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Introduction

Denote the class consisting of analytic and multivalent functions in the open unit disc
U ={z € C: |z|] < 1} of the form:

f@ =2+ apd™ (peN={(12.)), (1)

n=1

by A(p). We note that A(1) = A.

Consider the first-order differential subordination
H(g(2),2¢'(2)) < h(2),

where the symbol < stands for subordination of two analytic functions in U (see [1, 2]). A
univalent function ¢ is called dominant, if (z) < g(z) for all analytic functions ¢ that
satisfy this differential subordination. A dominant 7 is called the best dominant, if §(z) <
q(z) for all dominant gq. For f € A(p), the gth order derivative of f (z) could be written as

o0
9@ =8(pZ ™+ $(p+mqap ", zeUp>q, qeNo=NU{0}),

n=1
2)

where

P pp—1...(p—q+1),if g#0,

S(p,g) = —
PD=0 "0 if g = 0.
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Let
. AN @@,
pFa (@1, by byi2) = HZZO B b)n (D ®

be the well-known generalized hypergeometric function for complex parameters
ai, .. aq, b1,..bs (bj ¢ Zy =1{0,-1,-2,..}; j = 1,2,..,5) and (A), is the Pochhammer

symbol defined by
)y = 1 ifv=0,
YT A+ DA +2).. (A +v—1) ifveN.

In addition, if we putp =2, g = 1, a; = a, ap = b, by = cin (3), we get the (Gaussian)
hypergeometric function 2F; (4, b; ¢; z) (¢ # 0, —1, —2,...) which satisfies (see [3])

1
/ 1A = A — ) dt = TBEED Ry (0, b;62) ((0) > R(b) > 0 (4)
0

2F1(a,b;c2) = (1 —2) % F (a, c—b;c z—Zl) ; (5)

and
2F1(a, b; ¢;2) = 2F1(b, a; ¢ 2). (6)

We will recall some definitions which will be used in our paper.

Definition 1 [4-12]. Assume that 0 < A < 1 and u,n € R. Then, in terms of oF1, the
generalized fractional derivative operator for f € A(p) is defined by

])L,/L,’I,Pf(z) — i Z)‘—M /‘Z(Z _ g_),)Ljv(é-) 2F1 (M Y [ n; 1—Xx1— é‘) dé‘
02 T dz | [ TA -1 Jo ’ ’ T ’

where f is an analytic function in a simply-connected region of the complex z-plane con-
taining the origin with the order f(z) = O(|z|®), z — 0 when ¢ > max{0,u — n} — 1 and
the multiplicity of (z — )~ is removed by requiringlog(z — ¢) to be real when z — ¢ > 0.

Remark 1 We note thart(p Dt 1 )
o AT, n n — M
() gt (227} = L

S T@+n+1—wWlp+n+l—a+n)
(ii) Iy 2" f (2) = Dif (2) (see [13]).

A (n> 1),

Goyal and Prajapat [14] (see also [4—12]) defined the operator Mg,’ff’"’p : Ap) — Ap)
(05)» <l u<p+1,n> max{k,u}—p—l),by
r 1— )l 1—-A
G+ 1= M@ +1=h+1) sy
Fpp+DIp+1—pn+n ’

oo
1 1-
:Zp+z (p+ )}’l(p+ :LL+77)}’1 ap+nzp+n
=1 @+1-—wup+1—2+nn

MG"f @) =

=3 Lp+Lp+l—p+mp+l—pwp+1—»r+n2 xf(2),
(7)
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where the symbol * stands for convolution of two power series and f € A(p). It is easy to
check that

2 (MGE"F@) = 0 = wMGE S @)+ MR ). (8)
In this paper, we define the higher order derivative of ./\/l0 p MPf(2) as follows:

@+ Dup+1—p+ny
(p+1_//b)n(p+1_)“+77)n

(Méff'"’pf(2)> =57 q+Z

S+ n,q) appad 1

(peN,quo,p>q,0§A<1,u<p+1,n>max{k,,u}—p—1).

