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Abstract
Stability of functional equations has recent applications in many fields. We show that
the stability results obtained by J. Brzdęk and concerning the functional equation of the
p-Wright affine function:

f (px1 + (1 − p)x2) + f ((1 − p)x1 + px2) = f (x1) + f (x2),

can be proved also in (2,α)-Banach spaces, for some real number α ∈ (0, 1). This is
done using some fixed-point theorem.
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Introduction
The rabid development of the theory of functional equations has been strongly promoted
by its applications in various fields, e.g., networks and communication (see, e.g., [4, 16, 17,
21, 31]). They have applications in computer graphics [29], in information theory [2, 28],
in digital filtering [34], and in decision theory [1, 35]. Stability of functional equations is
nowadays a popular subject with many interesting applications ( see, e.g., [5–8, 12, 23, 30]
for more details). Stability can be seen from different perspectives, see [30], and hundreds
of researchers are dealing with such amazing topic. It has applications in optimization
theory (see, e.g., [26]), it is somehow related to the notion of shadowing (see, e.g., [22]),
and it has applications in the economy (see [13]).
The starting point of the stability of functional equations was due to S.M. Ulam who

posed an open problem in 1940. The problem posed by Ulam can be stated as follows
(see, e.g., [30]):
Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there exist δ > 0 such

that if g : G1 → G2 satisfies

d(g(xy), g(x)g(y)) < δ

for all x, y ∈ G1, then a homomorphism f : G1 → G2 exists such that

d(g(x), f (x)) < ε,

for all x, y ∈ G1?
It should be noted that Hyers’s introduced a partial answer to Ulam’s problem in Banach

spaces( see, e.g., [23]).
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Stability is useful because it can be considered as an efficient tool for evaluating the
error people usually face when replacing functions that satisfy some equations only
approximately, by the exact solutions to those equations. Roughly speaking, an equation
is said to be stable in some class of functions if any function from that class, satisfying
the equation approximately (in some sense), is near (in some way) to an exact solution of
the equation. In the last few decades, several stability problems of various (functional, dif-
ference, differential, integral) equations have been investigated by many mathematicians
(see, e.g., [9–11, 24, 27] for more details), but mainly in classical spaces.
Since the notion of an approximate solution and the idea of nearness of two functions

can be understood in many ways, depending on the needs and tools available in a par-
ticular situation. One of such non-classical measures of a distance can be introduced by
the notion of a 2-norm. As far as we know, the concept of the linear 2-normed space was
introduced first by Gähler et al. in [20], and it seems that the first work on the Hyers-Ulam
stability of functional equations in complete 2-normed spaces (that is, 2-Banach spaces),
see, e.g, [19]. See also [14, 33] for some details in 2-Banach spaces. In this article, we inves-
tigate the stability of the functional equation of the p-Wright affine functions investigated
in [3] but in (2,α)-Banach spaces.
The article is organized as follows: in the “Preliminaries” section, we recall some def-

initions and the functional equation of our interest; the “Fixed-point theorem” section
introduces the fixed-point theorem used in the stability; in the “Stability” section, we
investigate the stability of the functional equation of the p-Wright affine functions; the
“An observation on superstability” section introduces a simple observation on supersta-
bility; and the “Conclusion” section concludes our work.

Preliminaries
Throughout the article, we use R+ to denote the set of nonnegative reals, R denotes the
set of reals, N denotes the set of positive integers, and K to denote the field of real or
complex numbers. Let 0 < p < 1 be a fixed real number. We say that a function f :

f : I �−→ R,

mapping a real nonempty interval I into the set of reals R is p-Wright convex provided
(see, e.g., [15])

f (px1 + (1 − p)x2) + f ((1 − p)x1 + px2) ≤ f (x1) + f (x2), x1, x2 ∈ I.

If f satisfies the functional equation

f (px1 + (1 − p)x2) + f ((1 − p)x1 + px2) = f (x1) + f (x2), (1)

then we say that it is p-Wright affine (see [15]). Note that for p = 1/2, Eq. (1) becomes
the Jensen’s functional equation

f (
x1 + x2

2
) = f (x1) + f (x2)

2
.

