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Introduction

In the theory of curves in the Euclidean and Minkowski spaces, a regular curve whose
position vector is composed by Frenet frame vectors on another regular curve is called a
Smarandache curve [1].

Smarandache geometries were proposed by Smarandache in [2] which are generaliza-
tion of classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss, and Riemann
geometries may be united altogether in the same space, by some Smarandache geometries
under the combinatorial procedure. These geometries can be either partially Euclidean
and partially non-Euclidean or only non-Euclidean.

An axiom is said to be Smarandachely denied if the axiom behaves in at least two dif-
ferent ways within the same space, i.e., validated and invalided, or only invalided but in
multiple distinct ways [3—6].

A Smarandache geometry is a geometry which has at least one Smarandachely denied
axiom (1969). Recently, special Smarandache curves have been studied by some authors
[7-11].

In this work, we introduce the equiform-Bishop frame of a spacelike curve r lying
fully on S? in Minkowski 3-space R3. Also, we introduce a special spacelike equiform-
Bishop Smarandache curves according to these frame of a spacelike curve r in R%. In the
“Basic concepts” section, we give the basic conceptions of Minkowski 3-space R?’ the
Bishop frame, and the equiform-Bishop frame that will be used during this work. In the
“Main results” section, we investigate the special spacelike euiform-Bishop TB;, TB,,
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B1B;, and TB;jBy-Smarandache curves in terms of the equiform-Bishop curvature func-
tions Kj(o), and Ky(o) of the spacelike curve r in Ri’. Furthermore, we obtain some
properties on these curves when the spacelike base curve r is contained in a plane. In
the “Example” section, we give a computational example to clarify these curves. We hope
these results will be helpful to mathematicians who are specialized on mathematical
modeling.

Basic concepts
The Minkowski 3-space R? is the Euclidean 3-space R3 provided with the Lorentzian
inner product

D= —dglz +d§22 +d§32;

where (51, 62, ¢3) is a rectangular coordinate system of R%. The arbitrary vector v € ]R?
can have one of three Lorentzian clause depicts; it can be spacelike if D(v,v) > 0 or
v = 0, timelike if D(v, v) < 0, and lightlike if D(v, v) = 0 and v # 0. Similarly, a curve r
parametrized by r = r(s) : I C R — R3 can be spacelike, timelike, or lightlike if all of its
velocity vectors r/(s) are spacelike , timelike, or lightlike, respectively [12, 13].

Denote by {¢, n, b} the moving Frenet frame along the regular spacelike curve r with
arc-length parameter s in Ri’. The Frenet trihedron consists of the tangent vector ¢, the
principal normal vector #, and the binormal vector b. Then, the Frenet frame has the
following properties [12]:

£(s) 0 «(s) O t(s)
i) | = —ex(s) 0 1(s) n@s) |, (1)
b(s) 0 1t(s) O b(s)

d
where ( = d)’ e = +1, D, t) = 1, Dn,n) = ¢, D(b,b) = —¢, and D(t,n) =
s

D(t,b) = D(n,b) = 0.1If ¢ = 1, then r = r(s) is a spacelike curve with spacelike principal
normal # and timelike binormal b. Also, if ¢ = —1, then r = r(s) is a spacelike curve with
timelike principal normal # and spacelike binormal b.

Let r = r(s) be a regular curve in R3. If the tangent vector field of this curve forms a
constant angle with a constant vector field U, then this curve is called a general helix or
an inclined curve [14].

Definition 1 A regular curve in Minkowski 3-space, whose position vector is composed
by Frenet frame vectors on another curve, is called a Smarandache curve [15].

The Bishop frame or parallel transport frame is an alternative approach to defining a
moving frame that is well defined even when the curve has vanishing second derivative
(16, 17].

Let us consider the Bishop frame {t, b1, by} of the spacelike curve r(s) with a spacelike or
timelike normal b1 (e = 1 or ¢ = —1). The Bishop frame {¢, b1, by} is expressed as [17, 18].

