, y), then f is a generalized derivation associated with α3.
(4) In general, he has mentioned the following. Let f : R → M be an additive map and

let α : R × R → M be a biadditive map. If f (xy) = f (x)y + xf (y) + α(x, y) holds, then
by the associativity f ((xy)z) = f (x(yz)), α satisfies the 2–cocycle condition. Thus f is a
generalized derivation associated with α.
In his work, Nakajima [8] has shown the following result. Let R be a 2-torsion free ring.

Then, every generalized Jordan derivation associated with a Hochschild 2–cocycle α is a
generalized derivation associated with α in each of the following cases:

(i) R is a noncommutative prime ring.
(ii) There exist x, y ∈ R such that [ x, y] is a nonzero divisor.
(iii) R is commutative and α is symmetric.
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Nawzad, et al. [9] have shown the following. Let R be a 2-torsion free ring. Then, every
generalized Jordan derivation associated with a Hochschild 2–cocycle α is a generalized
derivation associated with α in each of the following cases:

(i) R is a noncommutative semiprime ring and α is symmetric.
(ii) R is commutative.

In [10], Rehman and Hongan have proved the following result. Let R be a 2-torsion
free ring and L a square-closed Lie ideal of R. Then, every generalized Jordan derivation
associated with a Hochschild 2–cocycle α is a generalized derivation associated with α in
each of the following cases.

(i) R is a prime ring and L is noncommutative.
(ii) R is a prime ring, L is commutative and α is symmetric.
(iii) There exist x, y ∈ R such that [ x, y] is a nonzero divisor in L.

In the present article, we introduce the notion of generalized Jordan triple derivations
associated with Hochschild 2–cocycles in the following way. Let R be a ring and letM be
an R-bimodule. An additivemap f : R → M is called a generalized Jordan triple derivation
associated with a Hochschild 2–cocycle α if f (xyx) = f (x)yx+xf (y)x+α(x, y)x+xyf (x)+
α(xy, x) for all x, y ∈ R.
Examples (i) If f is a Jordan triple derivation, then the zero map α1 is biadditive and

satisfies the 2–cocycle condition. Therefore f is a generalized Jordan triple derivation
associated with α1.
(ii) If f is a generalized Jordan triple derivation associated with a Jordan triple derivation

d, then α2(x, y) = x(d−f )(y) is biadditive and satisfies the 2–cocycle condition and we can
see that f (xyx) = f (x)yx+xf (y)x+α2(x, y)x+xyf (x)+α2(xy, x). Hence f is a generalized
Jordan triple derivation associated with α2 .
Our aim in this work is to show that every generalized Jordan triple derivation associ-

ated with a Hochschild 2–cocycle α from a prime ring Rwith characteristic different from
2 to an R-bimoduleM is a generalized derivation associated with α.

Preliminary results
The proof of our result is based on the following series of auxiliary lemmas.

Lemma 1 Let f be a generalized Jordan triple derivation from a ring R to an R- bimodule
M associated with a Hochschild 2–cocycle map α from R× R into M. Then for all x, y, z ∈
R, f (xyz+zyx) = f (x)yz+xf (y)z+α(x, y)z+zyf (z)+α(xy, z)+ f (z)yx+zf (y)x+α(z, y)x+
zyf (x) + α(zy, x).

Proof Let v = f ((x + z)y(x + z)), we have for all x, y, z ∈ R

0 = v − v

= f (xyx) + f (xyz + zyx) + f (zyz) − {f (x + z)y(x + z)

+ (x + z)f (y)(x + z) + α(x + z, y)(x + z)

+ (x + z)yf (x + z)

+ α((x + z)y, (x + z))}.

Then,
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0 = f (xyx) + f (xyz + zyx) + f (zyz) − {f (x)yx
+ f (x)yz + f (z)yx

+ f (z)yz + xf (y)x + xf (y)z + zf (y)x + zf (y)z

+ α(x, y)x + α(x, y)z

+ α(z, y)x + α(z, y)z + xyf (x) + xyf (z) + zyf (x)

+ zyf (z) + α(xy, x)

+ α(xy, z) + α(zy, x) + α(zy, z)} for all x, y, z ∈ R,

Therefore,

f (xyz + zyx) = f (x)yz + xf (y)z + α(x, y)z + zyf (z)

+ α(xy, z)

+ f (z)yx + zf (y)x + α(z, y)x + zyf (x)

+ α(zy, x) for all x, y, z ∈ R,

as required.

