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Abstract
In this paper, two bounded bi-univalent function subclasses were defined by using
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Introduction
LetA denotes the class of analytic functions of the form

f (z) = z +
∞∑

k=2
akzk , (1)

normalized by the conditions f (0) = f ′
(0) − 1 = 0, which are defined on the open

unit disc U = {z ∈ C : |z| < 1}. Let S be the subclass of A consisting of all functions
of the form (1) which are univalent in U. In the geometric function theory, there are
two important subclasses of S , which are the well-known subclasses of starlike and con-
vex functions, namely, S∗ and K, for which the inequalities Re

{
zf ′

(z)/f (z)
}

> 0 and

Re
{
1 + zf ′′

(z)/f ′
(z)

}
> 0 (z ∈ U) are the sufficient conditions, respectively (see [1],

Ch.8). An analytic function f is subordinate to an analytic function g, written f (z) ≺ g(z),
provided there exist an analytic functionw defined onU withw(0) = 0 and |w(z)| < 1 sat-
isfying f (z) = g(w(z)) (see [2]). Ma andMinda [3] gave a unified representation of various
subclasses of starlike and convex functions by introducing the classes S∗(ϕ) and K(ϕ) of
functions f ∈ S satisfying zf ′

(z)/f (z) ≺ ϕ(z) and 1+ zf ′′
(z)/f ′

(z) ≺ ϕ(z) (z ∈ U), respec-
tively, where ϕ is an analytic function with positive real part in the unit disc U, ϕ(0) = 1,
ϕ′(0) > 0, and ϕ maps U onto a region starlike with respect to 1 and symmetric with
respect to the real axis. The classes S∗(ϕ) andK(ϕ) include several well-known subclasses
as special case. For example, when ϕ(z) = (1+Az)/(1+ Bz)(1 ≤ B < A ≤ 1), the classes
S∗(ϕ) and K(ϕ) are reduced to the subclasses S∗[A,B] and K[A,B], which were intro-
duced by Janowski [4]. For 0 ≤ β < 1, the classes S∗(β) = S∗((1+(1−2β)z)/(1−z)) and
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K(β) = K((1+(1−2β)z)/(1−z)) are subclasses of starlike and convex functions of order
β (see [1], Ch.9), S∗ := S∗(0) = S∗((1+ z)/(1− z)) andK := K(0) = K((1+ z)/(1− z)).
Moreover, the subclasses of strongly starlike and strongly convex functions of order α(0 ≤
α < 1) can be obtained by S∗

α := S∗(((1 + z)/(1 − z))α) andKα := K(((1 + z)/(1 − z))α)

(see [5]).
The Koebe one quarter theorem ensures that the image of U under every univalent

function f ∈ S contains a disk of radius 1
4 (see [6] ). Thus, every univalent function f has

an inverse f −1 satisfying

f −1(f (z)) = z, (z ∈ U) andf (f −1(ω)) = ω(|ω| < r0(f ), r0(f ) ≥ 1
4
. (2)

A function f ∈ S is said to be bi-univalent inU if both f and f −1 are univalent inU . Let
� denotes the subclass of S , consisting of all bi-univalent functions defined on the unit
disc U. Since f ∈ � has the Maclaurin series expansion given by (1), a simple calculation
shows that its inverse g = f −1 has the series expansion

g(ω) = f −1(ω) = w − a2w2 + (
2a22 − a3

)
w3 − .... (3)

Examples of functions in the class � are

z
1 − z

,−log (1 − z) and
1
2
log

(
1 + z
1 − z

)
. (4)

and so on. However, the familiar Koebe function is not a member of �. Other common
examples of functions in S such as

z − z2

2
and

z
1 − z2

(5)

are also not members of � (see [7]). Several authors have introduced and investigated
subclasses of bi-univalent functions and obtained bounds for the initial coefficients (see
[7–11]). The research into� was started by Lewin ([9]). It focused on problems connected
with coefficients. Many papers concerning bi-univalent functions have been published
recently. A function f ∈ � is in the class S∗

�(β) of bi-starlike function of order β(0 ≤ β <

1), or K�(β) of bi-convex function of order β if both f and f −1 are respectively starlike
or convex functions of order β . For 0 ≤ α < 1, the function f ∈ � is strongly bi-starlike
function of order α if both the functions f and f −1 are strongly starlike functions of order
α. The class of all such functions is denoted by S∗