)
From (9), we have
(@ " -1
e (Me221@) " = = ) (MG @) T g
(g—1)
x (Méﬁf mf (Z)) (@eN). (10)
We say that f € A(p) is in the class S,ﬁ,‘,g"” (¢;A,B) if
)L (g+1)
1 [2(MeEr@) A BREYE )
p_q_g ( }‘ﬂ”pf( )>(q) 1+BZ’

0<A<l, u<p+l, n>max{rs, u}—-p—1,0<¢ <p—q, -1 <B<A<l,peN,qge
No and p > q + ¢. Denoting by S;‘y’f;’” (¢,&), the class of functions f (z) € A(p) which
satisfies
(g+1)
P
1 (J\/lofz“7 f(z )

p—q9q—¢ (Méjﬁj’”"’f(z))(q)

- >EE<LpeN;zel). (12)

Preliminaries
To prove our main results, we shall need the following definition and lemmas.

Definition 2 [2]. Denote the set of all functions f that are analytic and univalent on
U\ E(f) by Q, where
E(f) :={c €dU: ZIi_r)ngf(z) = oo},
and are such that f'(¢) # 0 for ¢ € U \ E(f).
Lemma 1 [15]. Let h (z) be analytic and convex (univalent) function in U with h(0) = 1.
Also let ¢ given by
¢@) =14 2"+ cp1 2+ ..

be analytic in U. If
Z¢ (2)

¢ (2) +
then

¢ <Y = %z*% /zt%*lh(t)dt < hz),
0

and ) is the best dominant of (13).

< h(z) R(@) > 0; a #0), (13)

Page 3 of 14
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Lemma 2 [16]. Let h be a convex functions with
N[Bh(z)+y] >0 B,y €C,zel).
If p(z) is analytic in U with p(0) = h(0), then
zp' (2)
Bp(2) +vy
The class of star-like (and normalized) functions of order a in U, is

!
S* () = {feA:ER(Zf(Z)> >a (o < 1; ze[U)}.
f@
Alsoin [17],if B > 0and B+ vy > 0, foragivena € [—%, 1) , we define the order of star-
likeness of the class 1g,, [S™* («0)] by the largest number ¥ («; B, y) such thatlg, [S* (a)] C
S* (9), wherelg,, is given by

p2) + < h(z) = p(2) < h(z).

1

z B
Ig, (N (2) = {ﬂ;y f fﬁ(t)ty‘ldt} : (14)

0

Lemma 3 [17]. Let B > 0, B + y > O and consider lg,, defined by (14). If a €

[—%, 1) , then the order of starlikeness of the class 1g,, [S* (a)] is given by the number

O (o 8,y) = inf{i){ (q2) :z € U} , where

1
1 y 1-z\¥#4
(2) = — = and Q(z) = / ( ) Py =1gs,

P97 Q@ 8 J\i=e
Moreover, if o € [ag,1), where ay = max{ﬂ}];l;—%} and g = lg,, (f) with f €
S* (), then

o (Zg (z)> >0 @ py) (zel),

g2

where

1 B+y
v 5Py = - ’
P ,3[21:1(1,2/3(1—04),/34‘3"1‘1;%) V:|

()]
Subordination and Inclusion theorems involving (Mg:f’"’pf(z)

We assume throughout this paper unless otherwise mentioned thatp € N, 0 < A <
1) n<p, 77>max{)w//b}_l9—1; _1§B<A§1;0§§<p_Q)E<1’G>070<
¢ < 1 and the powers are considered principal ones.

