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Introduction

The idea of a string involute is due to Christian Huygens (1658), who is also known for
his work in optics. He discovered involutes while trying to develop a more accurate clock
[1]. The involute of a given curve is a well-known concept in Euclidean 3-space R>. It
is well-known that if a curve is differentiable at each point of an open interval, a set of
mutually orthogonal unit vectors can be constructed and called Frenet frame or moving
frame vectors. The rates of these frame vectors along the curve define curvatures of the
curves. The set, whose elements are frame vector and curvatures of a curve, is called
Frenet apparatus of the curve.

It is safe to report that the many important results in the theory of the curves in R
were initiated by G. Monge, and G. Darboux pioneered the moving frame idea (for more
details see [2]). Thereafter, Frenet defined his moving frame and his special equations
which play important role in mechanics and kinematics as well as in differential geom-
etry. At the beginning of the twentieth century, A. Einstein’s theory opened a door to
the use of new geometries. One of them, Minkowski space-time, which is simultaneously
the geometry of special relativity and the geometry induced on each fixed tangent space
of an arbitrary Lorentzian manifold, was introduced, and some of the classical differen-
tial geometry topics have been treated by the researchers. In the recent years, the theory
of degenerate submanifolds has been treated by researchers and some classical differen-
tial geometry topics have been extended to Lorentz manifolds. For instance, in [3-5], the
authors extended and studied spacelike involute-evolute curves in Euclidean 4-space and
Minkowski space-time.

An evolute and its involute are defined in mutual pairs. The evolute and the involute of
the curve pair are well known by the mathematicians especially the differential geometry
scientists. The evolute of any curve is defined as the locus of the centers of curvature of
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the curve. The original curves are then defined as the involute of the evolute. The simplest
case is that of a circle, which has only one center of curvature (its center), which is a
degenerate evolute and the circle itself is the involute of this point.

Izumiya et al. defined the evolute curve in hyperbolic 2-space and found its equation.
Following the works of them, we defined the evolute curve in hyperbolic 3-space and de
Sitter 3-space and found its equations (see Definitions (2) and (3), and for more details,
see [1, 6-10]).

In this paper, we calculate the Frenet apparatus of the evolute curve in terms of the
apparatus of its involute curve in hyperbolic 2-space, hyperbolic 3-space, and de Sitter
3-space. We hope that our results can be seen as refinement and generalization of many
corresponding results existing in the literature and useful in mathematical modeling and
some other applications.

Preliminaries
In this section, we give the basic notions and familiar results in Lorentzian geometry
which we need in this paper (for more details, see [7-12]).

Hyperbolic 2-space

Let R} = {(x1,%2,%3) | %1,%2,43 € R} be a three-dimensional vector space and x =
(x1,%2,x3) and y = (y1,¥2,¥3) be two vectors in R3. The pseudo-scalar product of x and y
is defined by (x,y) = —x1y1 + x2y2 + x3y3. (RB, (, )) is called a three-dimensional pseudo-
Euclidean space or Minkowski 3-space. We write E;’ instead of (RS, {, )). We say that a
vector x in E% is spacelike, lightlike, or timelike if (x,x) > 0, (x,x) = 0 or (x,x) < O,
respectively. We now define spheres in E? as follows:

H={(xeE | —xl+ai+x}=—1x >1)
H?> ={x€E} | —x}+ a3 +a5=—Lax <1}
SE={x e E} | —a + a3 +a5 =1}

We call HZ a hyperbola and S% a pseudo-sphere. Now, we discuss some basic facts of
curves in hyperbolic 2-space, which are needed in the sequel.

Leta : [ — H_% C B3 a@t) = (x1(8),x2(8),x3(t)) be a smooth regular curve in
Hf_ (i.e,a'(t) # 0) for any ¢t € I, where I is an open interval. It is easy to show that
(&), ' (8)) > 0, for any ¢ € I. We call such a curve a spacelike curve. The norm of the
vector x € E5 is defined by |x|| = /[(x, x)[. The arc-length of a spacelike curve o, mea-
sured from a(ty), to € I is s(t) = fti llo’ (t)||dt. Then, the parameter s is determined such
that ||&(s)|| = 1, where a(s) = % . So, we say that a spacelike curve « is parameter-
ized by arc-length, if it satisfies |&(s)|| = 1. Throughout the remainder in this paper, we
denote the parameter s of « as the arc-length parameter. Let us denote T(s) = &(s), and
we call T(s) a unit tangent vector of « at s.

