
Journal of the Egyptian
Mathematical Society

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22
https://doi.org/10.1186/s42787-019-0021-1

ORIGINAL RESEARCH Open Access

A novel SAT solver for the Van der
Waerden numbers
Munira A. Abd El-Maksoud and Areeg Abdalla*

*Correspondence:
areeg@sci.cu.edu.eg
Department of Mathematics,
Faculty of Science, Cairo, Egypt

Abstract
This paper introduces a new efficient satisfiability problem (SAT) solver, negative-literal
Van der Waerden numbers SAT solver (NegVanSAT). It is a modification of the
well-known SAT solver MINISAT where the constructor of the literals has been adjusted
to start with the negated literals first. It reduces the calculations needed to solve a
problem. The NegVanSAT is specifically designed for solving the satisfiability problem
of finding Van der Waerden numbers, which are known to be very difficult to compute.
Comparisons between the MINISAT and the proposed NegVanSAT show that the latter
outperforms the MINISAT in finding many of them.

Keywords: Satisfiability, Van der Waerden numbers, DPLL, SAT solvers, MINISAT

Introduction
Given a Boolean formula, the problem of deciding the existence of an assignment of its
variables making the formula evaluated to 1 is called the satisfiability problem (SAT) [1].
There has been many algorithms for testing the satisfiability.
The most well-known one is introduced in 1962 by “M. Davis, H. Putnam, G. Loge-

mann, and D. Loveland” (DPLL [2]); it is considered the basis for almost all modern SAT
solvers. The success of encoding many applications (like software verification [3], circuit
testing [4], planning [5], and some mathematical problems) as satisfiability problems was
the real reason behind the research and development of new efficient SAT solvers. Encod-
ing a new solver from scratch is a strenuous task; instead, a researcher may modify an
already existing solver to meet his needs. In this research, the solver MINISAT [6] has
been modified in such a way as to be appropriate for solving the satisfiability problem of
finding, the known difficult computing, Van der Waerden numbers.
The rest of this paper is organized as follows: “The satisfiability problem (SAT)” section

gives a quick introduction to the satisfiability problem (SAT) and presents some logic
background and notations necessary to follow the rest of the paper. “SAT and combi-
natorics” section explains the relationship between SAT and combinatorics and gives a SAT
encoding of the problem of computing Van der Waerden numbers as an example. “SAT
solvers” section presents some examples of developed solvers and compares between
MINISAT, VANSAT, and NegVanSAT solvers. “Experimental results” section presents
the discussion and results of the execution of NegVanSAT and MINISAT on a number of
examples. And finally, “Conclusion and future work” section summarizes the work which
have been done and what we intend to do in the future.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-019-0021-1&domain=pdf
http://orcid.org/0000-0002-8377-0400
mailto: areeg@sci.cu.edu.eg
http://creativecommons.org/licenses/by/4.0/

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 2 of 10

The satisfiability problem (SAT)
The following paragraphs present some logic terminologies and notations [1] necessary
to follow the rest of the paper. Consider the countably infinite set of Boolean variables
X={x1,x2,. . . }. These are variables which can take the two values 1 (interpreted as true)
and 0 (interpreted as false). The values 1 and 0 are called “truth values.”
A literal, l, is either a variable or the negation of a variable. It is referred to the variable

as the positive literal and to its negation as the negative literal. Hence, a literal may have a
positive or a negative polarity.
A unique unary Boolean operator, negation (¬), is a mapping from 1 to 0 and vice versa.

The negation of a variable, xi, is denoted by ¬xi where the value of ¬xi is opposite that of
xi. If l is a literal, then, if l is a variable, xi, that is, l = xi, let l̄ = ¬xi, if l is a negation of a
variable, xi, that is, l = ¬xi then let l̄ = xi. And a binary Boolean operator is a function

� : {0, 1} x {0, 1} �→ {0, 1}
The most common binary operators are ∧(And), ∨(Or), →(Implies), ↔(Equivalent), and
⊕(Xor). Binary Boolean operators are the building blocks of propositional expressions.
A Boolean formula (formula) is a propositional expression containing literals, Boolean

operators, and parentheses whose syntax can be defined by recursion as follows:
1. Each variable is a formula.
2. If F is a formula, then ¬F is also a formula.
3. If F1 and F2 are two formulas and � is a binary Boolean operator, then (F1 � F2) is

also a formula.
A truth assignment (assignment), A, is a mapping from a finite set of Boolean variables,