For p = 1/3, Eq. (1) takes the form

f (2x1 + x2) + f (x1 + 2x2) = f (3x1) + f (3x2),

which has been investigated by Najati and Park in [32]. The cases of more arbitrary pwere
studied in [15] (see also [25]). We prove some results concerning the Hyers-Ulam stability
of (1). The method of the proof of the main result corresponds to some observations in
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[12] and the main tool in it is a fixed point. Let us recall first (see, for instance, [18]) some
definitions.

Definition 1 By a linear 2-normed space, we mean a pair (X, ‖., .‖) such that X is an at
least two-dimensional real linear space and

‖·, ·‖ : X × X → R

is a function satisfying the following conditions:

(1) ‖x1, x2‖ = 0 if and only if x1 and x2 are linearly dependent;
(2) ‖x1, x2‖ = ‖x2, x1‖ for x1, x2 ∈ X
(3) ‖x1, x2 + x3‖ ≤ ‖x1, x2‖ + ‖x1, x3‖ for xi ∈ X, i = 1, 2, 3
(4) ‖βx1, x2‖ = |β|‖x1, x2‖ for β ∈ R and x1, x2 ∈ X.

A generalized version of a linear 2-normed spaces is the (2,α)-normed space defined in
the following manner:

Definition 2 Let α be a fixed real number with 0 < α ≤ 1, and let X be a linear space
over K with dimX > 1. A function

‖., .‖α : X × X → R+

is called a (2,α)-norm on X if and only if it satisfies the following conditions:

(C1) ‖x1, x2‖α = 0 if and only if x1 and x2 are linearly dependent;
(C2) ‖x1, x2‖α = ‖x2, x1‖α for x1, x2 ∈ X
(C3) ‖x1, x2 + x3‖α ≤ ‖x1, x2‖α + ‖x1, x3‖α for xi ∈ X, i = 1, 2, 3
(C4) ‖λx1, x2‖α = |λ|α‖x1, x2‖α for λ ∈ R and x1, x2 ∈ X

The pair (X, ‖., .‖α) is called a (2,α)-normed space.

Definition 3 A sequence (xn)n∈N of elements of a linear (2,α)-normed space X is called
a Cauchy sequence if there are linearly independent y, z ∈ X such that

lim
n,m→∞ ‖xn − xm, z‖α = 0 = lim

n,m→∞ ‖xn − xm, y‖α ,

whereas (xn)n∈N is said to be convergent if there exists an x ∈ X (called a limit of this
sequence and denoted by limn→∞ xn) with

lim
n,m→∞ ‖xn − x, y‖α = 0, y ∈ X.

A linear (2,α)-normed space in which every Cauchy sequence is convergent is called a
(2,α)-Banach space.
Let us also mention that in linear (2,α)-normed spaces, every convergent sequence has

exactly one limit and the standard properties of the limit of a sum and a scalar product
are valid. Next, it is easily seen that we have the following property.

Lemma 1 If X is a linear (2,α)-normed space, x, y, z ∈ X, y, z are linearly independent,
and

‖x, y‖α = 0 = ‖x, z‖α ,
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then x = 0.

Let us yet recall a lemma from [33].

Lemma 2 If X is a linear (2,α)-normed space and (xn)n∈N is a convergent sequence of
elements of X, then

lim
n→∞ ‖xn, z‖α = ‖ lim

n→∞ xn, z‖α , z ∈ X.

We introduce a simple example of a (2,α)-normed space.

Example 1 For x = (x1, x2), y = (y1, y2) ∈ X = R
2, the (2,α)-norm on X is defined by

‖x, y‖α = |x1y2 − x2y1|α ,
where α is a fixed real number with 0 < α ≤ 1.

The main tool used in this article is the following fixed-point theorem. It is a version of
theorem 1 in [10]. In order to write it, we need the following assumptions.