�,α . These classes were introduced by
Brannan and Taha [8], they obtained estimates on the initial coefficients a2 and a3 for
functions in these classes. We owe the revival of these topics to Srivastava et al. ([7]). The
investigations in this direction have also been carried out, among others, by Ali et al. [12],
Frasin and Aouf [13]. Hamidi and Jahangiri (e.g., [14]) have revealed the importance of the
Faber polynomials in general studies on the coefficients of bi-univalent functions. In fact,
little is known about exact bounds of the initial coefficients of f ∈ �. For the most general
families of functions given by (1), we know that |a2| < 1.51 for bi-univalent functions
([9]), |a2| ≤ 2 for bi-starlike functions (Kedzierawski [15]), and |a2| < 1 for bi-convex
functions ([8]). Only the last estimate is sharp, equality holds only for f (z) = z/(1 − z)
and its rotations.
In this study, we are concerned with a different type of classes of bi-univalent functions,

which are of the bounded type. A bounded function classes was firstly introduced and
discussed by Singh [16]. Singh and Singh [17] introduced a bounded starlike and convex
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function classes S∗
M and KM, respectively, these were followed by the subclasses S∗

M(α)

and KM(α) represented a bounded starlike and convex function of order α, respectively.
The q-difference operator, which was introduced by Jackson [18], and may go back to

Heine [19], is defined by

∂qf (z) =
{ f (qz)−f (z)

z(q−1) , z 	= 0 ;
f ′

(0) , z = 0 ;

and

∂0q f (z) = f (z), ∂1q f (z) = ∂qf (z)and∂mq f (z) = ∂q
(
∂m−1
q f (z)

)
(m ∈ N).

For the function f (z) denoted by (1), we have

∂1q f (z) = 1 +
∞∑

k=2
[k]q akzk(z 	= 0),

where

[ν]q = qν − 1
q − 1

=
ν−1∑
j=0

qj, ν ∈ N.

For function f ∈ � given by (1) and n ∈ N, 0 ≤ q < 1, Salagean q-differential operator
Dn
q , introduced by Govindaraj and Sivasubramanian [20] (see also [21]), defined by

D0
qf (z) = f (z),D1

qf (z) = z∂qf (z)andDm
q f (z) = Dq

(
Dm−1
q f (z)

)
(m ∈ N). (6)

For the functions f (z) and g(w) denoted by (1) and (3), we have

Dm
q f (z) = z +

∞∑

k=2
[k]mq akzk , (7)

Dm
q g(w) = w − [2]mq a2w2 + [3]mq

(
2a22 − a3

)
w3 + ... . (8)

In this present work, we introduce two bounded subclasses of � associated with
Salagean q-differential operator and obtain the initial Maclaurin coefficients |a2| and |a3|
for these function classes. Also, we give bounds for the Fekete-Szegö functional |a3−μa22|
for each subclass.

Estimations of |a2| and |a3|
The main results in this section is to define two bounded subclasses of the class �, then
some estimations of the first two Maclaurin coefficients of functions belonging to those
subclasses were calculated.

Definition 1 For 0 ≤ λ < 1, b ∈ C
∗ and M > 1

2 , let Sn
�,q(λ, b,M) be the subclass of �

consisting of functions of the form (1) and satisfying the following condition
∣∣∣∣∣∣∣∣

b − 1 + Dn+1
q f (z)

λDn+1
q f (z)+(1−λ)Dn

qf (z)

b
− M

∣∣∣∣∣∣∣∣
< M, (z ∈ U) (9)

and ∣∣∣∣∣∣∣∣

b − 1 + Dn+1
q g(w)

λDn+1
q g(w)+(1−λ)Dn

qg(w)

b
− M

∣∣∣∣∣∣∣∣
< M, (w ∈ U) (10)



El-Qadeem and Mamon Journal of the EgyptianMathematical Society           (2019) 27:16 Page 4 of 11

where z,w ∈ U, and g = f −1 ∈ � is given by (3). Also, let Cn�,q(λ, b,M) be the subclass of
� consisting of functions of the form (1) and satisfying the following condition

∣∣∣∣∣∣∣

b − 1 + Dn+2
q f (z)

λDn+2
q f (z)+(1−λ)Dn+1

q f (z)

b
− M

∣∣∣∣∣∣∣
< M, (z ∈ U) (11)

and
∣∣∣∣∣∣∣

b − 1 + Dn+2
q g(w)

λDn+2
q g(w)+(1−λ)Dn+1

q g(w)

b
− M

∣∣∣∣∣∣∣
< M, (w ∈ U) (12)

where z,w ∈ U, and g = f −1 ∈ � is given by (3).