S ⊂ X , to the set {0,1}.
For a formula, F, any assignment, A, of values to its variables induces a value on it. The

value of F is evaluated from innermost¬ or parentheses out according to mappings of the
Boolean operators. If the formula evaluates to 1, in this case the assignment, A, is called
a solution, satisfying assignment, or a model. If such A exists, then F is satisfiable; oth-
erwise, it is unsatisfiable. A satisfiable formula may have more than one model. Table 1
displays mappings of some common operators. A formula consisting of literals and the
operator ∨ only is called a “disjunctive clause,” which may be represented as a set of
literals. For example, the clause (x1 ∨ x2 ∨¬x5) can be represented by the set {x1,x2,¬x5}.
A formula consisting of literals and the operator ∧ only is called a “conjunctive clause.”

A conjunctive normal form (CNF) formula is a formula consisting of a conjunction of
(two or more) disjunctive clauses. Finally, the satisfiability problem (SAT) can be stated as
follows:
Given a Boolean formula, F, the question is whether F has a model, i.e., as assignment of

the variables to satisfy all its clauses. In case that this assignment does not exist, another
search may arise for a truth assignment that maximizes the number of satisfied clauses

Table 1Mappings of the most common binary Boolean operators

Operator Symbol used Mapping

Or ∨ {00 �→ 0; 01, 10, 11 �→ 1}
And ∧ {00, 01, 10 �→ 0; 11 �→ 1}
Xor ⊕ {00, 11 �→ 0; 01, 10 �→ 1}
Implies → {10 �→ 0; 00, 01, 11 �→ 1}
Equivalent ↔ {01, 10 �→ 0; 00, 11 �→ 1}

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 3 of 10

in the CNF, that is the maximum satisfiability (MaxSAT) [7]. The MaxSAT is an NP-
complete problem and has been defined in other logics like Łukasiewicz logic [8].
For example, {(x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)} is a CNF formula that has

the satisfying assignment {x1 = 1, x2 = 0, x3 = 0}. A propositional expression in CNF is
called an instance of satisfiability. The following section explains the relationship between
SAT and combinatorics.

SAT and combinatorics
The research in satisfiability and combinatorics may help advance each other. On one
hand, thanks to the significant efficiencies of modern SAT solvers, it became possible
to encode many of the combinatorics problems as formulas and then solve their cor-
responding satisfiability problems. In this scenario, novel results in combinatorics are
obtained.
On the other hand, combinatorics problems, as the problem of computing Van der

Waerden numbers, can be utilized as a rich source of structured formulas for develop-
ing new generations of SAT solvers [9]. The next two sections introduce the Van der
Waerden numbers and their SAT encoding while the solvers VANSAT and the proposed
NegVanSAT are illustrated in the next section.

Van der Waerden numbers

The Van der Waerden number w(r;t1,t2,. . . ,tr) is the least integer m such that for every
partition

⋃r
i=1 Ci of the set {1, 2, . . . ,m}, there is an index j in {1, 2, . . . , r} such thatCj con-

tains an arithmetic progression (AP) of tj terms [10]. Where, r is the number of the blocks
of the partition, tj’s are the lengths of the AP’s, and Cj’s are the blocks of the partition.
We recall, here, that an arithmetic progression of t terms is a sequence of the form a,

a + d, . . . , a + d(t − 1), where a and d are integers, t ≥ 2, and d > 0 [11].
Computing Van der Waerden numbers presents an exciting but hard problem for both

mathematicians and computer scientists. This challenging problem drove researchers

Table 2 Some of the known Van Der Waerden numbers

w(r;t1,t2,. . . ,tr) Reference

w(2; 3, 17) = 279 Ahmed [10]

w(2; 3, 18) = 312 Ahmed [10]

w(2; 5, 5) = 178 Beeler et al. [20]

w(2; 6, 6) = 1132 Kouril et al. [21]

w(3; 2, 3, 7) = 55 Landman et al. [22]

w(3; 3, 4, 4) = 89 Landman et al. [22]

w(4; 2, 2, 3, 6) = 48 Landman et al. [22]

w(4; 2, 2, 2, 2) = 76 Beeler et al. [20]

w(4; 2, 2, 3, 7) = 65 Landman et al. [22]

w(5; 2, 2, 2, 3, 3) = 20 Landman et al. [22]

w(5; 2, 2, 3, 3, 3) = 41 Landman et al. [22]

w(6; 2, 2, 2, 2, 4, 4) = 56 Ahmed [23]

w(6; 2, 2, 2, 3, 3, 3) = 42 Ahmed [23]

w(7; 2, 2, 2, 2, 2, 3, 3) = 24 Ahmed [23]

w(7; 2, 2, 2, 2, 2, 3, 4) = 36 Ahmed [23]

w(8; 2, 2, 2, 2, 2, 2, 3, 3) = 25 Ahmed [23]

w(9; 2, 2, 2, 2, 2, 2, 2, 3, 3) = 28 Ahmed [23]