Fixed-point theorem
Let us introduce the following three assumptions:

(A1) E is a nonempty set, (Y , ‖., .‖α) is a (2,α)-Banach space, Y0 is a subset of Y
containing two linearly independent vectors, j ∈ N,

fi : E → E, gi : Y0 → Y0, and Li : E × Y0 → R+ for i = 1, · · · , j;
(A2) T : YE → YE is an operator satisfying the inequality

‖Tξ(x) − Tμ(x), y‖α ≤
j∑

i=1
Li(x, y)‖ξ(fi(x)) − μ(fi(x)), gi(y)‖α ,

ξ ,μ ∈ YE , x ∈ E, y ∈ Y0 (2)

(A3) � : RE×Y0 → R
E×Y0 is an operator defined by

�δ(x, y) :=
j∑

i=1
Li(x, y)δ(fi(x), gi(y)), δ ∈ R

E×Y0 ,

x ∈ E, y ∈ Y0 (3)

Now, its the position to present the abovementioned fixed-point theorem.

Theorem 1 Let hypotheses (A1)–(A3) hold and function

ε : E × Y0 → R+ and ϕ : E → Y

fulfill the following two conditions:

‖Tϕ(x) − ϕ(x), y‖α ≤ ε(x, y), x ∈ E, y ∈ Y0 (4)

ε∗(x, y) :=
∞∑

i=1
(�lε)(x, y) < ∞, x ∈ E, y ∈ Y0 (5)
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Then, there exists a unique fixed point ψ of T for which

‖ϕ(x) − ψ(x), y‖α ≤ ε∗(x, y), x ∈ E, y ∈ Y0. (6)

Moreover,

ψ(x) = lim
l→∞

(Tlϕ)(x), x ∈ E. (7)

We skip the proof as it is illustrated in [12].

Stability
In this section, we introduce the main result in this article that concerns the stability of
Eq. (1); it corresponds in particular to some results in [12].

Theorem 2 Let (A1) be valid, p ∈ K,A, k ∈ (0,∞), |p|αk + |1 − p|αk < 1, and

g : E → Y

satisfy

‖g(px1 + (1 − p)x2) + g((1 − p)x1 + px2) − g(x1) − g(x2), y‖α

≤ A
(
‖x1, y‖kα + ‖x2, y‖kα

)
, x1, x2 ∈ E, y ∈ Y0. (8)

Then there exists a unique solution G : X → Y of Eq. (1) such that

‖g(x) − G(x), y‖α ≤ A‖x, y‖kα
1 − |p|αk − |1 − p|αk , x ∈ E (9)

and G is given by

G(x) := g(0) + lim
n→∞

(
Tng0

)
(x), x ∈ E, (10)

where g0 and T are defined by (13) and (14). Moreover, G is the unique solution of Eq. (1)
such that there exists a constant M ∈ (0,∞) with

‖g(x) − G(x), y‖α ≤ M‖x, y‖kα , x ∈ E, y ∈ Y0 (11)

Proof Note that (8) with x2 = 0 gives

‖g(px1) + g((1 − p)x1) − g(x1) − g(0), y‖α

≤ A
(
‖x1, y‖kα + ‖y‖kα

)
, x1 ∈ E, y ∈ Y0 (12)

Write

g0(x1) = g(x1) − g(0), x1 ∈ E (13)

and

Tξ(x1) = ξ(px1) + ξ((1 − p)x1), x1 ∈ E, ξ ∈ YE . (14)

Then (12) implies the inequality

‖g0(px1) + g0((1 − p)x1) − g(x1) − g(0), y‖α

≤ A(‖x1, y‖kα), x1 ∈ E (15)

which means that

‖Tg0(x1) − g0(x1), y‖α ≤ A
(
‖x1, y‖kα

)
, x1 ∈ E. (16)
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Further, note that (A3) holds with k = 2, f1(x) = px, f2(x) = (1 − p)x, Li(x) = 1 for
i = 1, 2, x ∈ E. Define � as in (A3). Clearly, with ε(x) := A(‖x1, y‖kα) for x ∈ E, we have

ε∗(x1) :=
∞∑

n=0
(�nε)(x1)