'i(S) 0 ki(s) —ka(s) £(s)
bi(s) | = | —¢eki(s) O 0 bi(s) |, 2)
by(s) —eka(s) O 0 by (s)
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where D(t,t) = 1, D(b1,b1) = ¢, D(by, by) = —e and D(t,b1) = D(t,by) = D(b1,by) =
0. Here, we shall call k1 (s) and kx(s) as Bishop curvatures. The relation matrix may be
expressed as

t(s) 1 0 0 t(s)
bi(s) | = | 0 coshO(s) sinhd(s) ns) |, (3)
by (s) 0 sinh 8(s) cosh8(s) b(s)

where

k
0(s) = arg tanh </i2>, ki #0

1
. do(s) (4)
T(s) = —¢ Js

K (s) = \/1k3(s) — k3(s)],

and

k1(s) = K (s) cosh0(s),
ko (s) = Kk (s) sinh 6(s).

Letr : I C R — R? be a spacelike curve in Minkowski space R?. We define the

equiform-Bishop parameter of r by 0 = [ kids. Then, we have p = 5—;, where p = ki
is the radius of curvature of the curve r. We recall {T,B1,By,} be the movin}g
equiform-Bishop frame where T(0) = pt(s), Bi(o) = pbi(s), and Ba(c) = pby(s)
are the equiform-Bishop tangent vector, equiform-Bishop principal normal vector,
and equiform-Bishop binormal vector respectively. Additionally, the first and second

d
equiform-Bishop curvatures of the curve » = r(o) are defined by Ky(0) = p = d—p and
s

k
Ky(o) = 22 So, the moving equiform-Bishop frame of r = (o) is given as [19]:

ki
T (o) Ki(o) 1 —K> (o) T (o)
Bi(o) | = —¢ Ki(o) 0 Bi(o) |, (5)
Bj(0) —eKy (o) 0 Ki(o) By (o)
,_4d 2 2 2
where | ' = T , D(T,T) = p*?, D(B1,B1) = €p*, D(By,By) = —ep~, and D(T,B1) =
o
D(T,By) =D(B1,By) =0.
The pseudo-Riemannian sphere of unit radius and with center in the origin in the space
Ri’ is defined by

S$2={peRs: Dpp) =1)}.

Main results

In this section, we introduce a special spacelike equiform-Bishop Smarandache curves
according to the equiform-Bishop frame in Minkowski 3-space R?. Furthermore, we
obtain the natural curvature functions of these curves and studying some properties on it
when the spacelike base curve r = r(s) specially is contained in a plane. Let r = r(c) be a
regular unit speed spacelike curve with spacelike equiform-Bishop principal normal and
timelike equiform-Bishop binormal.
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Definition2 Letr: I C R — S% be a regular unit speed spacelike curve lying fully on S%.
The spacelike equiform-Bishop TB1-Smarandache curve ¢ : I C R — S% of r defined by

¢=w(a*)=ép(aT(aHbBl(a)), a®+bhr =2 (6)

Theorem 1 Letr: I C R — S% be a regular unit speed spacelike curve lying fully on
S% with the moving equiform-Bishop frame {T,B1,Bz}. If ¢ : I C R — S% is the spacelike
equiform-Bishop TBy-Smarandache curve of r = r(o) with non-zero natural curvature
functions, then its Frenet frame {Ty,, Ny, By} is given by

—b a —akKy
T, p\/b2+a2(1—1<22) p\/b2+a2(1—1<22) p\/b2+a2(1—1<22) T
— w1 ) w3
Ny | = 2. 22 2, 2 2 2. 22 Bi | )
B p\/w1+w2—w3 p\/wl+(u2—w3 p\/w1+a)2—w3 B
® —a(w3+wrK>) aw1Ky—bws —(aw1+bwy) 2
Ap Ay Ap

where
w1 = a(Kj — 1) [0* +a* (1 — K3)] — 2a”bK2K),
wy = 2a° KoKy — b [b* +a* (1 — K3)],

w3 = (bKy — aKy) [b* + a* (1 — K3)] — 24°K3K3, ®)
A = p2\/w% + wl — wg/bz +a2(1-K3).
Proof Differentiationg Eq. (6) with respect to o and using Eq. (5), we get
oy = P o 1 _
plo)=—"——= NeT, (bT(0)+aBi(o) — aKzB3(0)), )
hence
1
Ty(0™) = (bT(0) +aBi(o) —aKaBy(0)), (10)
py/b + a2 (1—K2)
with the parameterization
do*  pyJb?+at(1-K3)
- . 11)
do V2
Again differentiating Eq. (10) with respect to o, we have
/ * ﬁ
Ty(c™)= 5 (01T(0) + w3B1(0) + w3B2(0)) .