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 4 of 10

interested in these numbers to compute (or, at least, finding lower bounds of) many of
them. Table 2 lists some of the known Van der Waerden numbers.

SAT encoding of Van der Waerden numbers

The problem of computing a Van der Waerden number, w(r;t1,t2,. . . ,tr), can be SAT
encoded as follows [12]:
Given positive integers r,t1,t2,. . . ,tr , for a positive integer, n, a CNF formula, F, can

be constructed to be satisfiable if and only if n <w(r;t1,t2,. . . ,tr). With such encod-
ings, one can use SAT solvers to decide the satisfiability of F, and consequently, to find
w(r;t1,t2,. . . ,tr).
The algorithm used to compute Van der Waerden numbers starts withm = r + 1 (note

that for t1, t2, . . . , tr ≥ 2, r <w(r;t1,t2,. . . ,tr)), for consecutive integers the algorithm tests
whether the formula F is satisfiable. If so, it continues. If not, it returnsm and terminates
(the existence of Van derWaerden numbers, w(r;t1,t2,. . . ,tr)’s, guarantees the termination
of the algorithm).

Constructing formulae

For a positive integer, n, consider the following two cases :
(I) r = 2, a formula F can be constructed with n variables as a conjunction of the

following two types of clauses:
(1) {¬xa,¬xa+d , . . . , ¬xa+d(t1−1) }
(2) {xa, xa+d , . . . , xa+d(t2−1) }
with a, d ≥ 1, and a + d(t1 − 1), a + d(t2 − 1) ≤ n
where xi = 1 encodes i ∈ C1 and xi = 0 encodes i ∈ C2.
Clauses (1) prevent the existence of an arithmetic progression of length t1 in C1 and

clauses (2) prevent the existence of an arithmetic progression of length t2 in C2 .
(II) r > 2, a formula F may contain nr variables, xi,j’s, with i=1,2,. . . ,n and j=1,2,. . . ,r

where the variable xi,j takes the value 1 if and only if the integer i belongs to a block Cj of
a partition. In this case, F will be the conjunction of the following three types of clauses:
(1) {xi,1, xi,2 , . . . , xi,r } , for each integer i , to ensure that integer i belongs to at least one

block of the partition(covering)
(2) {¬xi,s,¬xi,t } , for 1 ≤ i ≤ n, 1 ≤ s < t ≤ r, to ensure that integer i belongs to at most

one block of the partition (disjoint)
(3) {¬xa,j,¬xa+d,j , . . . , ¬xa+d(tj−1),j } , for 1 ≤ j ≤ r, 1 ≤ a ≤ n − tj + 1 and 1 ≤ d ≤

(n − a)/(tj − 1)� , to ensure that no arithmetic progression of length tj in block Cj

SAT solvers
DPLL [2] was introduced in 1962 as a refinement of its earlier M. Davis and H. Putnam
(DP) algorithm. Essentially, it is a (complete—“depth-first”—backtracking) search algo-
rithm. Recently, João P. Marques-Silva and Karem A. Sakallah introduced Generic seaRch
Algorithm for the Satisfiability Problem (GRASP) [13] as an extension of the DPLL [2]
with learning and non-chronological backtracking. In recent decades, GRASP prompts
research on conflict-driven clause learning (CDCL) solvers. A SAT solver (based on DPLL
[2]) is a software, and many of SAT solvers are written in C or C++ [14]. Over the years,
new generations of SAT solvers with significant efficiencies have been developed, some
examples are multi-SAT [15], Glucose and Syrup in the SAT’17 [16], Nigma [17]and its

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 5 of 10

improved versions and Glulu [18]. Figure 1 shows the different stages of converting the
Van der Wearden number problem into a SAT problem until a solution is reached.