For any x = (x1,%2,%3),y = (¥1,%2,93) € Ei’, the pseudo-vector product of x and y is
defined as follows:

—e] ey €3
XAy =| x1 X2 x3|=(—(x2)¥3 — X3¥2),X3)¥1 — X1¥3,%X1Y2 — X¥2¥1)-
y1 )2 )3
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We remark that (x Ay, z) = det(x y z). Hence, x Ay is pseudo-orthogonal to x, y. We now
set a vector E(s) = a(s) A T(s). By definition, we can calculate that (E(s), E(s)) = 1 and
{a(s),x(s)) = —1. We can also show that T(s) A E(s) = —a(s) and a(s) A E(s) = —T(s).
Therefore, we have a pseudo-orthonormal frame {a(s), T(s), E(s)} along a(s). We have the
following hyperbolic Frenet-Serret formula of plane curves:

a(s) =T(s)
T(s) = a(s) + kg ()E(s) 1)
E(s) = —kg(6)T(s),

or in the matrix form:

[ G (s) 01 0 a(s)
TGs) |[=|1 0 k|| T(s) )
| EGs) 0 —kg O E(s)

where «; is the geodesic curvature of the curve o in A 2, which is given by

Kg(s) = det(e(s) T(s) T(s)).

Hyperbolic 3-space

Let R* be a four-dimensional vector space. For any x = (x1,x2,%3,%4),y = (¥1,¥2,¥3,4) €
R, the pseudo-scalar product of x and y is defined by (x,y) = —x1y1 + %22 + X33 + ¥474.
(R, (,)) is called a Minkowski 4-space and denoted by E‘f. We say that a vector x € E‘f is
spacelike, lightlike, or timelike if (x1,x2) > 0, (x1,x2) = 0 or (x1,x2) < 0, respectively. The
norm of the vector x € E is defiend by |lx|| = +/[{x, x)]. For a non-zero vector v € Ef and
a real number ¢, we define a space with pseudo-normal v by

S(,¢) = {x € Ef | {x,v) =c}.

The space S(v, ¢) is called a spacelike space, a timelike space, or a lightlike space if v is
timelike, spacelike, or lightlike, respectively.
Now, we define a hyperbolic 3-space by

H3 (1) = {x € E}{ | (x,x) = —L,x1 > 0}.

For any x = (x1,%2,%3,%4), ¥ = (¥1,¥2,¥3,¥4) and z = (21,22,23,24) € E‘f, the pseudo-
vector product of x, y, and z is defined as follows:
—ij k1
X1 X2 X3 X4

Y1 Y2 )3 Ya
Z1 22 Z3 Z4

XAYANZ =

X2 X3 X4 X1 X3 X4 X1 X2 X4 X1 X2 X3

Y2 Y3 Va4 || Y1 Y3 Vals| V1 D2 YAl |D1 Y2 )3
Z2 Z3 Z4 Z1 Z3 Z4 Z1 22 Z4 Z1 22 Z3

We now prepare some basic facts of curves in hyperbolic 3-space.

Letg: 1 — Hi C E% B(t) = (x1(2), x2(t), x3(¢), x4(t)) be a smooth regular curve in
H_?; (i.e., B'(t) # 0) for any ¢ € I where [ is an open interval. So that (8'(¢), 8/(¢)) > O for
any t € 1. The arc-length of 8 measured from B(t,),t, € I is s(t) = ftt |8’ (t)||dt. Then,
the parameter s is determined such that ||3(s)|| = 1, where B(s) = %. So, we say that
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a spacelike curve 8 is parameterized by arc-length if it satisfies that 1B(s)|l = 1. Let us
denote T(s) = B(s), and we call T(s) a unit tangent vector of 8 at s.

Here, we construct the explicit differential geometry on curves in Hi (-1).Letg:I —
Hi(—l) be a regular curve. Since Hi(—l) is a Riemannian manifold, we can reparame-
terize B by the arc-length. Hence, we may assume that B(s) is a unit speed curve. So, we
have the tangent vector T(s) = B(s) with | T| = 1. In case when <T(s), T(S)) # —1, then
we have a unit vector

T(s) — B(s)
IT(s) — Bl
Moreover, define E(s) = B(s) A T(s) A N(s), then we have a pseudo-orthonormal frame

{B(s), T(s),N(s),E(s)} of E‘f along B. By standard arguments, under the assumption that
(T(s), T(s)) # —1, we have the following Frenet formula:

N(s) =

pls) =T(),
T(s) = B(s) + «gN(s), 3)
N(s) = —,oT(s) + E(s),
E(s) = —1gN(s).
In another form:
[ B(s) 01 0 07[B®
Ts) | |1 0 k O T(s)
NGs) | |0—x 0 7, |]| NG
| E(s9) 0 0 -7 0] [E®
where
ke = [T(s) — B,
(4)

_ det (B(5), B(s), Bs5), B(s)

= (kg(8))2

are the geodesic curvature and geodesic torsion of the curve 8 in H:";_(—l), respectively.
Since (T(s) — B(s), T(s) — ﬂ(s)) = (T(s), T(s)) + 1, the condition

(T(s), T(s)) # —1,

is equivalent to the condition «g(s) # 0. Moreover, we can show that the curve B(s)
satisfies the condition «g(s) = 0 if and only if there exists a lightlike vector ¢ such that
B(s) — cis a geodesic. Such a curve is called an equidistant curve (see [9, 12]).