It is clear that

f (z) ∈ Cn�,q(λ, b,M) ⇐⇒ z∂qf (z) ∈ Sn
�,q(λ, b,M)

Lemma 1 Let m = 1 − 1
M

(
M > 1

2
)
, f defined by (1) and g = f −1, then we have

f (z) ∈ Sn
�,q(λ, b,M) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

1 + 1
b

(
Dn+1
q f (z)

λDn+1
q f (z)+(1−λ)Dn

qf (z)
− 1

)
≺ 1+z

1−mz

1 + 1
b

(
Dn+1
q g(w)

λDn+1
q g(w)+(1−λ)Dn

qg(w)
− 1

)
≺ 1+w

1−mw

, (13)

and also,

f (z) ∈ Cn�,q(λ, b,M) ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

1 + 1
b

(
Dn+2
q f (z)

λDn+2
q f (z)+(1−λ)Dn+1

q f (z)
− 1

)
≺ 1+z

1−mz

1 + 1
b

(
Dn+2
q g(w)

λDn+2
q g(w)+(1−λ)Dn+1

q g(w)
− 1

)
≺ 1+w

1−mw

, (14)

where

(0 ≤ λ < 1, b ∈ C
∗andz,w ∈ U)

Lemma 2 (see [22]) If h ∈ P , then |cn| ≤ 2 for each n ∈ N, where P is the family of all
functions h which is analytic in U for which Re{h(z)} > 0, where h(z) = 1+ c1z+ c2z2 + ...
for z ∈ U .

Remark 1 In Definitions 1, 2 and for special choices of the parameters λ, b,M, also,
taking q → 1−, then we can obtain the following subclasses:

S0
�(λ, 1 − β ,∞) = M�(β , λ)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ � :

Re
(

zf ′
(z)

(1−λ)f (z)+λzf ′ (z)

)
> β ,

Re
(

wg′
(w)

(1−λ)g(w)+λwg′
(w)

)
> β

, 0 < β ≤ 1, z,w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭

S0
�(λ, b,∞) = S�(1, λ)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ � :

∣∣∣∣arg
{

zf ′
(z)

(1−λ)f (z)+λzf ′ (z)

}∣∣∣∣ < π
2 ,∣∣∣∣arg

{
wg′

(w)

(1−λ)g(w)+λwg′
(w)

}∣∣∣∣ < π
2

, z,w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
,
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which were introduced by Murugusundaramoorthy et al. [23].

S0
�(γ , τ ,∞) = H�(τ , 0, 1, γ , 0)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ � :

Re
(
1 + 1

τ

(
zf ′

(z)
(1−γ )f (z)+γ zf ′

(z)
− 1

))
> 0,

Re
(
1 + 1

τ

(
zg′

(w)

(1−γ )g(w)+γwg′
(w)

− 1
))

> 0
, z,w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
,

which was introduced by Srivastava et al. [24].

S0
�(0, 1 − β ,∞) = S�(β)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ � :

Re
(

zf ′
(z)

f (z)

)
> β ,

Re
(

wg′
(w)

g(w)

)
> β

, 0 ≤ β < 1, z,w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
,

C0�(0, 1 − β ,∞) = K�(β)

=

⎧
⎪⎪⎨

⎪⎪⎩
f ∈ � :

Re
(
1 + zf ′′

(z)
f ′

(z)

)
> β ,

Re
(
1 + wg′′

(w)

g′
(w)

)
> β

, 0 ≤ β < 1, z,w ∈ U

⎫
⎪⎪⎬

⎪⎪⎭
,

which are the classes of bi-starlike and bi-convex functions introduced by Brannan and
Taha [8].

Theorem 1 Let f given by (1) be in the subclass Sn
�,q(λ, b,M). Then

|a2| ≤
√

|b|(m+1)
(1−λ)

∣∣∣[3]nq([3]q−1)−[2]2nq
(
[2]q−1

)(
1−λ+λ[2]q+ (1−λ)(m−1)([2]q−1)

b(m+1)

)∣∣∣
.

and

|a3| ≤ |b| (m + 1)
(1 − λ)

{
1

[3]nq ([3]q − 1)
+ |b| (m + 1)

[2]2nq (1 − λ)([2]q − 1)2

}
,

where

0 ≤ λ < 1, b ∈ C
∗, z ∈ Uandm = 1 − 1

M
(M >

1
2
),

Proof Let f ∈ Sn
�,q(λ, b,M) and g = f −1. Then, it satisfy the conditions (13). By the

definition, there exist two analytic functions u, v : U → U with u(0) = v(0) = 0 and
|u(z)| < 1, |v(w)| < 1 for all z,w ∈ U satisfying

