
Journal of the Egyptian
Mathematical Society

Emam Journal of the Egyptian Mathematical Society            (2019) 27:2 
https://doi.org/10.1186/s42787-019-0005-1
ORIGINAL RESEARCH Open Access
Radiative flow and heat transfer of a fluid

along an expandable-stretching horizontal
cylinder

Tarek G. Emam1,2
Correspondence: tarek.emam@sci.
asu.edu.eg
1Department of Mathematics,
Faculty of Science and Arts -
Khulais, University of Jeddah,
Jeddah, Kingdom of Saudi Arabia
2Department of Mathematics,
Faculty of Science, Ain Shams
University, Cairo, Egypt
©
L
p
i

Abstract

The effect of thermal radiation and suction/injection on heat transfer characteristics
of an unsteady expandable-stretched horizontal cylinder has been investigated.
Similarity equations are obtained through the application of similarity transformation
techniques. The governing boundary layer equations are reduced to a system of
ordinary differential equations. Mathematica has been used to solve such system
after obtaining the missed initial conditions. The fluid velocity and temperature,
within the boundary layer, are plotted and discussed in details for various values of
the different parameters such as the thermal radiation parameter, suction/injection
parameter, and unsteadiness parameter. Comparison of obtained numerical results is
made with previously published results in some special cases and found to be in a
good agreement. The obtained results show that the fluid velocity and temperature
are affected by the variation of the parameters included in the study such as the
radiation parameter, the unsteadiness parameter, and the suction/injection
parameter.
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Introduction
Several applications in engineering and industrial processes arise from the study of the

flow of either Newtonian fluid or non-Newtonian fluid. Such fields have been interest-

ing for many authors for the last few decades. The fields of plastic and metallurgy in-

dustries, the drawing of wires, and glass fiber production are good examples for the

applications of the problem of the flow over a stretching/shrinking cylinder.

The problem of the flow inside a tube that has a time-dependent diameter was first

presented by Uchida and Aoki [1] and Shalak and Wang [2]. Wang [3] have studied

the steady flow of incompressible viscous flow outside a hollow stretching cylinder.

Elbashbeshy et al. [4] have investigated the effect of magnetic field on flow and heat

transfer over a stretching horizontal cylinder in the presence of a heat source/sink with

suction/injection. Hayat et al. [5] have examined the effects of variable thermal con-

ductivity in mixed convection flow of viscoelastic nanofluid due to a stretching cylin-

der with a heat source/sink. Ishak et al. [6] have studied the MHD flow and heat
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transfer outside a stretching cylinder. They have got numerical solutions to the prob-

lem using the Keller-box method.

The thermal radiation effect is considerable when the difference between the surface

temperature and the ambient temperature is big. Mabood et al. [7] have presented a

theoretical investigation of flow and heat transfer of a Casson fluid from a horizontal

circular cylinder in a non-Darcy porous medium under the action of slips and thermal

radiation parameters.

Zaimi et al. [8] have studied the unsteady flow due to a contracting cylinder in a

nanofluid using Buongiorno’s model. Elbashbeshy et al. [9] have studied the effects of

thermal radiation, heat generation, and suction/injection on the mechanical properties

of the unsteady continuous moving cylinder in a nanofluid.

Fang et al. [10] have recently studied the problem of unsteady viscous flow over an

expanding stretching cylinder which gives exact similarity solution to the Navier-Stokes

equations. They found that the reversal flow fluid is strongly affected by the Reynolds

number and the unsteadiness parameter. The numerical solution of the unsteady vis-

cous flow outside of an expanding or contracting cylinder has been reported by Fang

et al. [11].

The unsteady nature of the fluid flow is very important from a practical point of view.

Some unsteady effects arise due to non-uniformities in the surrounding fluid. Other ef-

fects arise due to the self-induction of the body. In fact, there are some devices are de-

signed to execute time-dependent motion in order to perform desired functions [12].

The understanding of unsteady flow and hence applying such knowledge to new design

techniques enable scientists and engineers to make important improvements in reliabil-

ity and costs of several fluid dynamics devices.

The problem introduced in this work involves such concept of unsteadiness. In fact,

we investigate the case of unsteady viscous flow over a stretching horizontal cylinder

with variable radius where the thermal radiation is considered. The understanding of

unsteady flow and hence applying such knowledge to new design techniques enable sci-

entists and engineers to make important improvements in reliability and costs of sev-

eral fluid dynamics devices. Mathematica is used to solve the problem numerically.