p[b?+a?(1-K3)]

where

w1 = a (K3 — 1) [6* +a* (1 - K3)] — 2a*bK,K3,

wy = 2a° KoK} — b [b* + a* (1 - K3)],

w3 = (bKa — aky) [b* + a* (1 — K3) ] — 2a°K3 K3,
The curvature and the principal normal of ¢ are given as follows
V2t + -}
(12 +a2(1-K2)]"

kp(0) = [T =

and
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w1T(0) + w2B1(0) + w3Ba(0)

/ 2 2 2
Py 0] + w3 — w3

On the other hand, we can express

Ny(o*) =

1
B(ﬂ (c*) = Il {—a(ws + Wy K3) T (0) + aw1 Ky — bawsBi (o)

—(aw1 + ban)Bi(0)},

where

A1 =p2\Jo? + 0} — W2\ 17 +a? (1-KD).

Now, from Eq. (9), we have
1
V2p

¢"(0*)= {a (K} — 1) T(6)~bB1(0) + (bKy — ak}) By(0)},

similarly

(%) = %p (1T (0) + 12B1(0) + 13B2(0)),

where
p1 = aky(1 + k) + K1(aKy + bK1 — a) + 2bK],
pa = (aKa + bKy — a) — b (K1K{ + K7),
us = —Ky(aKa + bKy — a) — a (KiK] + KY) .

As a consequence with the above computation, the torsion of ¢ is obtained as

Tp=

V2| [aKy+ bKy —al [pus(a — bK1) — apaks) — apn [K)(bKy — a) — bK|K; |
P{[#Ké — 2abK,)” + [b (aKy — bKy) — 2K (K2 — 1)]° = [b2 — a2 (K2 — )] } '
O

Corollary 1 Letr:I C R — S% be a regular unit speed spacelike curve lying fully on S%
with the moving equiform-Bishop frame {T, By, By}. If the base curve r = r(s) is contained
in a plane, then the spacelike equiform-Bishop TB1-Smarandache curve is a circular helix

if Ky # ig and Ky # +1. Moreover, its natural curvature functions are dependent only
on the second equiform-Bishop curvature and given by

VA (1- K2 + 02 (1- K2)

Kp(0™) = b2 +a2(1 — [(22) ’ 12)
o™y = | 2 V20 + )1 - Kp)
Y P ) | 4a202K2 + (K2 - 1) [p? — a? (K2 - 1)]

Definition 3 Letr: 1 C R — S} be a regular unit speed spacelike curve lying fully on S2.
The spacelike equiform-Bishop TBy-Smarandache curve ¢ : I C R — S} of r defined by

¢ =¢(") = \/%p (aT(o)+bBy(0)), a*—0b*>=2. (13)

Theorem 2 Let r : [ C R — S? be a regular unit speed spacelike curve lying fully on
S? with the moving equiform-Bishop frame {T,B1,Bs}. If ¢ : I C R — S% is the spacelike
equiform-Bishop TBy-Smarandache curve of r = r(o) with non-zero natural curvature
Sfunctions, then its Frenet frame {T,, Ny, B, } is given by
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—bKy a aky
T, p\/b2K22+a2(1—1(22) p\/b21(22+512(1—1(22) p\/b2K22+a2(1—1<22) T
N — &1 & &3 BI , (14)
g p\JErei—e2 p\JEre3—e3 pJei+e3—e2 2
¢ a(§2Kr—&3) ag1Ky—b&3Ky —(a&1+b5K7) 2
Ay A A
where
£ = [bK1 + a(Ky — D] [(a — bK»)* — a’K3],
£ = —bK] [(a — bK2)* — a*K}] + (a — bKy) [bK)(a — bK>) + aK>K}],
£3 = —2(aK 1Ky + K}) [(a — bK2)? — a®K3 | + aK, [bK)(a — bK») — a*K>K}],
+a
Ay = p2 JE2 462 — €2 [D2K? +a2(1 —K2): Ky # ——.
\/ 1 2 3\/ 2 2 m
(15)
Proof Differentiationg Eq. (13) with respect to o and using Eq. (5), we have
1%y do @ _ 1
¢'(") = do* do 73, (bK3 T(0) +aBi1(0) + aKy B2(0)), (16)
then, we have
1
T,(0*) = (bK> T(0) + aBi1(0) + aks By(0)), (17)
pJPUG +a? (1~ K3)
where
2 K2 2(1 _ 12
do* \/b K5 +a*(1-K5)
= ) (18)
do V2
Then
V2
T;(G*) = 5 ) (617(0) + &2B1(0)
p [b?K; +a? (1 —K3)]
+&3B2(0)),
where