MINISAT

MINISAT [6] is a MINImal, efficient, conflict-driven clause learning (CDCL), CHAFF-
like [19] SAT solver written by Eén and Sörensson. MINISAT attaches each variable with
an activity and orders the variables dynamically by their activities. A variable’s activity
increases whenever the variable occurs in a conflict clause (all its literals have become 0);
this increase is called bumping. It bumps variables with larger and larger numbers until a
limit is reached (predefined number); at that point, all variable activities are scaled down.
It uses a heap to sort the variables by the activity at all times [6]. In finding a solution of
a given formula, MINISAT selects the unassigned (free) variable with the highest activity
and tries to solve the formula first with its positive literal (with the positive polarity by
default) then if failed, the solver tries its negative one.
The MINISAT has components of branching, unit propagation, and backtracking.

MINISAT uses clause learning, and in modern solvers, a heuristic is developed to pick
an unassigned variable and assign it either true or false, until unit propagation detects
a conflict. Then, a conflict clause is constructed and added to the SAT problem and the
assumption is canceled by backtracking until the conflict clause becomes unit. Finally,
this unit clause is propagated and the search proceeds. The following three sections
give an overview of the SAT solvers MINISAT, VANSAT, and the proposed NegVanSAT,
respectively.

VANSAT

VAN der Waerden numbers SAT (VANSAT) solver [12] is a modification of MINISAT
where the activity of the variable is measured by its occurrences in the not yet satisfied

Fig. 1 Converting Van der Waerden number problem into SAT

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 6 of 10

clauses. Hence, variable activities are changed dynamically (increased and decreased) by
adding and removing clauses. In other words, the strategy of VANSAT was:
I. Increasing the activity of all variables that appear in each new added clause (learnt or

problem clause)
II. Decreasing the activity of all variables that were appearing in each deleted clause

(where deletion of clauses occur in many situations)
Experimental results showed that the VANSAT is better in computing Van derWaerden

numbers. For example, it outperformed MINISAT in computing w(3;2,3,3), w(3;2,3,5),
and w(4;2,2,3,3) in terms of the number of conflicts, decisions, restarts, propagations, and
conflict literals [12].

Proposed NegVanSAT

From the above SAT encoding (of Van der Waerden numbers, r > 2), it has been noted
that the variables occur as negative literals in all clauses except one, the first type of
clauses. This observation was the motive to develop the NegVanSAT. This proposed
solver is a modification of MINISAT1.14, where the constructor of the literals has been
adjusted in such a way that the default literal of a variable has become the negative one.
Hence, it, in contrary to MINISAT, tries solving the given formula using the negative lit-
eral of the variable before trying its positive one. And that is for the variable with the
highest activity.

Experimental results
The experiments were carried out on an Intel(R)Core(TM) i3-2328M cpu@2.20 GHz
machine with 4.00 GB memory.

MINISAT input format

Like most SAT solvers, MINISAT accepts input formulae written in the “Center for
Discrete Mathematics and Theoretical Computer Science” (DIMACS) CNF format. A
specification of the problem is written before the clauses of the formula, starts with “p”
stands for problem and followed by the type of the problem, CNF; the number of vari-
ables, n; and the number of clauses, m. Each of the following, m, non-comment lines
consist of a list of integers and define a clause. The integers are chosen from the set
{1,2,. . . ,n,−1,−2,. . . ,−n }, appear in an arbitrary order, and is separated by spaces. Each
positive literal is represented by its index while negative literals are represented by the
negative values of their indices. The definition of a clause is terminated by a final value of
“0.” For example, the CNF formula:

Table 3 Number of conflicts

w(r;t1,t2,. . . ,tr) NegVanSAT MINISAT

W1:w(3; 2, 3, 5) for n = 31 381 743

W2:w(4; 2, 2, 3, 3) for n = 12 4 9

W3:w(4; 2, 2, 3, 4) for n = 25 9198 17596

W4:w(4; 2, 2, 3, 4) for n = 20 1 86

W5:w(5; 2, 2, 2, 3, 5) for n = 30 9 170

W6:w(5; 2, 2, 2, 3, 5) for n = 44 1423072 1978087

W7:w(5; 2, 2, 2, 3, 3) for n = 15 0 18

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 7 of 10

Table 4 Number of decisions

w(r;t1,t2,. . . ,tr) NegVanSAT MINISAT

W1:w(3; 2, 3, 5) for n = 31 415 1006

W2:w(4; 2, 2, 3, 3) for n = 12 12 27

W3:w(4; 2, 2, 3, 4) for n = 25 10199 25260

W4:w(4; 2, 2, 3, 4) for n = 20 14 105

W5:w(5; 2, 2, 2, 3, 5) for n = 30 32 278

W6:w(5; 2, 2, 2, 3, 5) for n = 44 1542234 2835250

W7:w(5; 2, 2, 2, 3, 3) for n = 15 13 36

(¬x7∨ x3 ∨ x2) ∧ (x1 ∨ x2 ∨ ¬x5) ∧ (x4 ∨¬x6 ∨ x8) is coded as:
p cnf 8 3

-7 3 2 0

1 2 -5 0

4 -6 8 0

Codes are written to translate the SAT encoding of Van der Waerden numbers to the
“DIMACS CNF” format.

Assessment methods

The common measures to compare SAT solvers are the following [6]:
� Number of conflicts (C)
A conflict occurs when all literals of a clause have become 0. During search, the number

of conflicts increases by 1 whenever a conflict occurs.
� Number of decisions (D)
MINISAT starts its search by selecting (heuristically) an unassigned variable and assign-

ing it a value, this process is called a “decision.” Every time a new variable decision is made,
one is added to the decisions counter.

� Number of restarts (R)
MINISAT begins its search procedure with a bound on the number of conflicts. If

reached, the solver will be forced to restart and one is added to the number of restarts.
� Number of propagations (P)
First, let us look at how MINISAT implements propagations. For each literal, l, a list of

clauses is kept; these are the clauses which will be inspected when l becomes 1, such lists
are referred to as “ watcher lists.” For each clause, C, two of its unassigned literals l1 and l2

Fig. 2 NegVanSAT Vs MINISAT in the restarts

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 8 of 10

Table 5 Number of restarts

w(r;t1,t2,. . . ,tr) NegVanSAT MINISAT

W1:w(3; 2, 3, 5) for n = 31 3 4

W2:w(4; 2, 2, 3, 3) for n = 12 1 1

W3:w(4; 2, 2, 3, 4) for n = 25 10 12

W4:w(4; 2, 2, 3, 4) for n = 20 1 1

W5:w(5; 2, 2, 2, 3, 5) for n = 30 1 2

W6:w(5; 2, 2, 2, 3, 5) for n = 44 22 23

W7:w(5; 2, 2, 2, 3, 3) for n = 15 1 1

are selected and references to C are added to the lists of l̄1 and l̄2, respectively. If a clause
is found in a watcher list during propagation of a literal, its propagate method is called
and executed.
MINISATmantains a queue called a “propagation queue” to keep the literals which have

to be propagated upon propagation process. On propagations, all of the enqueued literals
are propagated and a propagations counter is increased by one.

� Number of conflict literals (Cl)
When a conflict takes place, it is analyzed and a so-called “learnt clause” is produced

and added to the clauses for prohibiting the variable assignments which leads to such a
conflict. During analysis, the number of literals of learnt clauses is counted here.

Evaluation of results and discussions

The following tables show a comparison between the results of NegVanSAT and MIN-
ISAT solvers for a number of Van der Waerden numbers where NegVanSAT was better.
Table 3 compares the number of conflicts in both of NegVanSAT and MINISAT.
It is clear that NegVanSAT greatly outweighed MINISAT in all the listed numbers. For

the first three numbers, NegVanSAT gives about half number of conflicts, while in W7, it
has reached 0 conflicts and that will recall less number of restarts which reflects in better
memory usage.
Table 4 compares the number of decisions that were made by both NegVanSAT and

MINISAT. It is clear that, for all the listed Van der Waerden numbers, the proposed SAT
requires less number of decisions in the search for a solution.
Table 2 compares the number of restarts in both of NegVanSAT andMINISAT. For w(4;

2, 2, 3, 3) when n = 12, w(4; 2, 2, 3, 4) when n = 20, and w(5; 2, 2, 2, 3, 3) when n = 15
NegVanSAT had the same number of restarts, yet in the rest, it was better. It showed that
the NegVanSAT was overall at least as good as MINISAT if not better. Figure 2 shows
the NegVanSAT was better than the MINISAT in computing four of the numbers listed
in Table 5 and had the same number of restarts in three of them. Which means that it