≤ A(‖x1, y‖kα)

∞∑

n=0
(|p|αk + |1 − p|αk)n

= A(‖x1, y‖kα)

1 − |p|αk − |1 − p|αk , x1 ∈ E. (17)

Hence, according to Theorem 2, there exists a unique solution G0 : X → Y of the
equation

G0(x1) = G0(px1) + G0((1 − p)x1), x1 ∈ E (18)

such that

‖g0(x1) − G0(x1), y‖α ≤ A
(‖x1, y‖kα

)

1 − |p|αk − |1 − p|αk , x1 ∈ E; (19)

moreover,

G0(x1) := lim
n→∞(Tng0)(x1), x1 ∈ E. (20)

Now we show that, for every x1, x2 ∈ E, n ∈ N0 (nonnegative integers),

‖Tng0(px1 + (1 − p)x2) + Tng0((1 − p)x1 + px2) − Tng(x1) − Tng(x2), y‖α

≤ A(|p|αk + |1 − p|αk)n
(
‖x1, y‖kα + ‖x2, y‖kα

)
, x1, x2 ∈ E, y ∈ Y0 (21)

It is easy to see that the case n = 0 is just (8). Next, fixm ∈ N0 and assume that (21) holds
for every x1, x2 ∈ E with n = m. Then

‖Tm+1g0(px1 + (1 − p)x2) + Tm+1g0((1 − p)x1 + px2)

−Tm+1g(x1) − Tm+1 g(x2), y‖α = ‖Tmg0(p(px1 + (1 − p)x2))

+Tmg0((1 − p)(px1 + (1 − p)x2)) + Tmg0(p((1 − p)x1 + px2))

+Tm g0((1 − p)(1 − p)x1 + px2)) − Tmg0(px1)

−Tm g0((1 − p)x1) − Tmg0(px2) − Tmg0((1 − p)x2), y‖α (22)

which is clearly

≤ ‖Tmg0(ppx1 + (1 − p)px2)+ Tmg0((1 − p)px1 + ppx2) − Tmg0(px1)

−Tmg0(px2), y‖α + ‖T mg0(p(1 − p)x1 + (1 − p)(1 − p)x2)

+Tmg0((1 − p)(1 − p) x1 + p(1 − p)x2)

−Tmg0((1 − p)x1) − Tmg0(p(1 − p)x2), y‖α

≤ A(|p|αk+ |1 − p|αk)m
(
(p‖x1, y‖α)k + (p‖x2, y‖α)k

)

+(|p|αk + |1 − p|αk) m
(
((1 − p)‖x1, y‖α)k + ((1 − p)‖x2, y‖α)k

)

= (|p|αk + |1 − p|αk) m
(
(‖x1, y‖α)k + (‖x2, y‖α)k

)
,

x1, x2 ∈ E, y ∈ Y0. (23)
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Thus, by induction, we have shown that (21) holds for every x1, x2 ∈ E and n ∈ N0.
Letting n → ∞ in (21), we obtain that

G0(px1 + (1 − p)x2) + G0((1 − p)x1 + px2) = G0(x1)

+ G0(x2), x1, x2 ∈ E (24)

Write G(x1) := G0(x1) + g(0) for x1 ∈ E. Then it is easily seen that

G(px1 + (1 − p)x2) + G((1 − p)x1 + px2) = G(x1)

+ G(x2), x1, x2 ∈ E (25)

and (9) holds. It remains to show the uniqueness of G. So suppose that M0 ∈ (0,∞) and
G1 : X → Y is a solution to (1) with

‖g(x1) − G1(x1), y‖α ≤ M0‖x1, y‖α , x1 ∈ E, y ∈ Y0 (26)

Note that

G(0) = g(0) = G1(0),

G1(px1) + G1((1 − p)x1) = G1(x1) + G1(0), x1 ∈ E, (27)