£ = [bK1 + a(Ky — D] [(a — bK»)* — a’K3],
£ = —bK{ [(a — bK3)* — a®K3 ] + (a — bKy) [bK}(a — bK>) + a*KaK}],
&3 = —2 (aK1Ky + K3) [(a — bK3)? — a’K3 |+ aKy [bK)(a — bK3) — a* KoK} .

Therefore, the natural curvature functions «, 7, can be expressed as follows:

V2,/62 + £} — &2

kp(o™) = ,
Y [62K2 + a2 (1 — K2)]°

and

_ &iT(0) + &B1(0) + §3B2(0)

pJEL+E5 — &3

Also, the binormal vector of ¢ is

Ny(o™)

1
By(o™)= A, {a(62K — £3)T(0)+(aé1Ky — b&3K3)B1(0)

—(aé1 + b&2K5)By(0)},

Page 6 of 17



Solouma and Wageeda Journal of the Egyptian Mathematical Society (2019) 27:7

where

Ay = pZ\/sf +E2— 532\/b21(22 +a?(1-K3).

Differentiating Eq. (16) with respect to o, we get

1
¢"(0") = VT {—ela+bKiKy + K})] T(0)

—ebKy B1(0) + [ebK3 — aK{] B2 (o)},

and

1
¢"(0") = —=— (1 T(0) + a2B1(0) + a3B2(0)),

V2p
where
a1 = bK, + [aK] — bK} — K{ — (KiK»)'],
ay = bKxK} — 2K} — K1K) — aK7,
ag = —Ka [a+ b(Ki1Ky + K7)].

Then
[bK3 — aK}] [ bazKy — aay] +[ b*az — abay] K3
V2 | +alas + asKy)[a+ b(KiKy + K7)]
Ty = —
YT a*Ki* + [aks (a + b K + K)D) ]

— [0K3 + a(a + bk, + KD)

O

Corollary 2 Letr: I C R — S% be a regular unit speed spacelike curve lying fully on S%
with the moving equiform-Bishop frame {T, By, By}. If the base curve r = r(s) is contained
in a plane, then the spacelike equiform-Bishop TBy-Smarandache curve is a circular helix
if Ky # i% and Ky # %1 and its natural curvature functions are dependent only on the
second equiform-Bishop curvature and given by

V2bKy /1 - K3

) = 2 (1=K) (19)
. V2| [ K2 (30%K5 — a?)
T(p(o ): [p} {(,13(1—2](22) .

Definition4 Letr:I C R — S% be a regular unit speed spacelike curve lying fully on S%.
The spacelike equiform-Bishop B1By-Smarandache curve ¢ : I C R — S? of r defined by

(aBi(o) +bBy(0)), a*—b*>=2. (20)

o1
wzw(a)—ﬁp

Theorem 3 Let r : I C R — S? be a regular unit speed spacelike curve lying fully on
S? with the moving equiform-Bishop frame {T,B1,Ba}. If  : I C R — S? is the spacelike
equiform-Bishop B1By-Smarandache curve of r = r(o) with non-zero natural curvature