Theorem 1 Assume that 1 < q < p and f (z) € A (p) satisfy

(g—1) (g—1)
(@) (Mo s @) :
( _0)6(p,q—1)z}’—‘1+1 +o g D7 < V14+cz,
then
(g—1)
D))
< Q) < V1+ecz (15)

8 (p,g — 1) zp—at1

Page 4 of 14
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where
p— MK cz
=( 2 ,F 1; 1; s 16
Q2) = (+cz)21<2 e 1+cz> (16)
is the best dominant of (15). Furthermore,
(g—1)
(Me2"r@)
N > M, (17)
§(p,q—1)z—at1
where
M= (1—c)22F1( T +1,C>.
2’ o c—1
The estimate in (17) is the best possible.
Proof Putting
(Mezrrr@)
¢(2) = (ze ), (18)

8(17;@_ l)zp_q"l‘l

then ¢ (2) is analytic in U. After some computations, we get

(g1 (g=D
(Méy’f’"”ﬁ“(z)) (M())»—H ML g ))
Spa—-D2 T 7T (g — L atl
—¢(Z)+<p M>Z¢ (2) < V1+cz.

where the influence of #(z) = 4/1 + cz under certain values of ¢ is illustrated by Fig. 1. To
apply Lemma 1, it suffies to show that /(z) is convex, therefore for z = re’?, r € (0,1), 6 €

(1-o0)

[—m,m], we have

1+L”:1_ cz _ 2+cz’
W 2(1+cz)  2(1+c2)
and
" (1+h”> _ 2+ 3crcosf + c*r? - 2 — 3cr + c*r?
W |1—|—crei9|2 - |1—|—crei92
(2—cr)(1—cr) >0
|1—|—cr619| '

This implies that / is convex in U.
Now, by using Lemma 1 (with » = 1) and making a change of variables followed by the
use of (4) and (5), we deduce that

(g—-1)
(Mezr @)
8(P,q— l)zp_q+l

p—K

_ z
< Q) = I%Z_T/ 55 (1 ep)? dt

1 pP— M cz
=Q+c)2,Fh|(—=1 ¥ )
1+ )21(2 o + 1-|—cz>

this proves (15). Next, it is enough to show that
inf {N(Q(2)} = Q(-1).
|z|<1

Indeed
9 {Jl —|—cz} >Vizer (zl<r<1).
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Fig. 1 Influence of h(z) = /1 + cz for different values of ¢

Setting

G(z,8) = v/1+czsand dv(s) = L Msp%ﬂflds 0<s<1,
o

which is a positive measure on the closed interval [0, 1], we get

1

Q(z) =/G(z,s)dv(s),
0
so that

1
R Q) > / VT = ardv(s) = Q(—r) (2l < r < 1).
0

Letting r — 17 in the above inequality, we obtain (17). To show that the result in (17) is
sharp, let us suppose that

(¢
(MG @)
s (P»q - l)zp_q+1

—-1)

> Mj,

that is
Ml,p @b
(MO,Z f(Z)> 1+ (1—2Mp)z

=<
5 (prq — 1) zp—at1 1-z
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From (15), we have

(M"pf(z)) Y ra-ame

S(pg— -l 1_2

)

and so
1-1—(1—2M)z< 14+ (1 —-2My)z
1—z 1—z

’

which implies that M < M, that is, M cannot be decreased and the estimate in (17) is the
best possible. O

For f € A(p) the generalized Bernardi-Libera-Livingston integeral operator Fp,, is
defined by (see [18]):

z

Fpuf ) = 22 f - f (tyde

o0
U+p
— P E 7[7"1‘71 *
(z v+p+nz ) /@

=Z3FH 0, Lu+pLu+p+12)%f(@) > —p). (19)
Lemma 4 Iff € A(p), then(z)MMﬂp(puf) pv(Moﬁnpf>
(ii)

. (./Vlk P vf(Z)> (p+ MY Moty NP () — M “’n’pr,Uf(Z), (20)
(iii)

@ - (g—1
2 (M7 E,uf @) " = o) (MEEF @) g 1) (MR @)
(21)

Proof Since f(z) € A(p), then

MG (Epof)=[sF2 (Lp + Lp+ 1= p4pip+ 1= jp+1 =1+ 02 (Epuf)
=[3h(Lp+Lp+1—p+mp+l—wp+1—i+n2)]
=ﬂfﬁﬂLLv+va+p+h@*ﬂ@L

and
Fpu (Méjf‘"’pf) =Z3Fh 1, Lv+pLuv+p+1;2) = (Mé:g:mplc)

=231, Lv+plLv+p+12)*
[#3sF,(Lp+Lp+1l—pu+mp+1—pwp+1—r+n2xf(2)].