De Sitter 3-space
Let y : I —> S? be a smooth and regular spacelike curve in S3. We can parameterize it

by arc-length s. Hence, we may assume that y (s) is a unit speed curve and we have the

tangent vector T(s) = y(s) with |T|| = 1. In this case, we call y a unit speed space-

like curve. If (T(s), T(s)) # 1, then IIT(s) 4+ y(s)|l # 0, and we define the unit vector
T

N(s) = ©+76) . Moreover, define E(s) = y(s) A T(s) A N(s), then we have a

IT(s) +y )]
pseudoorthonormal frame {y (s), T(s), N(s), E(s)} of E‘f along y. By standard arguments,

under the assumption that <T(s), T(s)> # 1, we have the following Frenet-Serret type
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formula:
Jf(S) =T(s)
T(9) = =y (5) +1gN(s) -
N(s) = =8(¥)kgT(s) + 14E(s)
E(s) = 7,N(s).
It can be written as:
y(s) 0 1 00 y(s)
Ts) | | -1 0 k0 || TG
NG) | | 0 =84k 0 7, || Ns)
E(s) 0 0 10 E(s)
where 8(y) = sign (N(s)) (which we shall write as simply §) and
kg = IIT) + v ),
(6)

o 5 det (y(s), y(s), V(s), 7(5))
£ (kg (s5))?

)

are the geodesic curvature and geodesic torsion of the curve y in S3, respectively.
Since (T(s) + y(s),T(s) + y(s)) = (T(s),T(s)) — 1, the condition (T(s),T(s)) # 1is
equivalent to the condition «g(s) # O (see [4]).

The Frenet apparatus of an evolute curve in hyperbolic 2-space
In this section, we introduce the Frenet apparatus of an evolute curve in terms of Frenet
apparatus of its involute curve in H. sz

Definition 1 Leto : [ —> Hi be a smooth and regular spacelike curve in hyperbolic 2-
space. We define the hyperbolic evolute curve of o (s) under the assumption that ng (s) #+£1
in H_% as;

hy(s) = (kg()ex(s) + E(s)) .

1
Mg@—q

We remark that hg is located in H> U H? if and only if/cg2 > 1. Ifhy is located in H?, we
may consider —hy (s) instead of hy (s) and we call «(s) an involute curve of hy (s) (for more
details, see [10]).

We denote by the Frenet apparatus of an evolute curve /1, (s) by {ha (), T, (), Epy,, (8), K, () }

Theorem 1 Let a(s) : [ —> Hi C E? be a unit speed spacelike involute curve in H2,
then the Frenet apparatus of the hyperbolic evolute curve hy(s) are given as follows:
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ho(s) = S (kgee(s) + E(s)) Kg
; By o) = o ) TG,
‘Kg N 1‘ S (7)
T, (s) = _71%5 (a(s) + igE(), | Kna(®) = zxgg'
1) (I =1))

Proof From the definition of the evolute curve in hyperbolic 2-space, we can write

1
Yl 1]

Differentiating both sides of the previous equation with respect to s and substitute from

hy(s) = (KgO{ (s) + E(s)) . (8)

Eq. (1), we obtain

—KgK, 1
Ty, (s) = % (Kga + E) + — (/{'ga + i, T — KgT),
(J¢ =1])° -1
g g
which can be written as
. 2
—KgK, Kk —1
Ty, (5) = % (ko +E) + gié (Kgo + 1T — i T)
2 _ 2 2 _ 2
(J«¢ 1)) (2 =1])
2 . 2. .
—K K KoK, K K K
_ ggga kg JE+ g - g S,
(k=1 (-2 (1) (1)’
then, we get
—K, KoK,
Tj,, () = £ a(s) - —5—E@. )
2 _ 2 2 _ 2
(g1 (1))

Since Ej, (s) = ha(s) A Tp, (s), we have

—Ot(S) T(s) E(S)

Eha(s): /Kz—l le—l

_"gKg
2 _ 2 _
O& O ng)

then, we get

Ej, (s) =< fg )T(s).
kg — 1

Also, by differentiating the Eq. (9) and substitute from Eq. (1), we obtain

Page 6 of 18
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Kg — Kg /c"g + BKgky 2
3 (8) + T(s)
(¢ =) - 1]
Tp, (s) = (10)

KgKg — KK + BigKy — Kgiig® + Ko

%
(J2 1))

Because K}, = det (ha (s) Ty, Tha): then from Egs. (8—10), we get

E(s).