1 + 1
b

(
Dn+1
q f (z)

λDn+1
q f (z) + (1 − λ)Dn

qf (z)
− 1

)
= 1 + u(z)

1 − mu(z)
, (15)

and

1 + 1
b

(
Dn+1
q g(w)

λDn+1
q g(w) + (1 − λ)Dn

qg(w)
− 1

)
= 1 + v(w)

1 − mv(w)
, (16)

Now, define the two functions p(z) and q(z) by

p(z) := 1 + u(z)
1 − u(z)

= 1 + p1z + p2z2 + ...,

p(z) := 1 + v(z)
1 − v(z)

= 1 + q1z + q2z2 + ...
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It is equivalent to

u(z) := 1 − p(z)
1 + p(z)

= 1
2

(
p1z +

(
p2 − p21

2

)
z2 + ...

)
, (17)

v(z) := 1 − q(z)
1 + q(z)

= 1
2

(
q1z +

(
q2 − q21

2

)
z2 + ...

)
. (18)

Then p(z) and q(z) are analytic in U with p(0) = 1 = q(0). In view of Janowski [4],
Since u, v : U → U , the functions p(z), q(z) ∈ P(M) and have a positive real part in U
where P(M) is the class of all function ψ(z) = 1 + δ1z + δ2z2 + ... which are analytic in U
and satisfy the condition

|ψ(z) − ρ| < ρ, (ρ ≥ 1, z ∈ U).

Therefore, in view of the Lemma 1, we have
∣∣pi

∣∣ ≤ 2and
∣∣qi

∣∣ ≤ 2(n ∈ N) (19)

By substituting from (7), (8), (17), and (18) into (15)and (16), we obtain

1 + [2]nq (1 − λ)([2]q − 1)a2z + (1 − λ)
(
[3]nq ([3]q − 1)a3 − [2]2nq ([2]q − 1).

(1 − λ + λ [2]q)a22
)
z2 + ... = 1 + b(m+1)p1

2 z + b(m+1)
2

(
p2 + p21(m−1)

2

)
z2 + ...

(20)

1 − [2]nq (1 − λ)([2]q − 1)a2w + (1 − λ)
(
[3]nq ([3]q − 1)(2a22 − a3) + [2]2nq ([2]q − 1).

(1 − λ + λ [2]q)a22
)
w2 + ... = 1 + b(m+1)q1

2 w + b(m+1)
2

(
q2 + q21(m−1)

2

)
w2 + ...

(21)

which yields the following relations

[2]nq (1 − λ)([2]q − 1)a2 = b
2
(m + 1)p1 (22)

[3]nq (1 − λ)([3]q − 1)a3 − [2]2nq (1 − λ)([2]q − 1)(1 − λ + λ [2]q)a22

= b
2
(m + 1)

(
p2 + p21

2
(m − 1)

)
(23)

− [2]nq (1 − λ)([2]q − 1)a2 = b
2
(m + 1)q1 (24)

[3]nq (1 − λ)([3]q − 1)(2a22 − a3) − [2]2nq (1 − λ)([2]q − 1)(1 − λ + λ [2]q)a22

= b
2
(m + 1)

(
q2 + q21

2
(m − 1)

)
(25)

From (22) and (24), we obtain

p1 = −q1, (26)

and

2 [2]2nq (1 − λ)2([2]q − 1)2a22 = b2

4
(m + 1)2

(
p21 + q21

)
. (27)

By adding (23) to (25) then use (27), we obtain

a22 = b(m+1)(p2+q2)
4(1−λ)

(
[3]nq([3]q−1)−[2]2nq

(
[2]q−1

)
(1−λ+λ[2]q+ (1−λ)(m−1)([2]q−1)

b(m+1) )
) , (28)

applying Lemma 2 to the coefficients p2 and q2, we conclude
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|a2| ≤
√

|b|(m+1)
(1−λ)

∣∣∣[3]nq([3]q−1)−[2]2nq
(
[2]q−1

)(
1−λ+λ[2]q+ (1−λ)(m−1)([2]q−1)

b(m+1)

)∣∣∣
.