Now, the first part of this lemma follows. Also, the recurrence relation of F,,,, is given by
2 (Fpuf @) = (p + U)f (2) — VEpuf (2). (22)

If we replace f (z) by M'\ P £ (z) and using the first part of this lemma, we get (20). If we
differentiate (20) g-times, we obtain (21). O
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Theorem 2 Suppose that 1 < q < p and f (z) € A(p) satisfy
(q—1) D
(M)‘:l;npp Uf(z)> ( }‘li”pf( ))

1-—- V1 8
) S a—no T T spg-naat VTS
where Fy,,, defined by (19), then
(g—1)
(Mo o onp,vf(Z))
S (g — 1) i < @) < V1+cz, (23)
where ¢(z) given by
1 v+p cz
= 1 2 F - 1 - 1, b
¢(2) (+cz)21( yl— 1 1+cz>
is the best dominant of (23). Further,
A ()
’ <MQZWPF Uf(z))
i > 1L, (24)
§(p,g—1)zp—at!
where
v+p c
=(1-— 2 F; 1L, — 4+ 1; .
=d-9%:h ( 2’ o + c— 1)
The result is the best possible.
Proof Taking
(g1
(MO o onp,vf(Z))
O(z) = (z e, (25)

§(p,g— 1) zp—at1

then ® is analytic in U. After some calculations, we have

(g-1)
(M 2B, @) (MEEr@)
S a—Dzz—a s (pg—1)patl

— 0@ + (‘7) 20 (2) < V1t ez
p+v

By employing the same technique that was used in proving Theorem 1, the remaining

1)
1-o0)

part of the theorem can be proved. O

Theorem 3 Let g € Noandp > g+ ¢. If f(2) € S;‘,’g'" (Z,8), then f(z) €
Sy (2,6 for 12l < R (p,q , §, €) where

R(p,q 1, 8,6) = min{r > 0:£(r) = 0}, (26)

and
2r

-q-0]a-5a-n e+ 21— r)

t(ry=1-—

Proof Assume that f (z) € 32,’;’” (¢,€) and
(g+1)
2 (MG @)

¢ (27)
p—q9g—¢ (Méf'n’pf(z)>(q)

uz) =
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then, u (2) is analytic in U with #(0) = 1, R {u (2)} > &. After some computations, we
have

A Lu+ln+lp (¢+D)
zu' (2) B 1 z (MOZ fz )

P-—q-Du@+(@+t—pn p—q-—¢ <M0+1M+ln+1pf( )>(‘1>

u(2)+ -

(28)

Letting v(z) = ”(Z) g , then, v(0) = 1 with % {v(2)} > 0. Substituting in (28), we obtain

) <M0+1 1, n+1pf( ))(q-i-l)
p—q—=2¢ (Mk+lu+1n+1pf())(q) ks
0,z
zv (2)
=(1-
( z’E)[V(ZH(p—q—g)[(l—é)v(z)m+<q+c—m]
and so
P (g+1)
1 (M)
e —¢ AL+ L+, W ~¢) ¢
p q (MOZ 128 n Pf( ))
> (-6 | Ry @) - [ @) =
i p-a-0|a-O @ - |¢+ 2L |
> (1-6 [Nv@) - v @) —r
! (p-a-0|a-8 Rv@) - [s + L5 |

Applying the following well-known estimate [19]:

1—r |2v/(2)] 2n "
N{v(z)} > 5 r an N @) < .

forn = 1, we get
1Lu+1,n+1, (g+1)

g (@)
p—q—¢ <M3+1 A1, n+1pf( )> 9

It is easily seen that ¢ (r) is positive, if |z| < R (p,q, 1, ¢, &), where R is given by (26). O

—(lzl =r < 1),

N

- -5 =20 -8t R{v@)}.