Table 6 Number of propagations

w(r;t1,t2,. . . ,tr) NegVanSAT MINISAT

W1:w(3; 2, 3, 5) for n = 31 9729 23063

W2:w(4; 2, 2, 3, 3) for n = 12 94 167

W3:w(4; 2, 2, 3, 4) for n = 25 283096 545502

W4:w(4; 2, 2, 3, 4) for n = 20 96 1833

W5:w(5; 2, 2, 2, 3, 5) for n = 30 293 5564

W6:w(5; 2, 2, 2, 3, 5) for n = 44 68616554 86707553

W7:w(5; 2, 2, 2, 3, 3) for n= 15 75 312

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 9 of 10

Table 7 Number of conflict literals

w(r;t1,t2,. . . ,tr) NegVanSAT MINISAT

W1:w(3; 2, 3, 5) for n = 31 4395 7578

W2:w(4; 2, 2, 3, 3) for n = 12 37 128

W3:w(4; 2, 2, 3, 4) for n = 25 89482 194914

W4:w(4; 2, 2, 3, 4) for n = 20 12 1607

W5:w(5; 2, 2, 2, 3, 5) for n = 30 125 4446

W6:w(5; 2, 2, 2, 3, 5) for n = 44 33518252 57269153

W7:w(5; 2, 2, 2, 3, 3) for n = 15 0 342

restarts the search at most as the MINISAT if not less. Table 6 compares the number
of Propagations in both of NegVanSAT and MINISAT where NegVanSAT was markedly
better than MINISAT. Table 7 compares the number of conflict literals in both of Neg-
VanSAT andMINISAT. As was expected, from the comparison of the number of conflicts,
the number of conflict literals counted during the work of NegVanSAT is much less than
in MINISAT. which again was a natural result of starting with the negative literal first in
the search. NegVanSAT always shows superiority over MINISAT in computing Van der
Werden numbers. Figure 3 shows an example of that in computing W2:w(4; 2, 2, 3, 3) for
n = 12 in the measures C, D, P, and Cl.
For all the above measures, the NegVanSAT has proved its superiority over the MIN-

ISAT. Which has been a nature result of solving the given formula using the negative
literal first. Since it has been noted that the variables occur as negative literals in all clauses
except one.

Conclusion and future work
This paper introduces a new SAT solver, NegVanSAT, based on the well-known SAT
solver MINISAT. NegVanSAT is designed specifically to compute Van derWaerden num-
bers. It is a modification of the MINISAT, where the constructor of the literals has been
adjusted in such a way that the default literal of a variable has become the negative one.
Experiments showed that the NegVanSAT outperformed the MINISAT in computing
many of the Van der Waerden numbers.
In the future, we aim to find new Van der Waerden numbers using the new solver. Also

we aim to study the solver complexity but this requires a better computing facilities.

Fig. 3 An example of the superiority of NegVanSAT

El-Maksoud and Abdalla Journal of the EgyptianMathematical Society (2019) 27:22 Page 10 of 10

Abbreviations
AP: Arithmetic progression; CDCL: Conflict-driven clause learning; CNF: Conjunctive normal form; DPLL: Algorithm by M.
Davis, H. Putnam, G. Logemann, and D. Loveland; GRASP: Generic seaRch algorithm for the satisfiability problem; MaxSAT:
Maximum satisfiability; NegVanSAT: Negative-literal Van der Waerden numbers SAT solver; SAT: Satisfiability problem;
VANSAT: VAN der Waerden numbers SAT

Acknowledgements
The authors are grateful to the referees for their valuable suggestions.

Authors’ contributions
Both authors jointly worked on the results, and they read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 September 2018 Accepted: 22 November 2018

References
1. Franco, J., Weaver, S.: Algorithms for the Satisfiability Problem, Handbook of Combinatorial Optimization.

pp. 311–454. Springer, New York (2013)
2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM. 5(7), 394–397 (1962)
3. Jackson, D., Vaziri, M.: Finding bugs with a constraint solver. International Symposium on Software Testing and

Analysis, Portland, Oregon (ISSTA). 14–25 (2000)
4. Stephan, P., Brayton, R. K., Sangiovanni-Vincentelli, A. L.: Combinational test generation using satisfiability. IEEE Trans.