Kg 0 1
2 _ 2 _
‘/cg 1’ ’Kg 1‘
—Kg 0 —kgke
K, (5) = 3 3 ,
o 2 _ 2 _
(‘ng ! ) 3 <’Kg 21 2:2 2
Kg — Kgkg + 3K giq Kg Kgkg — KgKg + 3Kg Kg — KgKg + Kg
5
2_11)\? 2 _ 2 _1/)?
(e 1) 1] (|2 1)
which can be written as:
_ kg kg Kegke
hoy = 3
2 _ 2 _ 2 _ 2
1))\l =1\ (je2 -1)
_ 1 Kg Kg
3
Yl =1 )\ (ke =1)"J\le -1
2,2 .
B KgKg - ng
B 5 5
2 _ 2 _
(J¢=1))" ) \(ke-1))
ng (Kg2 — 1)
= % .
(e =1
In a simple form
-2
K
g
Ky, = 7%
() =1)
In the light of the above calculations, the proof is completed. O

The Frenet apparatus of an evolute curve in hyperbolic 3-space
Here, as in the case of hyperbolic 2-space, we construct the Frenet apparatus of an evolute
curve using Frenet apparatus of its involute curve in the hyperbolic 3-space Hi(—l) and

define its equation. We start as follows:

Page 7 of 18
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Definition 2 For a given involute curve B in Hi(—l), the hyperbolic evolute curve hg :
I — H;D’r of B(s) is defined by

1 Kg
hg(s) = — (Kgﬁ(S) + N(s) — K‘L'gE(S)) ,
2 (g) . ¢
¢ KeTg

© N2
K
under the assumption that ng — <g> > 1
KeTg

© N2
We remark that hg (s) is located in Hi(—l) if and only lngZ - (Kg) > 1, where B(s)
T,

kgTg
is an involute curve of hg(s) (see [6]).

Now, we denote by {hﬁ (), Thy(s), Npy(s), Epg(s), IChﬁ ), 7},/3 (s)} the Frenet appara-
tus of /15(s) and we formulate the following theorem.

Theorem 2 Let hg(s) be a unit speed spacelike evolute curve of B(s), then the Frenet

apparatus of hg(s) can be expressed as:

Tpy(s) = 11B(s) + (1 — kgu2) T(s) + (f2 — Tgu3)N(s) + (113 + Tgu2)E(s),

Niyy ) = (| = — ) + 02 + (3 — 12)> + (1 — 13)?]) 2 (1 — 1) BGs)
+ 12T (s) + (13 — n2)N(s) + (na — u3)E(s))),

’

Kny = \/|—('71 —uD2+ 03+ (13 — u2)? + (na — p3)?

1
Ejp,(s) =— @((*MZ((N’I — Kgi2)(Ma — p3) — n2(fta — Tgu3)) + pa((w1 — kgu2) (M3 — H2)
— n2(ft2 — gu3)))B(s) + (n1((fta — tgi3)(Na — p3) — (N3 — p2) (13 + Tgit2))
— ua(ft1(ma — p3) — (n1 — wa) (13 + tg2)) + u3(ta (s — w2) — (1 — p1) (2 — 7g3)))T(s)
= (1 (1 — Kkg2)(na — pu3) — n2(fts + Tgia)) + pa(ina — (m — 1) (U1 — Kgit2)))N(s)
+ (1 (1 — kgp2) (3 — p2) — M2 + Tgit3)) + pwa(inz — (m — w1) (U1 — kgit2)))E(s)),

1
Thy (5) =F(M1((M1 — Kgi2)(N38a — M43) — (fta — Tgu3) (M2la — Nal2) + (13 — Tgi2) (283 — N382))
B

— w21 (n28a — nata) — (U1 — kgi2)(N18a — nad1) + (13 — Tgu2) (M2 — n281))

+ 31 (283 — n382) — (U1 — kg2)(M183 — n381) + (2 — Teu3) (M2 — n281))),

where (L1, 2, I3, 11, 12, 13, N4, $1, {2, 3, and &4 are smooth functions.