Theorem 4 Letf(z) € A(p), p > 1, vy > 0 and
+1,u+1,n+1,
(MO 1% n pf(Z)) Mg;l,p,+l,n+l,pf(z) y

n /\ Ats1),p <
(M5t r ) Mgt (@) P

) (29)

then

1

Rttt "\

z (Mo'f 77pf(z)) !
My, f(2)

N[ =

The result is sharp.

Page 9 of 14
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Proof From (8), (29) may be written as

" /

z ( Mé:gﬂ%f?f(Z)) z (.MS? nef (z))
(MeEmr@) M@

or equivalently,
)\., m, " )L’ o, /
M) (Mo @) oy
+ — = x < — .
(Mirrr@) M@ 1

<Y

N1+

Letting
2 (M2""f @)
F@) = Aol p
Moz f(@)

then, we can express (30) as
(31)

1 I
1 ' 1 .
z(log F (2)) <z<og1 —z)
Fom [20], (31) implies to

1
F(z) < —,
1—2z

or equivalently,

" T2
(@) ) T
MO:Z, 'f(Z) 2

To show that the result is sharp, let
@+Dup+1—p+nmy 2y 2y —1.Qy—n+1) ,.,
2,

— P
K@ =24 T omw £ 1—h+ !

n=1
and so
o0
2v 2y — 1.2y —n+1
MK () = g+ 3 22V 2D Gy Z it D
’ = n!
=2 (1+2)%.

It is easy to check that K (z) satisfies (29) and

_1
2y

/
2 (MGL"PK @) )
N T —> =
M2 K (2) 2
as z — 17. This ends our proof. O
Theorem 5 Counsider that q € No, p > q + ¢ and
(32)

w—q-)A-A)+@+¢—w(@A—-B)>0.
(i) Suppose that (Mg)’f’"'pf(z)yq) # 0 for all z € U* .= U\{0}, then

SEFIFLIEL (1 4 B) €SI (23, B) .
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(ii) Also, assuming that
1-A 1
>
I-B " p—q—¢

p—29—-20+pn—1
2

max{ ,—(q+§—u)}, (33)
then

Sy (0 4,B) € Sy (£,8) .
where the bound

p—n
P=4q4-¢|,R (1, g DA ) yq;l

is the best possible

§(A,B) = )—(Q+§—M):|, (34)

Proof Let f (z) € Spg ™" (¢;A,B) and

1
@\ p—q-¢
Ao lsm,
(Me2"?r )

C@=z s

(35)

@)
Since (Mg:g’n’p f (z)) ! # 0 for all z € U*, then G (z) is analytic in U with G(0) = 0 and
G’ (0) = 1. Differentiating both sides of (35) logarithmically, we get

oo 1 (M)
r—q (Mof’"’pf(z))
Using (10) in (36), we have

A+ Lu+1n+1, @
(MgsHr )

(g+1)

- - @ TP a-OV@+@+i—w. (37)
(Me£ @)
Differentiating both sides of (37) logarithmically, we get
ALu+1n+1p (g+1)
1 z(M,, f@ v’
( ? ) el v+ 2V (@)

P—qa—2¢ <M3+1,M+Ln+1,pf(z))<‘f) P—q—-0O¥Y@+@+¢—w

,Z
Combining this identity together with f (z) SIQ\,—;I'MH’"H (¢; A, B) , we obtain

z¥' (z) <1+Az=
w—-q-0¥Y@+(@+¢—pn) 1+Bz

We will use Lemma 2 for ,5 =@P-q9—¢), Y = (g+¢ — ). Since h(z) is a convex

v (z) + h(z).