Page 7 of 17



Solouma and Wageeda Journal of the Egyptian Mathematical Society (2019) 27:7

functions, then its Frenet frame {Ty,, Ny, By} is given by

=1 0 0
T p T
¢ 0 -1 K
N, | = pJ1-K2  p/1-K2 B |, Kha#=+£1 (21)
B, 0 —K 1 By

02, /1-K2  p%/1-K3
Proof Differentiationg Eq. (20) with respect to o and using Eq. (5), we get
_dp do*  —(a+bKy)T(0)

roowy _ 22
0o =2 75 (22)
hence
-T
T,% =, (23)
o
with the parameterization
do* a4+ bKy
- , 24
=7 (24)
Differentiating Eq. (23) with respect to o, we have
_ﬁ
T (6*) = ——— (B —K2B .
0(@") ,o(a—i—bl(z)( 1(0) — K3 B1(0))

The curvature of ¢ is given by

V2,/1-K?
a+b1(2

Furthermore, the principal normal and binormal vectors of ¢ are defined as follows:

—a
, Ky # >

Kkp(0™) =

py/1— K3
1
p% /1 — eK3

From Eq. (22), we get

Ny(o™) = (B1(0) — K3 By(0)),

By(o™) = (=K3Bi(0) + B3(0)) .

o0 = —1 {bK} T(0) + (a + bK2)Bi(0)
V2p P
—Kj(a + bK2)By(0)},
similarly
9" (0*) :}T ([6KY + (a + bK2) (KoK} — 1)] T(0) + 2bK} By (o)
Y

— [(a + bK2)K} + Kj(aKy + bK3) | By (0)) .
Then, we obtain the torsion of ¢ as follows. Then

V2 | (a+ bK)KY + K (aKy + 3bK})

p (K3* = 1)(a + bKy)?

Ty =
O

Corollary 3 Letr:I C R — S% be a regular unit speed spacelike curve lying fully on S%
with the moving equiform-Bishop frame {T, By, By}. If the base curve r = r(s) is contained

Page 8 of 17
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in a plane, then the spacelike equiform-Bishop B1By-Smarandache curve is also contained
in a plane.

Definition 5 Letr: I C R — S} be a regular unit speed spacelike curve lying fully on S3.
The spacelike equiform-Bishop TB1By-Smarandache curve ¢ : I C R — S% of r defined by

1
p=¢(") = NeT (aT(0) +bBi(0) + +cBa(0)), 05)

a’+b*—c*=3.

Theorem 4 Letr : [ C R — S% be a regular unit speed spacelike curve lying fully on
S% with the moving equiform-Bishop frame {T,B1,Bs}. If ¢ : I C R — S% is the spacelike
equiform-Bishop TB1By-Smarandache curve of r = r(o) with non-zero natural curvature
functions, then its Frenet frame {Ty, Ny, By} is given by

—(b+cK3) a —cKy
T, p\/(b+cK2)2+(a2—02K22) p\/(b+CK2)2+(a2—c2K22) p\/(b+cl<2)2+(az—621(22) T
4 4 l
Ny | = 2122 2222 2322 Bi |
3 p 3+ 22 Py 32— NG S
» —(alz+claKy) c 1K1 —€3(b+cK>) —la 1+l (b+cK3)] 2
A3 A3 Az
(26)

where

6y = (b+ cKy) [’ KoK} — c(b + cK)K} ] — [(b + cK2)* 4+ a*(1 — KD [eKy + a1 — K3)],
ly = (b + cK2) [(b+ cK2)* + a*(1 — KD)] — a [a* KoKy — c(b + cK2)K}],

t3 = [b+ Ky — aK}] [(b+ cK2)? + a*(1 — K3)] + aK1 K, [a*KaK) — c(b + cK2)K ],

Az = pz\/eg + 6% - zg\/(b + cK2)? + (a® — ¢2K3).