Proof According to the Definition (2), we have
K
hp(s) = z B+
© N2
2 (i) 1
¢ KeTg

If we denote

Page 8 0of 18
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K,
MB = — g ) (11)

then, the evolute curve /g(s) can take the form

hp(s) = u1B(s) + uaN(s) + usE(s). (12)
Differentiating both sides of the previous equation with respect to s and substitute from
Eq. (3), we obtain
Tj, () =f21B(s) + 1B () + (12N(s) + 11aN(s) + fi3E(s) + u3E(s)
=18(s) + u1T(s) + 1aN(s) + pua(—xgT(s) + T4E(s))
+ (13E(s) — 13(1gN(s))
=118(s) + (u1 — kgu2)T(s) + (f2 — Tg13)N(s)
+ (i3 + Tgu2)E(s). (13)
Following the differentiating of Eq. (13), we get

(i1 + 1 — kg2) B(s) + (201 — Kgpha — 2kcgfia + KgTgu3) T(s)
Tpy(s) = | +gua — Kéuz + iy — Tgus — 2Tg 13 — ng,uz)N(S) (14)
+(tgit2 — ngﬂs + fi3 + Teuo + Tgft2)E(s),

which can be written in a simple form
Th, () = mB(s) + n2T(s) + n3N(s) + naE(s), (15)
where

n = (i1 + (1 — Kkgit2)
m = Q2n — K'gMZ - 2Kgl'1«2 + Kng,U«3)

9 .. . . 9 (16)
N3 = (Kgit1 — Kg 2 + fl2 — Tgit3 — 2Tgfl3 — T, U2)
N4 = (tgfta — tgzus + fi3 + Tgo + Tgf2).
Thus, from Egs. (12) and (14), we obtain
Ts(s) — hg(s)
Ny () = P,
ITg(s) — kgl
Following the above, we can write
-1
Ny (8) = (|—= (1 — 1) + m3 + (3 — p2)* + (na — 13)*|) 2 (((n — u1) B(s)
+n2T(s) + (13 — u2)N(s) + (72 — u3)E($))). 17)

Also, from Egs. (4) and (17), we obtain

Ky = \/|—(771 — w2+ 03+ (13 — u2)? + (na — us)?|.

Therefore, by differentiating (14) and using (3), we can obtain
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hig(s) = (1 + 3fiy — 2gpia — Bicglia + KTert3) B(s) + (Bfix + 1 — kghta — Kghtz
— 3Kty — 3Kgjlo + KgTgts + 2k Tet3 + 3KgTg13) T(8) + (Bigft1 — kgkgila
— Bicg g + K1 + K Tgtt3 — BTgTapa — 207 g + Hy — Tyuz — 3Tgitz — 3r4ji3
- ngllz - ngll«s)N(S) + (kgTg1 — K;"{g/‘& - Tg?’ltz + 31gfly — 3T,Tguz + M3
— 3t ji3 + 3Tgita + Tgi2)Es), (18)

which can be written as:

hp(s) = L1 B(s) + £2T(s) + E3N(s) + L4E(s), (19)
Noting that

&= (/’Ll +3p1 — 2K.gl'LZ - 3Kgll2 + KngHB)
&2 = (Bji1 + p1 — Kglha — Kgba — 3Kgfla — 3Kgfia
+KgTgl3 + 265 Tg 3 + 3k Tg[L3)
{3 = (Bkgfty — 3kgKgla — 3Kg2/l2 + Kgit1 + Kgfgﬂs
—3Te T — 2Tg2ﬂ2 + [y — gz — 3Tgt3 — 374ji3
—Tgfly — TZ13)
G4 = (KgTgh1 — KgTgha — T [t + BTgfla — 3TeTgis
I3 = 3t fi3 + BTgfa + Tyia).
From Egs. (4), (12), (13), (15), and (19), the torsion 7 is given by

(20)

[75% 0 n2 n3
1 | (U — kgu2) (fio — Tgi3) (13 + Teu2)
Eﬂ (S) = _T § g g )
K | m n n3 N4
&1 ¢) £3 Ca

or

1
T ($) =}CT(/L1((M1 — Kgi2)(N38a — Nal3) — (2 — Tgi3)(M2la — Nal2) + (i3 — Te2) (283 — N382))
hp

— (1 (m28s — nad2) — (1 — kgi2)(M18a — nal1) + (a3 — Tgi2) (182 — n281))
+ 3 (1 (283 — n382) — (1 — kgi2) (1183 — 1381) + (2 — Teu3) (&2 — 1261)))-
(21)

In addition, from (12), (13), and (17), the vector Ep(s) = hg(s) A Tpy(s) A Ny, (s) is
computed as:

—B(s) T(s) N(s) E(s)
1
B =2 | ook e
Kny f1 o (U1 — kgpa) (fr2 — tgi3) (i3 + Tgpa)
(m — n1) n2 (3 —m2) (N2 — pu3)
which can be taken in the form
1 0 %) 3
Ep,(s) =— o (m1 — Kkgp2) (f2 — Tgi3) (i3 + Tgia) | B(S)
’ 72 (3 —u2) (Mg — u3)
1 M1 "2 "3
K, pr o (o — tgus) (13 + tgua) | T(s)
Plom—wp) 3 —n2)  (a— wus)
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M1 0 U3
+— f1 o (ua —kgua) (s + tgia) | N(s)
(71 — p1) 2 (74 — u3)

251 0 n2
- a1 (r1 —kgia) (o — tgus) | E(s),
(m — p1) n2 (n3 — u2)

In the light of the previous computations, the proof is completed. O

The Frenet apparatus of an evolute curve in de Sitter 3-space
Similar to the case of the hyperbolic evolute curve, we introduce the definition Frenet
apparatus of an evolute curve in the three-dimensional de Sitter space.

Definition 3 Let y be an involute curve in S3, then the de Sitter evolute curve dy: 1 —

Si’ of y (s) is expressed as

1 Kg
dy(s) = Kkgy (s) + N(s) + ——E(s)
£ 2 Kg‘L'g

g 2
—£ ) k241
kgTg £

© N2
: 2 kg
under the assumption thatk; — | —— | <1
kgTg

- N2
We remark that d,, (s) is located in S% if and only lngQ — <Kg> < 1, where y(s) is an
KeTg
involute curve of d,, (see [1]).

We refer to {dy (), Ta,(s), Na, (s), Eg, (s), K, (s), 771y (s)} as Frenet apparatus of the
evolute curve in S*;’.

Theorem 3 For a given spacelike evolute curve d., (s) of y (s), the Frenet apparatus are

introduced as:

T, (s) = J1y (s) + (1 — Skgha) T(s) + (ha + TeA3)N(s) + (A3 + A ECs),

Ny, (5) = (| = (&1 + 40> + 83 + (63 +22)% + (G +22)%)) 2 (G1 + 2Dy ()
+ET(S) + (&3 + 22)N(s) + (81 + A3)E())),

’

Ka, = |- G1+ 202 + &3 + (B + 22 + (Ga + 19)?

1 .
Egz () =— e ((=22((A1 — kgA2)(§a + A3) — E2(Aa + Tgh3)) + A3((A1 — KgAa) (3 + A2)

dy

— &(hy + A3))Y () + (M1 ((ha + Tgh3) (Ea + A3) — (63 + A2) (A3 + Tgh2))

— da(h(Ea + A3) — (€1 + A1) (hs + Tgho)) + A3 (ki (B3 + Aa) — (€1 + A1) (ha + TgA3)) T(s)
— (M (A1 — kgha)(Ea + A3) — E2(hs + Tgha)) + A3(h1&a — (E1 + A1) (A1 — kgh2)))N(s)

+ (1 (O — Kgha) (E3 4 A2) — E2(ha + TgA3)) + Ao (i€ — (61 + A1) (M1 — kgh2))E(s)),
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1 . .
Ta, (s) =KT(?»1((M — kgh2)(§3Ba — §4B3) — (A2 + Tgh3)(62Ba — §4B2) + (A3 + Tgh2)(62B3 — §3B2))
dy
— )a(h1(E2Bs — £4Bp) — (A1 — Kgh2)(E1Bs — £4B1) + (A3 + Tgho) (E1B2 — £2B1))
+ A3(h1(E2B3 — £3B)) — (A1 — Kgha)(E1B3 — £3B1) + (ha + Tgh3) (E1B2 — £2B1))),

where the functions A1, Ao, A3, &1, &2, &3, €4, B1, B2, B3, and By being smooth functions.

Proof From the definition of an evolute curve in de Sitter 3-space, we have

dy ) = Kg Y+ 1 _ Kg E
(@221 K'g)221 (@221
@> — kg + <@ — kgt KgTqg @> — kg +
(22)
If we denote by
1
Al = fe y A2 = )
. 2 . 2
<Kg) — k241 <Kg> — k241
kgTg KgTg
by = — “ : (23)
c N2
Kg )
RCE 1
KgTg (thg) Ky +
then (22) can be written as
dy (s) = A1y (s) + AaN(s) + A3E(s). (24)
Differentiating both sides of (24), and using (5), we get
Tg, () = A1y (s) + 217 () + AaN(s) + AaN(s) + A3E(s) + A3E(s)
= ily(s) + M T(s) + AN(s) + A2(—38kgT(s) + ToE(s))
+ A3E(s) + A3(1gN(s))
= J1y (6) + (01 = 8icgh2) T(s) + (A2 + 7443)N(s)
+ (k3 + TgA2)E(s), (25)

which gives by differentiating

(X1 — A1+ Skgha)y () + (2h1 — 8Kghy — 28kgha — SkgTgh3)T(s)
Ty, () = | +kght — 8kZha + ko + Tghs + 21ghs + 12A2)N(s) (26)
+(tgho + ng)»g + A3 + tgha + Teho)E(S).