The obtained results show how the fluid velocity and temperature are affected by the

variation of the parameters included in the study such as the radiation parameter, the

unsteadiness parameter, and the suction/injection parameter.
Mathematical formulation of the problem
Consider an unsteady axisymmetric boundary layer flow of an incompressible viscous

fluid along a horizontal cylinder which is considered to be continuously stretching. The

cylinder is contracting or expanding according to the relation aðtÞ ¼ a0
ffiffiffiffiffiffiffiffiffiffi
1−βt

p
, where

a(t) is the radius of the cylinder at any time t, a0 is the initial value of the cylinder ra-

dius, and β is a constant which indicates to contraction (β > 0) or expansion (β < 0).

The stretching time-dependent velocity of the surface of the cylinder is assumed to

be Uwðx; tÞ ¼ 4 ν U0x
a2ðtÞ , and the fluid is assumed to move along the axial direction x while

the radial coordinate r is perpendicular to the axis of the cylinder. The temperature of

the cylinder surface is assumed to be time dependent in the form Twðx; tÞ ¼ T∞

þ a0 T0x
aðtÞ . Figure 1 shows the considered model.



Fig. 1 The physical model
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The governing equations [13, 14] are:

∂
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the boundary conditions are:
u ¼ Uw x; tð Þ; v ¼ a0 V

a tð Þ ;T ¼ Tw x; tð Þ; at r ¼ a tð Þ ð4Þ

u ¼ 0;T ¼ T∞; as r→∞ ð5Þ

where u and v are the components of the fluid velocity along x axis and r axis re-

spectively. ν is the fluid kinematic viscosity, α is the fluid thermal diffusivity, κ is the

thermal conductivity, V is the constant of suction (V < 0) or injection (V > 0), and qr

¼ − 4 σ
3 α�

∂ T4

∂ r is the radiation heat flux such that σ and α∗ are the Stefan-Boltzman con-

stant and the mean absorption coefficient, respectively.

The temperature differences within the flow are assumed to be sufficiently small such

that T4 is expressed as a linear function of T; hence, the Taylor expansion of T4 about

T∞, neglecting higher order terms, is given by
Table 1 Comparison of −f′′(0) for various values of A and f0 given that Pr = 0.7, U0 = − 1, NR = 0

A f0 Ref. [13] OHAM Ref. [13] Numerical Ref. [14] OHAM Ref. [14] Numerical Present Results

− 1 − 1 1.0000007 0.9999999 1.0000000 1.0000002 1.0000000

− 1 − 2 2.5632048 2.5632048 2.5632043 2.5632048 2.5632049

−2 − 1 2.6012207 2.6012207 2.6012207 2.6012207 2.6012207

−2 − 2 3.7150911 3.7150910 3.7150910 3.7150910 3.7150910



Emam Journal of the Egyptian Mathematical Society            (2019) 27:2 Page 4 of 10
T4 ¼ 4 T 3
∞T−3T

4
∞ ð6Þ

Considering the similarity transformations

η ¼ r2

a2 tð Þ−1;u ¼ Uw

U0
f 0 ηð Þ; v ¼ −

2 ν
r

f ηð Þ; θ ¼ T−T∞

Tw−T∞
ð7Þ

along with Eq. (6), the system of partial differential Eqs. (1)–(3) with the boundary
conditions (4)–(5) is transformed into the following system of ordinary differential

equation

1þ ηð Þ f 000 þ f 00 þ f f 00− f 02−A 1þ ηð Þ f 00 þ f 0½ � ¼ 0 ð8Þ
1
Pr

1þ NRð Þ 1þ ηð Þθ00 þ θ0ð Þ½ � þ f θ0− f 0θ−A 1þ ηð Þθ0 þ θ
2

� �
¼ 0 ð9Þ

subject to the boundary conditions:

f 0ð Þ ¼ − f 0; f
0 0ð Þ ¼ U0; θ 0ð Þ ¼ 1 ð10Þ

f 0 ∞ð Þ→0; θ ∞ð Þ→0 ð11Þ
β a20
while primes denote differentiation with respect to η, A ¼ 4 ν is the unsteadiness par-

ameter. Where the negative values of A correspond to contraction and the positive

values of A correspond to expansion, Pr ¼ ν
α is the Prandtl number, f 0 ¼ a0V

2 ν is the

suction (f0 < 0) or injection (f0 > 0) parameter, and NR ¼ 16 σT3
∞

3 κ α� is the thermal radiation

parameter.