function in U and

1+ Az
1+ Bz

?’f[(P—q—E) +(61+€—M)]>0,

whenever (32) holds. Then f(z) € Sﬁy’; 1 (¢; A, B) from Lemma 2. This completes the proof
of (i). To prove (ii), we assume that (33) holds, then all the assumptions of Lemma 3 are
satisfied for the above values of 8, 7 and & = %. It follows that S;‘;LMH’"H (¢;A,B) C
Sﬁ'ff’" (£, &) where £ (A, B) given by (34) is the best possible. O
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Theorem 6 Assume thatq € No, p > q+ ¢ and
pw—q-0HA-A+@+¢+v)1-B)=0. (38)
(@
(i) Suppose that (./\/lA P p Uf(z)) ! # 0 for all z € U*, then

Spi (G5 AB) C By (Sh4 (G AB) ).

(ii) Also, assuming that

1-A 1 g+2+v+1
> - — ) 39
1_B_p_q_;max{ 5 (p+§+v)} 39)
then
Sy (63 A,B) C Sy (6T (A, B)) .
where the bound
2D —
7 (A,B) = o _Z(A_’g“ < -@+cHv) |, @)
pP=q-% 2F1(1,qlf3,2p—q+v;§)
is the best possible.

Proof Letf (z) € S;,‘)’f;’" (¢;A,B) and

_1
P—q-t

(Mo 7 onP,vf(Z)) @
S #1

H(z)=z (41)

@
Since (/\/lo o ”pryvf(z)) ! # 0 for all z € U*, then H (z) is analytic in U with H(0) =
0 and H' (0) = 1. Differentiating both sides of (41) logarithmically, we get

(g+1)
e 1 (MR @)

D (2) = = -¢]. (42)
—g— (@
H@Gz p-q-¢ (Méwpl'"p,vf(z))q
Using (21) in (42), we have
(@)
(Me2 @)
w+v) ——— @ = P-a-0O2@+@+i+v). (43)
(ML E,uf @)
Differentiating both sides of (43) logarithmically, we get
(g+1)
) 2 (MGL"f (@) | —oms 20’ (2)
—_ = zZ .
g — (@ —g—)d
Combining this identity together with f (z) € S;‘,’,’; "1 (¢; A, B), we obtain
O )+ z®' (2) - 14 Az I

w—q—-0P@R+@+t+v) 148z

We will use Lemma 2 for E =P—-q—2¢), ¥ = (@+¢ +v). Since h(z) is a convex
function in U and

1+
m[(p—q—;“)H

Az
+(q+§+v)] >0
Bz
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whenever (38) holds. Then f(z) € F,,, (S;};;'" (§;A,B)> from Lemma 2. This proves (i).
To prove (ii), we assume that (39) holds, then all the assumptions of Lemma 3 are satisfied
for E, ¥ which stated above and @ = %. It follows that

Sy (A, B) C Syn (6T (A,B)),
where 7 (A, B) given by (40) is the best possible O

Conclusion
In our present investigation, we have derived some subordination results of certain sub-
classes of multivalent analytic functions which are defined by a generalized fractional

differintegral operator. We have also successfully considered inclusion relations for func-
tions in the class S;;,’,;L " (¢;A, B) and the images of these functions by the generalized

Bernardi-Libera-Livingston integral operator.

Abbreviations

A(p) : The class of analytic and multivalent functions in the open unit disc; U = {z € C : |z| < 1}; % : Convolution of two
power series; < : Subordination of two analytic functions in U ; »Fy (a, b;¢;2) (¢ #0,—1,=2,...) :The well-known
(Gaussian) hypergeometric function;Jé"f'n'pf(z) : The generalized fractional derivative operator for f € A(p); Fp,, : The

generalized Bernardi-Libera-Livingston integeral operator
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