In another form, (26) is written

Ty, (5) = &1y (s) + E2T(s) + £N(s) + &E(s), (27)
where
£1 = (A — A1 + Skgho)
52 = (2)11 — 5Iégk2 — 25Kg)‘»2 — (SKg‘Eg)»g)
& = (kgh1 — Skgha + ko + Tghs + 21h3 + 1202)
£4 = (Tgho + ng)xe, + k3 + Tgha + Tgha).
Thus, from Egs. (6), (24), and (27), we obtain
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Ng (5) =(|—E + 2>+ & + (3 +12)” + (Ea+ x3>2|)_71 ((E1 + 2Dy (5)
+ £T(s) + (€3 + 22)N(s) + (&1 + 23)E())), (28)

and

Ka, = |-G+ 202 + 83 + 3+ 20 + (G + 2a)2).
Moreover, by differentiating Eq. (26) with respect to s, one can obtain
dy(s) = (k1 — Bh1 + 28Kha + 38kgha + SkgTehs)y (s) + (Bh1 — A1 + Skgha
— 5/%)»2 — 35/(&)12 — 35/(ng — (Slfgl'g)»g — aKgfg)LS — 3Kgfg}»3 — 5Kg2)‘1

+ ko — SicgTo ha) T (s) + (Bight — B8kgKeha — 38k ho + kghi

L . . (29)
— 8Kk Tghs + BTgTeha + 317ha + A2 + Tghs + BTghs + Ths + 103
+ 27 A3)N(s) + (kgTght — 8k Tgha + Toha + BTgha + 3TgThs + i3
+ 31743 + 37ha + A2 E(s),
which in abbreviated form
dy (s) = B1y(s) + ByT(s) + BsN(s) + B4E(s), (30)
where
By = (X1 — 3h1 +28Kgha + 38Kghy + SkgTgh3)
By = (3%1 — A1 + Skghy — 8Kghy — 38Kgho — 38kgho — 8KgTgh3
—8kgTghs — BigTghs — SkZA1 + Sicgha — SigTda)
B3 = (3ight — 3digkighy — 38k hy + kighy — Sk FTgh3 + B1gTgha (31)

+3t3hy + W2 + Tghs + 3Tghs + h3 + 1oh3 + 27gh3)
By = (Kg‘[gkl — Skgfg)\z + ‘[5’)»2 + 3‘[g.);2 + 3‘L'gfg)\3 + A,g + 3f§ig
+37gha + Trho).

Now, after using (24), (25), (27), and (30), the torsion 7:13, of the evolute curve d, (s) is
obtained

1 . .
Ta, ) =ICT()»1(()»1 — kgh2)(§3Bs — 4B3) — (A2 + tgA3)(52Ba — §4B2) + (A3 + 1gh2)(62B3 — £3B2))
dy
— k(A (E2Bg — £4By) — (A1 — kgho)(§1Ba — £4B1) + (A3 + 1gh2)(51B2 — £2B1))
+ A3(A1(52B3 — £3B2) — (A1 — kgho) (E1B3 — £3B1) + (Ao + 1gh3) 1By — £2B1)).
(32)

The only vector remaining from Frenet apparatus is the binormal vector E,, (s), which is

given directly by
1 0 Ao A3
Ea,(5) = = 1 | (11 = sigha) (2 + Tgh3) (s + ko) |V (5)
’ 1) (63 +2r2)  (Sa+23)
. A Ao A3
"KL Mo (ot 1ghs) (s + 1eho) | T()
Y

¢1+r1) (E3+Ar)  (Ea+A3)
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1 Al 0 A3
+ K, A (a1 —Kgha) (As 4 Tgh) [ N(s)
Gy & (64 + 23)
1 A1 0 Ao
K, Ao 00 = Kgha) (a4 1ghs3) |EG),
T 1+ A) & 63+ A2)
Thus, the theorem has been proven. O
Examples

In this section, to support the theoretical results of this paper, we construct two exam-
ples of an evolute curve in the two- and three-dimensional hyperbolic spaces, then we

calculate its Frenet apparatus using Frenet apparatus of its involute curve.