(27)
Proof Differentiationg Eq. (25) with respect to o and using Eq. (5), this leads to
Lk dy do* 1

¢ (07) = do* do pr (=(b+cK2) T(0) +aBi(o) — cK1 By(0)), (28)
then

T,(0*) = —(b+cKy) T(o) 4+ aBi(o) — cKyBy(o) ’ (29)

P/ (b +cK2)? + (a2 — 2K})

where

do b+ Ko + (@ — K3) 50

do V3 '

Then, from Eq. (29) , we get
V3 (1 T(0) + £2B1(0) + €3B2(0))
o [(B+ cK9)? + (a® — c21(22)]2

T (%) =

where

6 = (b+ cK2) [a*KaK) — (b + cK)K}] — [(b + cK2)* + a*(1 — K3) ] [cKy + a(1 — KD)],
ly = (b+ cK) [(b+ cK2)* + a*(1 — K3)] — a[a’KaK) — c(b + cK2)K}],

3 = [b+ cKy — aky] [(b+ cK2)?* + a*(1 — K3) | + aK1 K [a* KoK} — c(b + cK2)Kj ] .
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Then, the curvature and the principal normal vector of ¢ are respectively

2 2 2
V32 + 663

(™) = )
e [(b+ cK)? + (a2 — K3)]
and
N, (o™ = 6 T(0) +4€2B1(0) + 5332(0)'

192 1 92 _ p2
o1+ &5 — 43

Besides, the binormal vector of ¢ is given by

B(p(G*) =Ai3 {—(ats+ clK1)T(0) + [c 1K1 — £3(b + cK3)] B1(0)
—[ati + £2(b+ cK2)] Ba(0)},

where

A3 = 028+ B — B\ J(b+ K2 + (a2 - K3).
The derivatives ¢” and ¢”” of ¢ are

@' (%) 1 {—[a+c(K)— KiKy)]| T (o) — [b+ cK3] Bi(0)
V3p

+[® + cK2)Ky — K| By (0)},

and

1
¢"(0*) = —=— (1 T(0) + y2B1(0) + y3B2(0)),
V3p
where
n = c(Ka—K3) — Ky [b+ cKy — 3aK; ],
y2=—[2eKy +a(1-K3)],
y3 = cK} — aky + K [2¢K) +a (1 — K3)] .
Then

@Ky + [b+ cKol [(y2 — v3) (b + cK2) + ay1(1 — K1) — ay3K}]
V3 +a(ys + 92K [eK) —a (1 — K3)]

o | [@K; — ab + cka) (0 — KD + [aK; [eKy +a (1 — KF)]
+(b+ ko) [b+ ek + aky]|” = [(b + k) + a [k +a (1 — KF)]]

Tp =

Corollary 4 Letr : I C R — S? be a regular unit speed spacelike curve lying fully on S
with the moving equiform-Bishop frame {T, B1, Ba2}. If the base curve r = r(s) is contained
in a plane, then the spacelike equiform-Bishop TB1B,-Smarandache curve is a circular
helix if Ky # :I:"ZJZFI’2 and Ky # *1. Also, its natural curvature functions are dependent
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only on the second equiform-Bishop curvature and given by

a,/3(1-K3)

- (b + cK2)? + (a® — 2K2)’
abK (b + ko) (Ky + K) — &Ky (1 — K2)
. [v3] | +al+cKy) (1-K3) [a+ el + KiKy) + 2(b + cK>)]
Tlr)= { 7} a1 = K2 (1= K2)* + a(l — K)(b + cKy) [b + K
—2(1 - K3)]

Ko(o™)

(31)

Example

In this section, we construct a computational examples of the spacelike equiform-Bishop
Smarandache curves in R? with the moving equiform-Bishop frame {T, By, By} of the
spacelike equiform-Bishop curve r = r(o). Let r(s) = (s,s sin (Ins), s cos (Ins)) be a unit
speed spacelike curve parametrized by arc-length s with spacelike principal normal vector
in R3 (see Fig. 1). Then, it is easy to show that

Fig. 1 Spacelike curve r = r(s) on ?
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t(s) = (1,sin (Ins) + cos (Ins), cos (Ins) — sin (Ins)) .
. . ) . 2
This vector is spacelike and future-directed, we have x = —. Hence,
s

n(s) = \/Li (0, cos (Ins) — sin (Ins), — sin (Ins) — cos (Ins)),
b(s) = % (2,sin (Ins) 4+ cos (Ins), cos (Ins) — sin (Ins)) .