For a generalized Jordan triple derivation f from a ring R to an R-bimoduleM associated
with a Hochschild 2−cocycle α, we denote by δ, F and β the maps from R× R× R intoM
defined by δ(x, y, z) = f (xyz) − f (x)yz − xf (y)z − α(x, y)z − xyf (z) − α(xy, z), F(x, y, z) =
f (xyz)− f (x)yz−xf (y)z−xyf (z) and β(x, y, z) = xyz− zyx, respectively. Thus, δ(x, y, z) =
F(x, y, z) − α(x, y)z − α(xy, z).

Lemma 2 For all x, y, z in a ring R, the following hold:

(i) δ(x, y, z) = −δ(z, y, x), and
(ii) δ(x, y, z) and β(x, y, z) are tri-additive.

Proof (i) Follows easily from Lemma 1.
(ii) Replace x by a + b in the definition of δ, then (ii) is easily seen.

Lemma 3 For any ring R and any a, b, c, x ∈ R,
δ(a, b, c)xβ(a, b, c) + β(a, b, c)xδ(a, b, c) = 0.

Proof Let v = f (abcxcba+ cbaxabc), then 0 = v− v = f ((abc)x(cba) + (cba)x(abc)) −
f (a(bcxcb)a + c(baxab)c). By the definition of the generalized Jordan triple derivation f
associated with a Hochschild 2-cocycle α and by Lemma 1, we get

0 = f (abc)xcba + abcf (x)cba + α(abc, x)cba + abcxf (cba)

+ α(abcx, cba) + f (cba)xabc + cbaf (x)abc + α(cba, x)abc

+ cbaxf (abc) + α(cbax, abc) − {f (a)bcxcba + af (b)cxcba

+ abf (c)xcba + abcf (x)cba + abα(c, x)cba + abcxf (c)ba

+ abα(cx, c)ba + aα(b, cxc)ba + abcxcf (b)a + aα(bcxc, b)a

+ α(a, bcxcb)a + abcxcbf (a) + α(abcxcb, a) + f (c)baxabc

+ cf (b)axabc + cbf (a)xabc + cbaf (x)abc + cbα(a, x)abc

+ cbaxf (a)bc + cbα(ax, a)bc + cα(b, axa)bc + cbaxaf (b)c

+ cα(baxa, b)c + α(c, baxab)c + cbaxabf (c) + α(cbaxab, c)}.

(1)



Ezzat and Nabiel Journal of the EgyptianMathematical Society            (2019) 27:4 Page 5 of 8

Therefore, for all a, b, c, x ∈ R

0 = F(a, b, c)xcba + abcxF(c, b, a)

+ {α(abc, x) − abα(c, x)}cba + {α(abcx, cba) − α(abcxcb, a)}
− {abα(cx, c)ba + aα(b, cxc)ba + aα(bcxc, b)a + α(a, bcxcb)a}
+ F(c, b, a)xabc + cbaxF(a, b, c)

+ {α(cba, x) − cbα(a, x)}abc + {α(cbax, abc) − α(cbaxab, c)}
− {cbα(ax, a)bc + cα(b, axa)bc + cα(baxa, b)c + α(c, baxab)c}

(2)

Since α is a 2–cocycle map, we obtain the following relations for all a, b, c, x ∈ R:

(i) {α((ab)c, x) − (ab)α(c, x)}cba = {α(ab, cx) − α(ab, c)x}cba.
(ii) α(abcx, (cb)a) − α((abcx)(cb), a) = α(abcx, cb)a − (abcx)α(cb, a).
(iii) {α((cb)a, x) − (cb)α(a, x)}abc = {α(cb, ax) − α(cb, a)x}abc.
(iv) α(cbax, (ab)c) − α((cbax)(ab), c) = α(cbax, ab)c − (cbax)α(ab, c).

Substituting from (i–iv) in (2), we get for all a, b, c, x ∈ R

0 = F(a, b, c)xcba + abcxF(c, b, a)

+ {α(ab, cx) − α(ab, c)x}cba + {α(abcx, cb)a − abcxα(cb, a)}
− {abα(cx, c)ba + aα(b, cxc)ba + aα(bcxc, b)a + α(a, bcxcb)a}
+ F(c, b, a)xabc + cbaxF(a, b, c)

+ {α(cb, ax) − α(cb, a)x}abc + {α(cbax, ab)c − cbaxα(ab, c)}
− {cbα(ax, a)bc + cα(b, axa)bc + cα(baxa, b)c + α(c, baxab)c}

(3)

Since α is a 2–cocycle map, we conclude for all a, b, c, x ∈ R that
(i) α(ab, cx) = aα(b, cx) + α(a, b(cx)) − α(a, b)(cx).
(ii) α(abcx, cb)a = {−(abcx)α(c, b) + α((abcx)c, b) + α(abcx, c)b}a.
(iii) α(cb, ax) = cα(b, ax) + α(c, b(ax)) − α(c, b)(ax).
(iv) α(cbax, ab)c = {−(cbax)α(a, b) + α((cbax)a, b) + α(cbax, a)b}c.
Substituting from (i–iv) in (3), we obtain