Example 1 Counsider the general helix curve « in Hi(—l), where

als) = (ji sin <\/§s> , cos (ﬁs)) . (33)

Firstly, we compute the Frenet frame, the curvature and the torsion of the curve a. For this,

from Eq. (33), the tangent vector of the curve « is given by

T(s) = a(s) = i, §cos §s ,— §sin §s . (34)
(Gr2em(2) 217

And from (33) and (34), we get
—i j k

sin ( 35) cos 33) ) (35)

a(s) AT(s) =

S o
[\S][e+]
o)

2
N
W
[}
N——"
|
Nlw
<
=]
N
[\S][e+]
“w
N——"

which enable us to obtain
E(s) = <\/§> i+ (fssin (\/gs) + % cos ( 2s>)]
(3 \/5 1y \/5
5 scos 23 7 sin 2s
the curvature of the curve a(s) is given as follows:
Kg(s) = — % (i\/gcos2 (\/ES) + i\/zsin2 (\/gs))
7 o (V52 o (V535) =on (Vo) s (13
+ Z—ﬁ sin{ (/55| cos| /55| —sin{y/5sfeos|y5s] )

which takes the simple form

V27

Kkg(s) = —Ts.

k; (36)
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Thus, from Theorem (1), the Frenet apparatus of the evolute curve hy of «(s) (see Figs. 1

and 2) are expressed respectively, by

1| (ol 5) ()
| BT R )
673 —54/25, (952 — 2) sin <\/§s> — 3./6scos (\/gs)

- 12752 — 1612 |, (95 — 2) cos (\/§s> + 3+/6ssin (\/Es)) ,
En, ) = |275122:/;6| (f \/> (\f) \/jsm (\Es))

27
12752 — 16]3

Ty, ()

and

Ko (5) =

Example 2 Let 8 be a general helix in Hi(—l), where
(37)

B(s) = («/5 cosh(s), V2 sinh(s), sin(s), cos(s)) .

1.0
y 0.5 ‘
0.0
-0.5
-1.0
1.0 &
0.5
z
0.0 I
T —~—
-0.5 |
J
|
-1.01 |

Fig. 1 Evolute curve hy (s)
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Fig. 2 Involute curve a(s)

From (37), the tangent vector of the curve B is given by
T(s) = («/5 sinh(s), v/2 cosh(s), cos(s), — sin(s)) , (38)
which gives by differentiating
T(s) = (\/5 cosh(s), ﬁsinh(s), — sin(s), — cos(s)) . (39)
From Egs. (37) and (39), we get

T(s) — B(s)

N = -
© =i~ pol

= (0,0, — sin(s), — cos(s)), (40)

and
Ke(s) = IIT(s) — Bl = 2.
Also, we get

E(s) = (x/i sinh(s), «/Ecosh(s), —2cos(s), 2 sin(s)) .
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Using the differentiation of Eq. (37) three times with respect to s to obtain

det(8; B; B; B) =+/2 cosh(s)[ —+/2 cosh(s) — cos(s)(~/2 sin(s) sinh(s)

+ ﬁcos(s) cosh(s)) — sin(s)(—«/g cos(s) sinh(s)
++/2 sin(s) cosh(s))] —\/Esinh(s)[ —\/Esinh(s)
— cos(s)(+/2 sin(s) cosh(s) 4+ /2 cos(s) sinh(s))
— sin(s)(—+/2 cos(s) cosh(s) + ~/2 sin(s) sinh(s)]
+ sin(s)[ v/2 sinh(s) (v/2 sin(s) sinh(s) + +/2 cos(s) cosh(s))
— V2 cosh(s)(«/i sin(s) cosh(s) + V2 cos(s) sinh(s))
— 2sin(s))] — cos(s)[ V2 sinh(s)(—ﬁ cos(s) sinh(s)
+ +/2 sin(s) cosh(s)) — v/2 cosh(s)(—+/2 cos(s) cosh(s)
+ +/2 sin(s) sinh(s)) + 2 cos(s))],

then, we get

det(B 6, B.F)
LB _
g

From Theorem (2) and Egs. (11), (16) and (20), the Frenet apparatus of the evolute curve
hg of B(s) are respectively, expressed by

1
V3
2 1

H1 = ﬁ»lﬂ = E:MS

—4
n=mn=n=0, 773:§,

= = :O,
G1=808=23_ L4 7

Tg(s) = — 2.

hg(s) = (2\/5 cosh(s), 2+/2 sinh(s), sin(s), cos(s)) ,

:O,

Thﬁ (s) = % (\/E sinh(s), V2 cosh(s), —2 cos(s), 2 sin(s)) ,

Nhﬂ (s) = _7[15 (—2 sinh(s), —2 cosh(s), (—2\/5 + 5) sin(s), (—2«/5 +5) cos(s)) s

Ep,(s) = % (ﬁ sinh(s), v/2 cosh(s), cos(s), — sin(s)) ,

5
Ky (s) = \/; Ty (s) = 0.
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