G(px1) + G((1 − p)x1) = G(x1) + G(0), x1 ∈ E, (28)

and, by (9),

‖G(x1) − G1(x1), y‖α ≤ (M + A)‖x1, y‖kα
1 − |p|αk − |1 − p|αk

= (M + A)‖x1, y‖kα
∞∑

n=j
(|p|αk + |1 − p|αk)n, x1 ∈ E (29)

The case j = 0 is exactly (29). So fix l ∈ N0 and assume that (29) holds for j = l. Then, in
view of (27) and (28),

‖G(x1) − G1(x1), y‖α

= ‖G(px1) + G((1 − p)x1) − G1(px1) − G1((1 − p)x1), y‖α ,

≤ ‖G(px1) − G1(px1), y‖α + ‖G((1 − p)x1) − G1((1 − p)x1), y‖α

≤ (M + A)(‖p‖kα‖x1, y‖kα + ‖(1 − p)‖kα‖x1, y‖kα)

∞∑

n=l
(|p|αk + |1 − p|αk)n,

≤ (M + A)‖x1, y‖kα
∞∑

n=l+1
(|p|αk + |1 − p|αk)n, x1 ∈ E, y ∈ Y0

Thus, we have shown (29). Now, letting j → ∞ in (29), we get G1 = G.

An observation on superstability
The following is a very simple observation on the superstability of Eq. (1) complements
Theorem 2.

Theorem 3 Let (A1) be valid, p ∈ F,A, k ∈ (0,∞), |p|2αk + |1 − p|2αk < 1, and

g : E → Y

satisfy
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‖g(px1+(1−p)x2)+g((1−p)x1+px2)−g(x1)−g(x2), y‖α ≤ A‖x1, y‖kα‖x2, y‖kα , (30)
for every x1, x2 ∈ E, y ∈ Y0. Then g is a solution to (1).

Proof It is easy to see that (30) with x2 = 0 gives

g(x1) = g(px1) + g((1 − p)x1) − g(0), x1 ∈ E (31)

We show that, for every x1, x2 ∈ E, y ∈ Y0, n ∈ N0,

‖g(px1 + (1 − p)x2) + g((1 − p)x1 + px2) − g(x1) − g(x2), y‖α

≤ A
(
|p|α2k + |1 − p|α2k

)n ‖x1, y‖kα‖x2, y‖kα , (32)

It is easy to see that the case n = 0 is just (30). Next, fix m ∈ N0 and assume that (32)
holds for every x1, x2 ∈ E, with n = m. Then, by (31),

‖g(px1 + (1 − p)x2) + g((1 − p)x1 + px2) − g(x1) − g(x2), y‖α

= ‖g(p(px1 + (1 − p)x2)) + g((1 − p)(px1 + (1 − p)x2))

+g(p((1 − p)x1 + px2)) + g((1 − p)((1 − p)x1 + px2))

−g(px1) − g((1 − p)x1) − g(px2) − g((1 − p)x2), y‖α (33)

which is clearly

≤ A
(
|p|α2k + |1 − p|α2k

)m ‖p‖kα‖x1, y‖kα‖p‖kα‖x2, y‖kα
+A

(
|p|α2k + |1 − p|α2k

)m ‖1 − p‖kα‖x1, y‖kα‖1 − p‖kα‖x2, y‖kα
= A

(
|p|α2k + |1 − p|α2k

)m+1 ‖x1, y‖kα‖x2, y‖kα (34)

for every x1, x2 ∈ E, y ∈ Y0. Therefore, by induction, we have shown that (32) holds for
every x1, x2 ∈ E and n ∈ N0. Letting n → ∞ in (32), we obtain that g is a solution to
(1).

Conclusion
In this paper, we managed to generalize some recent results concerning the stability of the
functional equation of the p-Wright affine functions in (2,α)-Banach spaces, for some real
number α ∈ (0, 1]. The main tool in the investigation is a fixed-point theory. This work
may be further generalized to be in (n,α)-Banach spaces, for some natural number n.
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6. Brzdėk, J., Ciepliński, K., Leśniak, Z.: On Ulam’s type stability of the linear equation and related issues. Discret. Dyn.
Nat. Soc. 2014, 14 (2014). Article ID 536791
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