Two important physical quantities of interest are the skin friction, Cf, and the local

Nusselt number, Nux, which are defined as:

C f ¼ 2 τw
ρ U2

w

;Nux ¼ x qw þ qrð Þ
κ Tw−T∞ð Þ ð12Þ

where τw ¼ μð∂u∂rÞr¼aðtÞ is the cylinder surface sheer stress and qw ¼ −κð∂T∂r Þr¼aðtÞ is the

cylinder surface heat flux. Using the dimensionless similarity transformations (7), we

get:

U0

2
C f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0 Rex

p
¼ f 00 0ð Þ;Nux

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0=Rex

p
¼ − 1þ NRð Þθ0 0ð Þ ð13Þ

where Re ¼ x Uw is the Reynolds number.
x ν

Method of solutions
Equations (8)–(9) subject to the boundary conditions (10)–(11) are transformed into

the following system of first-order differential equations:

y01 ¼ y2 ð14Þ
y02 ¼ y3 ð15Þ

y03 ¼ 1
1þ ηð Þ A 1þ ηð Þy3 þ y2ð Þ þ y22−y3−y1y3

� � ð16Þ

y04 ¼ y5 ð17Þ



Table 2 Values of −f′′(0) and −θ′(0) for various values of A, Pr , f0, and NR for U0 = 1

A Pr f0 NR −f′′(0) −θ′(0)

− 2 3.3170862 1.8884144

− 1 0.7 − 1 0.5 2.4515742 1.4338464

1 1.4434620 0.8077094

− 1 0.7 2.4515742 1.4338464

1 − 1 0.5 2.4515742 1.9023636

10 2.4515742 14.3735363

− 1 − 2 3.3307422 1.7883330

0.7 − 1 0.5 2.4515742 1.4338464

1 2.0150457 0.1622559

− 1 0.5 2.4515742 1.4338464

0.7 − 1 0.7 2.4515742 1.3019903

1 2.4515742 1.1515467
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y05 ¼ Pr
1þ NRð Þ 1þ ηð Þ y2y4 þ A

y4
2
þ 1þ ηð Þy5

	 

−y1y5

h i
−

y5
1þ ηð Þ ð18Þ

where y1 = f, y2 = f′, y3 = f′′, y4 = θ, y5 = θ′
and the initial conditions are then:

y1 0ð Þ ¼ − f 0; y2 0ð Þ ¼ U0; y4 0ð Þ ¼ 1; y3 0ð Þ ¼ m; y5 0ð Þ ¼ n ð19Þ

numerical values are given to U0 and f0 . m and n are priori unknown to be deter-

mined as part of the solution. Mathematica is used to define the function F[m, n]≕
NDSolve[System(14) − (19)]. The values of m and n are found upon solving the equa-

tions y2(ηmax) = 0, y4(ηmax) = 0. A suitable value of η is taken and then increased to

reach ηmax such that the difference between successive values of m and those of n is

less than 10−7. The problem now is an initial value problem which in turn is solved

using the Mathematica function NDSolve.

Special cases

The accuracy of the numerical method is checked out by comparing results in some

special cases with previously published results in the literature as shown in Table 1.

From the table, one can find a comparison of the obtained values of −f′′(0) with pre-

viously published results in the literature. The comparison is made for various values of

A and f0 given Pr = 0.7, U0 = − 1, NR = 0. The obtained results show good amendment

which gives rise to the validation of the used method.

Results and discussions
This section is devoted to the analysis of the behavior of the parameters included in the

problem on the fluid velocity f′(η), the fluid temperature θ(η), modified skin friction −f′
′(0) and the modified Nusselt number −θ′(0).
Table 2 shows the effects of A, Pr , f0, and NR on both of −f′′(0) and −θ′(0) for U0 = 1.

It can be observed that the values of −f′′(0) are positive for all values of the considered

parameters. The physical interpretation of this behavior is that the cylinder surface



Fig. 2 Variation of fluid temperature with Pr, for A = − 1, NR = 1, U0 = 1, f0 = − 1
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exerts a drag force on the fluid which is understood in view of the role of the stretching

cylinder to induce the flow when U0 = 1.
Prandtl number

As the Prandtl number increases the thermal conductivity of the fluid decreases so the

surface heat flux (Nusselt number) increases which is consistent with the results shown

in Table 2. The increasing of the Nussselt number results in decreasing the temperature

of the fluid as shown in Fig. 2. At a distance far enough from the surface of the cylin-

der, the fluid temperature becomes the same as that of the ambient fluid.
Thermal radiation

The effect of thermal radiation on the fluid temperature is easily recognized from

Table 2 and Fig. 3. Increasing NR leads to the decrease of the surface heat flux (Nusselt
Fig. 3 Variation of fluid temperature with NR, for A = − 1, Pr = 0.7, U0 = 1, f0 = − 1



Fig. 4 Variation of fluid velocity with A, for Pr = 0.7, NR = 1, U0 = 1, f0 = − 1
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number) and hence the fluid temperature increases. The physical interpretation of this

behavior is that as the value of NR increases the Rosseland radiation absorptivity α∗ de-

creases and hence the radiative heat flux ∂ qr
∂ r ¼ − 4 σ

3 α�
∂ T4

∂ r increases and consecutively

increases the rate of radiative heat transferred to the fluid and hence the fluid

temperature elevates.