1
The torsion is T = — and 6(s) = [ (%) ds = Ins + c. Here, we can take ¢ = 0. From

Eq. (4), we get k1(s) = (“/TE) cosh (Ins), ky(s) = (ﬁ> sinh (Ins). Also from Eq. (2), we

S

get bi(s) = — [ ki(s)t(s)ds and ba(s) = — [ ko(s)¢(s)ds, then we have

1
bi(s) = — (32 —1,s% sin (Ins) — cos (Ins), sin (In's) 4 s cos (lns)) ,
ﬁs
1
by(s) = T (s* +1,5* sin (Ins) + cos (Ins), — sin (In ) + s> cos (Ins)).
s

Now, the equiform-Bishop parameter is 0 = [k ds = V2 sinh (Ins) + ¢. In this case,

we take ¢ = 0, then we have s = (”— :/‘;"’2> and p = (%/T ‘(‘:ng) Furthermore, the

equiform-Bishop curvatures are given by

K(g)_l—c\/a2+2
NCTP R
Ki(o) =

NCEE)

Fig. 2 Spacelike equiform-Bishop curve r = r(o) on 5?
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So the spacelike equiform-Bishop curve r = r(o) is defined as (see Fig. 2

ro) = [T 2N (Lgin (10 [ TEYEH)) cos (1 (2T V14
B V2 ’ V2 ’ V2 ‘

It easy to show that

7o) = (22 (L gin (10 (T4 4 cos [ (2 Y4
Vavorta )\ V2 V2

cos (1 (CFYO T4 () (O VoR 4
, 7 7 .

It is easy to show that 7 is an equiform-Bishop spacelike vector. Also

By = (7-|_—4/(72-i_2 0,cos | In w —sin | In ﬂ
1 20?2 +2 ' NG NG

T T e i N Y Y R
, 7 > .

By(o) = otvort2 of + 2,sin | In gtvort4 62 + cos | In w
S W W V2

e w3

20 20

Fig. 3 The spacelike equiform-Bishop TB;-Smarandache curve ¢(o*) on S%
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It is clear that B; is an equiform-Bishop spacelike vector and B, is an equiform-Bishop
timelike vector. Moreover, if we take a = b = 1, the spacelike equiform-Bishop TB;-
Smarandache curve ¢(c*) of the curve r(o) is given by (see Fig. 3)

pc*) = (G Vot 2) (\/5, («/5 - 1) sin (ln (H—M>)

2Volt2 7
+ (ﬁ‘l‘ 1) cos <1n (%)), (ﬁ - 1) cos (ln (@))
- («/§+ 1) sin (ln <0'+—\/c%2+4>)) )

If we take @ = 3 and b = /7, the spacelike equiform-Bishop TB;-Smarandache curve
@(0™*) of the curve r(o) is given by (see Fig. 4)

* o+o24+2 . a+m
pc™) = (3x/§+ ﬁ) <m) (l,sm <ln (T))

+cos | In —U+m cos | In —0+m
V2 ’ V2

=27

Fig. 4 The spacelike equiform-Bishop TB,-Smarandache curve ¢(c*) on Sf
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If we take 2 = 2 and b = /2, the spacelike equiform-Bishop B; By-Smarandache curve
@(c™*) of the curve r(o) is given by (see Fig. 5)

o(c™) = (" +voldt 2) <2«/§, 2+ +/2) cos <1n (”— "ZH))

27202 42 V2
, o++vo2+4 o+ Vol+4
+(v/2 - 2) sin (ln <T)), (v/2 = 2) cos (ln (T))
. o ++Vo2+4
—(2+ +/2)sin (ln (T))) .

If we take a = 2, b = 1, and ¢ = +/2, the spacelike equiform-Bishop TBB,-
Smarandache curve ¢(c*) of the curve r(o) is given by (see Fig. 6)

o(c*) = (0 tvoid 2) (4«/5, (4«/5 - 1) sin (ln (‘H’— M))

2v3Vo2 +2 V2
+ (4«/5 + 1) cos <ln (%)), (4«/§+ 1) cos (ln (H—J‘;ML)>
+ (4«/5 - 1) sin (ln (H—«/G;ML))) .

Fig. 5 The spacelike equiform-Bishop B1B,-Smarandache curve ¢(o*) on 5%
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Fig. 6 The spacelike equiform-Bishop TB;B;-Smarandache curve ¢(a*) on 5%
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