0 = {F(a, b, c) − α(ab, c) − α(a, b)c}xcba + abcx{F(c, b, a) − α(cb, a)

− α(c, b)a} + {aα(b, cx)cba − abα(cx, c)ba − aα(b, cxc)ba}
+ {α(abcxc, b)a − aα(bcxc, b)a − α(a, bcxcb)a}
+ α(a, bcx)cba + α(abcx, c)ba + {F(c, b, a) − α(cb, a)

− α(c, b)a}xabc + cbax{F(a, b, c) − α(ab, c) − α(a, b)c}
+ {cα(b, ax)abc − cbα(ax, a)bc − cα(b, axa)bc}
+ {α(cbaxa, b)c − cα(baxa, b)c − α(c, baxab)c}
+ α(c, bax)abc + α(cbax, a)bc, for all a, b, c, x ∈ R.

(4)

Again since α is a 2–cocycle map, we have

(i) a{α(b, cx)c − bα(cx, c) − α(b, (cx)c)}ba = −aα(b(cx), c)ba.
(ii) {α(a(bcxc), b) − aα(bcxc, b) − α(a, (bcxc)b)}a = −α(a, bcxc)ba.
(iii) c{α(b, ax)a − bα(ax, a) − α(b, (ax)a)}bc = −cα(b(ax), a)bc.
(iv) {α(c(baxa), b) − cα(baxa, b) − α(c, (baxa)b)}c = −α(c, baxa)bc.
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Replacing (i–iv) into (4), we get, for all a, b, c, x ∈ R

0 = δ(a, b, c)xcba + abcxδ(c, b, a) − aα(bcx, c)ba − α(a, bcxc)ba

+ α(a, bcx)cba + α(abcx, c)ba + δ(c, b, a)xabc + cbaxδ(a, b, c)

− cα(bax, a)bc − α(c, baxa)bc + α(c, bax)abc + α(cbax, a)bc.

(5)

Continuing in this manner, we obtain

(i) {−aα(bcx, c) − α(a, (bcx)c) + α(a, bcx)c + α(a(bcx), c)}ba = 0.
(ii) {−cα(bax, a) − α(c, (bax)a) + α(c, bax)a + α(c(bax), a)}bc = 0.

By (5), we conclude that 0 = δ(a, b, c)xcba+abcxδ(c, b, a)+ δ(c, b, a)xabc+ cbaxδ(a, b, c)
for all a, b, c, x ∈ R. By Lemma 2, we obtain 0 = δ(a, b, c)xcba − abcxδ(a, b, c) −
δ(a, b, c)xabc + cbaxδ(a, b, c) for all a, b, c, x ∈ R.
Therefore, δ(a, b, c)xβ(a, b, c)+β(a, b, c)xδ(a, b, c) = 0 for all a, b, c, x ∈ R. This finishes

the proof of the lemma.

Lemma 4 If R is a prime ring of characteristic not 2, then for all a, b, c, x ∈
R, δ(a, b, c)xβ(a, b, c) = 0, .

Proof By Lemma 3 and Lemma 1.1 of Bres̆ar [3], we get the proof.

Lemma 5 If R is a prime ring of characteristic not 2, then
δ(a1, b1, c1)xβ(a2, b2, c2) = 0 for all a1, b1, c1, a2, b2, c2, x ∈ R.

Proof From Lemma 2(ii), Lemma 4, and Lemma 1.2 of Bres̆ar [3], we get the proof.

Lemma6 Let Rbeaprimering.Then, R is commutative iff β(a, b, c) = 0 for all a, b, c ∈ R.

Proof If R is commutative, then, by definition of β ,β(a, b, c) = 0 for all a, b, c ∈ R.
Conversely, assume that β(a, b, c) = 0 for all a, b, c ∈ R. LetQ be theMartindale right ring
of quotients of R defined by Martindale [11]. Then Q is a prime ring with identity that
contains the ring R. By Chuang [12],Q satisfies the same generalized polynomial identities
as R. In particular abc − cba = 0 for all a, b, c ∈ Q. Replacing c by the identity of Q yields
the commutativity of Q, and hence R.

Lemma 7 Let R be a prime ring of characteristic not 2. Then δ(a, b, c) = 0 for all a, b, c ∈
R, in each of the following cases:

(i) R is noncommutative.
ii There exist x, y, z ∈ R such that β(x, y, z) is a nonzero divisor in M.
iii R is commutative and α is symmetric.