The equations governing the fluid velocity does not include NR so there is no effect

on NR on the skin friction or the fluid velocity as recognized from Table 2.
Expandable unsteadiness parameter

For negative values of A, as A decreases, the cylinder expands. Such expansion forces

the cylinder surface to be closer to the fluid. So, the frictional forces between the fluid

particles and the surface of the cylinder elevate which results in increasing the skin fric-

tion as observed in Table 2 and decreasing the fluid velocity as figured out in Fig. 4. It
Fig. 5 Variation of fluid temperature with A, for Pr = 0.7, NR = 1, U0 = 1, f0 = − 1



Fig. 6 Variation of fluid velocity with f0, for Pr = 0.7, NR = 1, U0 = 1, A = − 1
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can also be noted from Table 2 that the decreasing of A increases the Nusselt number

so the rate of heat transfer elevates which in turn decreases the fluid temperatures as

depicted in Fig. 5.
Suction/injection velocity

The value of f0, the suction/injection parameter, plays an important role in controlling

the friction between the fluid and the surface of the cylinder which in turn affects the

heat transfer rate at the cylinder surface. Suction causes the streamlines gets closer to

the cylinder surface so the skin friction increases by increasing the value of the suction

parameter as shown in Table 2. Consequently, the friction between the fluid layers in-

creases which enforce the fluid to slow down and the fluid velocity gradient decreases

as shown in Fig. 6. From Table 2, we can also find that the values of −f′′(0) are bigger

for suction in comparison to injection. Such observations imply the conclusion that
Fig. 7 Variation of fluid temperature with f0 for Pr = 0.7, NR = 1, U0 = 1, A = − 1
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introducing the injection may help to reduce the friction at the surface of the cylinder.

However, the velocity gradient vanishes at some distance large enough from the surface

of the cylinder.

The value of Nusselt number in the injection case is smaller than that of suction as

recognized from Table 2, and consequently, the fluid temperature is higher as depicted

in Fig. 7. This behavior can be justified physically as follows: the lateral mass flux in

case of injection enhances the thermal conductivity of the fluid, and hence, the amount

of temperature that poured from the cylinder surface to the fluid increases which re-

sults in decreasing the Nusselt number. The inverse behavior takes place in case of

suction.

Conclusions
The problem of radiative fluid flow and heat transfer of a fluid along an

expandable-stretching horizontal cylinder has been studied. The study results are the

following:

� With the decrease of the value of the contraction parameter, the skin friction

increases while both of the fluid velocity and temperature decrease.

� Increasing the Prandtl number leads to a decrease of the Nusselt number and the

fluid temperature as well.

� The fluid velocity decreases as suction increases while the increase of injection

leads to increasing the fluid velocity

� The increase of injection enhances the fluid temperature while the inverse behavior

of takes place in the case of suction

� The surface flux (Nusselt number) and consequently the fluid temperature increase

as the thermal radiation parameter increases.

� Introducing the injection may help to reduce the friction at the surface of the

cylinder

Nomenclature
t: Time [s]; a(t): Radius of the cylinder [m]; Uw: Stretching time-dependent velocity [m s−1]; x: Axial direction coordinate
[m]; r: Perpendicular to the axis coordinate [m]; u: Velocity component in the x-direction [m s−1]; v: Velocity component
in the r-direction [m s−1]; Tw: Temperature of the cylinder surface [K]; V: Constant of suction [−]; A: Unsteadiness
parameter [−]; f0: Suction (injection) parameter [−]; Cf: Local skin friction coefficient [−]; f: Dimensionless stream
function [−]; NR: Radiation parameter [−]; Nux: The local Nusselt number coefficient [−]; Pr: Prandtl number [−];
Rex: Reynolds number [−]; qr: Cylinder surface heat flux [kg s−3]

Greek symbols
α The thermal diffusivity [m2 s− 1]
α* Mean absorption coefficient [−]
β Contraction (expansion) constant [s− 1]
η The dimensionless similarity variable [−]
υ Kinematic viscocity [m2 s−1]
μ Dynamic viscocity [m2 s−1]
κ Thermal conductivity of the fluid [kg m s−3 K−1]
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