Comput. Aided Des. Integr. Circ. Syst. 15, 1167–1176 (1996)
5. Kautz, H., Selman, B.: Planning as satisfiability. 92, 359–363 (1992). European Conference on Artificial Intelligence
6. Eén, N., Sörensson, N. S.: Springer: An Extensible SAT-solver. In: Theory and Applications of Satisfiability Testing,

pp. 333–336. Springer, (2004)
7. El Halaby, M.: Solving MaxSAT by successive calls to a SAT solver. Lect. Notes Netw. Syst. 15 (2018)
8. El Halaby, M., Abdalla, A.: Fuzzy Maximum Satisfiability. In: Proceedings of the 10th International Conference on

Informatics and Systems (INFOS), Cairo, Egypt. ACM, pp. 50–55, (2016)
9. Dransfield, M. R., Liu, L., Marek, V. W., Truszczynski, M.: Satisfiability and computing van der Waerden numbers.

Electron. J. Comb. 11(1), #R41 (2004)
10. Ahmed, T.: Two new Van der Waerden numbers: w(2; 3, 17) and w(2; 3,18). Integers. 10, 369–377 (2010)
11. Xiu, B., Li, G., Liang, M., Xu, X.: A set-coloring generalization of Van der Waerden numbers. J. Comput. Theor. Nanosci.

11, 2431–2436 (2014)
12. El-Maksoud, M. A., Abdalla, A.: An improvement and implementation of the dpll satisfiability algorithm. In: The 52nd

Annual Conference on Statistics, Computer Sciences and Operation Research, pp. 25–27, Cairo, (2017)
13. Marques-Silva, J. P., Sakallah, K. A.: GRASP: a new search algorithm for satisfiability. IEEE Trans. Comput. 48, 506–521

(1999)
14. Zhang, L., Malik, S.: The quest for efficient boolean satisfiability solvers. In: Proceedings of the 14th International

Conference on Computer Aided Verification, pp. 17–36. Springer-Verlag, London, (2002)
15. Siddiqi, S., Huang, J.: multi-SAT: an adaptive SAT solver. In: Proceedings of SAT Competition 2016 , Solver and

Benchmark Descriptions, p. 54, (2016). https://pdfs.semanticscholar.org/dec3/
ff8cf104d347dadc85e4fb4f8f13a835cb62.pdf

16. Audemard, G., Simon, L.: Glucose and syrup in the SAT’17. In: Proceedings of SAT Competition 2017 , Solver and
Benchmark Descriptions, pp. 16–17, (2017). http://hdl.handle.net/10138/224324

17. Jiang, C., Zhang, T.: Nigma: a partial backtracking SAT solver. In: Proceedings of SAT Competition 2013 , Solver and
Benchmark Descriptions, pp. 62–63, (2013). http://hdl.handle.net/10138/40026

18. Zha, A.: Glulu. In: Proceedings of SAT Competition 2017, Solver and Benchmark Descriptions, p. 18, (2017). http://hdl.
handle.net/10138/224324

19. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In:
Proceedings of the 38th conference on Design Automation, pp. 530–535, New York, (2001)

20. Beeler, M. D., O Neil, P. E.: Some new Van der Waerden numbers. Discret. Math. 28(2), 135–146 (1979)
21. Kouril, M., Paul, J. L.: The Van der Waerden number w(2, 6) is 1132. Exp. Math. 17(1), 53–61 (2008)
22. Landman, B., Robertson, A., Culver, C.: Some new exact Van der Waerden numbers. Integers Electron. J. Comb.

Number Theory. 52(2), 1–11 (2005)
23. Ahmed, T.: Some new Van der Waerden numbers and some Van der Waerden-type numbers. Integers. 9, 65–76

(2009)

https://pdfs.semanticscholar.org/dec3/ff8cf104d347dadc85e4fb4f8f13a835cb62.pdf
https://pdfs.semanticscholar.org/dec3/ff8cf104d347dadc85e4fb4f8f13a835cb62.pdf
http://hdl.handle.net/10138/224324
http://hdl.handle.net/10138/40026
http://hdl.handle.net/10138/224324
http://hdl.handle.net/10138/224324

	Abstract
	Keywords

	Introduction
	The satisfiability problem (SAT)
	SAT and combinatorics
	Van der Waerden numbers
	SAT encoding of Van der Waerden numbers
	Constructing formulae

	SAT solvers
	MINISAT
	VANSAT
	Proposed NegVanSAT

	Experimental results
	MINISAT input format
	Assessment methods
	Evaluation of results and discussions

	Conclusion and future work
	Abbreviations
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