By subtracting (25) from (23), we have

2 [3]nq (1−λ)([3]q−1)
(
a3 − a22

) = b
2
(m+1)

(
(p2 − q2) + (m − 1)

2
(
p21 − q21

))
, (29)

by substituting from (26) and (27) into (29), we conclude

a3 = b(m + 1) (p2 − q2)
4 [3]nq (1 − λ)([3]q − 1)

+ b2(m + 1)2
(
p21 + q21

)

8 [2]2nq (1 − λ)2([2]q − 1)2
. (30)

Finally, by applying Lemma 2 to the coefficients p1, p2, q1 and q2, we conclude

|a3| ≤ |b| (m + 1)
[3]nq (1 − λ)([3]q − 1)

+ |b|2 (m + 1)2

[2]2nq (1 − λ)2([2]q − 1)2

The proof is completed.

For n = 0, b = 1 − β ,m = 1, and q → 1−, we obtain the bounds corresponding to the
classM�(β , λ) given by Murugusundaramoorthy et al. [23].

Corollary 1 Let f given by (1) be a function in the class M�(β , λ), then

|a2| ≤
√
2(1 − β)

(1 − λ)

and

|a3| ≤ 4(1 − β)2

(1 − λ)2
+ 1 − β

1 − λ

Additionally, put λ = 0, we obtain bounds of the class of bi-starlike function of order β

donated by S�(β).

Corollary 2 [8] Let f given by (1) be in the class S�(β), then

|a2| ≤ √
2(1 − β)

and

|a3| ≤ (1 − β)(5 − 4β)

Theorem 2 Let f given by (1) be in the subclass Cn�,q(λ, b,M). Then

|a2| ≤
√

|b|(m+1)
(1−λ)

∣∣∣[3]n+1
q ([3]q−1)−[2]2n+2

q
(
[2]q−1

)
(1−λ+λ[2)q+ (m−1)(1−λ)([2]q−1)

b(m+1)

∣∣∣

and

|a3| ≤ |b| (m + 1)
(1 − λ)

{
1

[3]n+1
q ([3]q − 1)

+ |b| (m + 1)
[2]2n+2

q (1 − λ)([2]q − 1)2

}
,

where

0 ≤ λ < 1, b ∈ C
∗, z ∈ U andm = 1 − 1

M

(
M >

1
2

)
,

Proof Let f ∈ Cn�,q(λ, b,M) and g = f −1. Then, it satisfy the conditions (14). By the
definition, there exist two analytic functions u, v : U → U with u(0) = v(0) = 0 and
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|u(z)| < 1, |v(w)| < 1 for all z,w ∈ U satisfying

1 + 1
b

(
Dn+2
q f (z)

λDn+2
q f (z) + (1 − λ)Dn+1

q f (z)
− 1

)
= 1 + u(z)

1 − mu(z)
, (31)

and

1 + 1
b

(
Dn+2
q g(w)

λDn+2
q g(w) + (1 − λ)Dn+1

q g(w)
− 1

)
= 1 + v(w)

1 − mv(w)
. (32)

Now, define the two functions r(z) and s(z) by

r(z) := 1 + u(z)
1 − u(z)

= 1 + r1z + r2z2 + ...,

s(z) := 1 + v(z)
1 − v(z)

= 1 + s1z + s2z2 + ...

It is equivalent to

u(z) := 1 − r(z)
1 + r(z)

= 1
2

(
r1z +

(
r2 − r21

2

)
z2 + ...

)
, (33)

v(z) := 1 − s(z)
1 + s(z)

= 1
2

(
s1z +

(
s2 − s21

2

)
z2 + ...

)
. (34)

Then r(z) and s(z) are analytic in U with p(0) = 1 = q(0). Since u, v : U → U , the
functions r(z) and s(z) have a positive real part in U. Therefore, in view of the Lemma 2,
we have

|ri| ≤ 2and |si| ≤ 2(n ∈ N). (35)

By following the same steps in proving Theorem 1, we can complete the proof of this
theorem.

For n = 0, b = 1 − β ,m = 1, λ = 0 and q → 1−, we obtain the bounds corresponding
to the class K�(β) given by Brannan and Taha [8].

Corollary 3 Let f given by (1) be in the class K�(β), then

|a2| ≤ √
1 − β

and

|a3| ≤ (4 − 3β)(1 − β)

3

Fekete-Szegö inequalities
Fekete and Szegö [25] introduced the generalized functional |a3 − μa22| where μ is some
real number. In this section, we obtain the Fekete-Szegö inequality for the functions
belonging to the classes Sn

�,q(λ, b,M) and Cn�,q(λ, b,M). Before establishing our results,
we need the following Lemma introduced by Zaprawa [11].