Proof (i) By Lemmas 5 and 6, we get our requirement.
(ii) By Lemma 5, we have δ(a, b, c)rβ(x, y, z) = 0 for all a, b, c, r, x, y, z ∈ R. From our

assumption δ(a, b, c)r = 0 for all a, b, c, r ∈ R. Thus the primeness of R gives δ(a, b, c) =
0 for all a, b, c ∈ R.
(iii) From Lemma 1 we have f (abc + cba) = f (a)bc + af (b)c + α(a, b)c + abf (c) +

α(ab, c) + f (c)ba + cf (b)a + α(c, b)a + cbf (a) + α(cb, a) for all a, b, c ∈ R. Since R is
commutative and α is symmetric, we get 0 = 2{f (abc) − f (a)bc − af (b)c − abf (c)} −
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α(a, b)c − α(ab, c) − aα(b, c) − α(a, bc) for all a, b, c ∈ R. Since α is 2–cocycle we have
−aα(b, c) − α(a, bc) = −α(a, b)c − α(ab, c) for all a, b, c ∈ R. Therefore 0 = 2{f (abc) −
f (a)bc−af (b)c−abf (c)−α(a, b)c−α(ab, c)} for all a, b, c ∈ R. Since R has characteristic
not 2, then δ(a, b, c) = 0 for all a, b, c ∈ R, as required.

Main result
Theorem 1 Let R be a prime ring of characteristic not 2. Then every generalized Jor-

dan triple derivation associated with a Hochschild 2–cocycle α is a generalized derivation
associated with α in each of the following cases.

(i) R is noncommutative.
(ii) There exist x, y, z ∈ R such that β(x, y, z) is a nonzero divisor in M.
(iii) R is commutative and α is symmetric.

Proof Suppose that f is a generalized Jordan triple derivation associated with a
Hochschild 2−cocycle α. We denote by G(a, b) and ab the elements of M defined by
G(a, b) = f (ab) − f (a)b − af (b), and ab = f (ab) − f (a)b − af (b) − α(a, b), respectively.
Thus, ab = G(a, b) − α(a, b). It is evident that ab+c = ab + ac, and (a+ b)c = ac + bc. By
Lemma 7, we have δ(a, b, c) = 0 for all a, b, c ∈ R. Thus, for all a, b, c ∈ R

f (abc) = f (a)bc + af (b)c + α(a, b)c + abf (c) + α(ab, c). (6)

Now let v = f (abxab), then 0 = v − v = f ((ab)x(ab)) − f (a(bxa)b). By (6), we have for
all a, b, x ∈ R

0 = f (ab)xab + abf (x)ab + α(ab, x)ab + abxf (ab) + α(abx, ab)

− f (a)bxab − af (b)xab − abf (x)ab − aα(b, x)ab − abxf (a)b

− aα(bx, a)b − α(a, bxa)b − abxaf (b) − α(abxa, b).

So, for all a, b, x ∈ R

0 = G(a, b)xab + abxG(a, b) + {α(ab, x) − aα(b, x)}ab
+ {α(abx, ab) − α(abxa, b)} − aα(bx, a)b − α(a, bxa)b.

(7)

Since α is 2-cocycle we have for all a, b, x ∈ R that

(i) {α(ab, x) − aα(b, x)}ab = {α(a, bx) − α(a, b)x}ab, and
(ii) α(abx, ab) − α((abx)a, b) = α(abx, a)b − (abx)α(a, b).

Substituting from (i) and (ii) in (7), we get G(a, b)xab − α(a, b)xab + abxG(a, b) −
abxα(a, b) + α(a, bx)ab + α(abx, a)b − aα(bx, a)b − α(a, bxa)b = 0 for all a, b, x ∈ R.
But α is 2–cocycle, hence {α(a, bx)a+α(abx, a)−aα(bx, a)−α(a, bxa)}b = 0. Therefore
abx(ab) + (ab)xab = 0 for all a, b, x ∈ R. By Lemma 1.1 of Bres̆ar [3] , we get

abx(ab) = (ab)xab = 0 for all a, b, x ∈ R. (8)

Replacing a by a+c in (8) and using (8), we obtain abxcb = −cbxab for all a, b, c, x ∈ R, and
then (abxcb)y(abxcb) = −abx(cbycb)xab = 0 for all a, b, c, x, y ∈ R. Thus the primeness
of R gives

abxcb = 0 for all a, b, c, x ∈ R. (9)

Similarly replacing b by b + d in (9), we get

abxcd = 0 for all a, b, c, d, x ∈ R. (10)
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Putting c = ab and x = dx in (10) we have abdxabd = 0 for all a, b, d, x ∈ R. Again, the
primeness of R yields that abd = 0 for all a, b, d ∈ R, and hence ab = 0 for all a, b ∈ R.
Consequently, f is a generalized derivation associated with a Hochschild 2–cocycle α.
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