Lemma 3 Let k, l ∈ R and p1, p2 ∈ C. If
∣∣p1

∣∣ ,
∣∣p2

∣∣ < R, then

∣∣(k + l)p1 + (k − l)p2
∣∣ ≤

⎧
⎪⎨

⎪⎩

2 |k|R , |k| ≥ |l|

2 |l|R , |k| ≤ |l|
.
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Theorem 3 Let f given by (1) be in the class Sn
�,q(λ, b,M) and μ ∈ R. Then

∣∣a3 − μa22
∣∣ ≤ |b| (m + 1)

(1 − λ)

⎧
⎪⎪⎨

⎪⎪⎩

1
[3]nq([3]q−1) , |h(μ)| ≤ 1

[3]nq([3]q−1)

|h(μ)| , |h(μ)| ≥ 1
[3]nq([3]q−1)

,

where

h(μ) = (1 − μ)

[3]nq ([3]q − 1) − [2]2nq
(
[2]q − 1

) (
1 − λ + λ [2]q + (1−λ)(m−1)([2]q−1)

b(m+1)

)

Proof Using (29), we can write

a3 = a22 + b(m + 1) (p2 − q2)
4 [3]nq (1 − λ)([3]q − 1)

(36)

From (30) and (36), we obtain

a3 − μa22 = b(m + 1)
4(1 − λ)

{(
h(μ) + 1

[3]nq ([3]q − 1)

)
p2 +

(
h(μ) − 1

[3]nq ([3]q − 1)

)
q2

}

(37)

where

h(μ) = (1 − μ)

[3]nq ([3]q − 1) − [2]2nq
(
[2]q − 1

) (
1 − λ + λ [2]q + (1−λ)(m−1)([2]q−1)

b(m+1)

)

Therefore, by applying Lemma 2 to the coefficients p2 and q2 which obtain
∣∣p2

∣∣ ≤ 2and
∣∣q2

∣∣ ≤ 2

Thus, by applying Lemma 3 into (37), we conclude

∣∣a3 − μa22
∣∣ ≤ |b| (m + 1)

(1 − λ)

⎧
⎪⎪⎨

⎪⎪⎩

1
[3]nq([3]q−1) , |h(μ)| ≤ 1

[3]nq([3]q−1)

|h(μ)| , |h(μ)| ≥ 1
[3]nq([3]q−1)

,

which completes the proof.

For n = 0, b = 1 − β ,m = 1 and q → 1−, we obtain bounds of the Fekete-Sezgö
inequality of the classM�(β , λ) given by Zaprawa [11].

Corollary 4 Let f given by (1) be in the class M�(β , λ), then

|a3 − μa22| ≤

⎧
⎪⎨

⎪⎩

2(1−β)|1−μ|
(1−λ)2

, 2|1 − μ| ≥ (1 − λ)

1−β
1−λ

, 2|1 − μ| ≤ (1 − λ)

Additionally, put λ = 0, we obtain Fekete-Sezgö inequality of the class S�(β).

Corollary 5 Let f given by (1) be in the class S�(β), then

|a3 − μa22| ≤

⎧
⎪⎨

⎪⎩

2(1 − β)|1 − μ| , 2|1 − μ| ≥ 1

1 − β , 2|1 − μ| ≤ 1
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Theorem 4 Let f given by (1) be in the class Cn�,q(λ, b,M) and μ ∈ R. Then,

∣∣a3 − μa22
∣∣ ≤ |b| (m + 1)

(1 − λ)

⎧
⎪⎪⎨

⎪⎪⎩

1
[3]n+1

q ([3]q−1) , |h(μ)| ≤ 1
[3]n+1

q ([3]q−1)

|h(μ)| , |h(μ)| ≥ 1
[3]n+1

q ([3]q−1)

,

where

h(μ) = (1 − μ)

[3]n+1
q ([3]q − 1) − [2]2n+2

q
(
[2]q − 1

) (
1 − λ + λ [2]q + (1−λ)(m−1)([2]q−1)

b(m+1)

)

Proof Just as we derived Theorem 3, we can deduce Theorem 4, so we choose to omit
the proof

Corollary 6 Let f given by (1) be in the class K�(β), then

∣∣a3 − μa22
∣∣ ≤

⎧
⎪⎨

⎪⎩

1−β
3 , 3|1 − μ| ≤ 1

(1 − β)|1 − μ| , 3|1 − μ| ≥ 1
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