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Introduction
A graph labeling is an assignment of integers to the edges or vertices, or both, subject to
certain condition. The idea of graph labelings was introduced by Rosa in [1]. Following
this paper, other studies on different types of labelings (Odd graceful, Chordal graceful,
Harmonious, edge odd graceful) introduced by many others [2—4]. A new type of labeling
of a graph called an edge even graceful labeling has been introduced by Elsonbaty and
Daoud [5]. They introduced some path- and cycle-related graphs which are edge even
graceful.

Graph labelings give us useful models for a wide range of applications such as coding
theory, X-ray, astronomy, radar, and communication network addressing.

Definition 1 /5] An edge even graceful labeling of a graph G(V(G), E(G)) with p =
|V(G)| vertices and g = |E(G)| edges is a bijective mapping f of the edge set E(G) into the
set {2,4,6, ---,2q }such that the induced mapping f*: V(G) — {0,2,4,---,2q}, given
by: f*(x) = (nyeE(G) fxy) ) mod (2k), is an injective function, where k = max(p, q).
The graph that admits an edge even graceful labeling is called an edge even graceful graph.

In Fig. 1 , we present an edge even graceful labeling of the Peterson graph and the
complete graph Ks .

Edge even graceful for some path related graphs

A Y- tree is a graph obtained from a path by appending an edge to a vertex of a path
adjacent to an end point, and it is denoted by Y, where # is the number of vertices in the
tree.
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Fig. 1 An edge even graceful labeling of Peterson graph and the complete graph K

Lemma 1 The Y-tree Y, is an edge even graceful graph when n is odd.

Proof The number of vertices of Y-tree Y, is n and the number of edges is # — 1. Let
the vertices and the edges of Y}, be given as in Fig. 2.
We define the mapping f : E(Y,) — {2,4,---,2n — 2} as follows:

fle) =2i for 1<i<"
F(engp) =nt8 S (ens) =3
fle) =2i for Ml <i<n-1

Then, the induced vertex labels are

f*(v) =2, ffv) =2, ffv3) =12
Frv)=4i—2  for 45;’5";1,

I (vnTH) = [f(e%) +f (EL-H)] mod (2n) = (2n) mod (2n) =0

2

Similarly, f* (VnT-l—?y) =6, f* (v#) =8, f* (VnT-H) =10,

f*(v;) = (4i —2) mod (2n) for 2 <i<n-—1,

frvp) =2n—2

Clearly, all the vertex labels are even and distinct. Thus, Y-tree Y}, is an edge even graceful
graph when # is odd. 0

Illustration: The edge even labeling of the graph Yj3 is shown in Fig. 3.
Double star is the graph obtained by joining the center of the two stars Kj , and K3
with an edge, denoted by B, ,,,. The graph B, ,, hasp =n+m+2andg=n+m+ 1.

Lemma 2 The double star By, ,,, is edge even graceful graph when one (m or n) is an odd
number and the other is an even number.

U1

€1
Up Vp—1 Up—2 Un;»7 Un~2+»5 ’Ungs ’Un;rl V4 U3
——¢—— 0 - - -0 -———- 06— 06— _———0 — — - V2
€n—1 €n—2 En;rs En;r‘s en,;rl €4 €3 €9

Fig.2 Y, with ordinary labeling
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Fig.3 The edge even labeling of the graph Y3

Proof Without loss of generality, assume that # is odd and m is even. Let the vertex and
edge symbols be given as in Fig. 4.
Define the mapping f : E(Bj,n) — {2,4,-- - ,2q} as follows:

Sfle) = 2i for 15;‘5";1
fE)=2p—23i+1)  for 15i5”;1
flai) =m+ 2i for 1 5;’5%

f(by) =2p—[m+ 2i] for 1 Siig
Sw)y=2p-2

We realize the following:

fE) +f(eir) =0mod (2p) for i=1,2,---,

f@a) +f(b)=0mod (2p) for j=1,2,---,

So, the vertex labels will be
f*(w) =[f(e1) +f(w)] mod (2p) = 0 and
f*w) =f(w)=(2p—2)mod (2p) =2p —2

Also, each pendant vertex takes the labels of its incident edge which are different from
the labels of the vertices U and v. O

The graph (K3, : Kj,,,) is obtained by joining the center v; of the star K3, and the
center vo of the another star K3 ,, to a new vertex u , so the number of vertices is
p =n+m+ 3 and the number of edgesis g=n+m+2.

Lemma 3 The graph (K12, : K1,2m) is an edge even graceful graph.

Fig.4 B, , with ordinary labeling
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Fig.5 (Ki2n : Ki2m) with ordinary labeling

Proof Let the vertex and edge symbols be given as in Fig. 5.
Define the mapping f : E(G) — {2,4,---,2p} as follows:

fley=mn +2 ,  flea) =2p—(mn +2)
fA) = 2i for i=1,2---,n
SB) =2p —2i for i=1,2,---,n
f(C) = 2n+ 2i for i=1,2,---,m

fB)=2p—[2n+ 2]  for i=1,2,---,m
We can see the following:

f(A) +f(B) =0mod (2p) for i=1,2,---,n
f(C)+f(Dy) =0mod 2p) for j=1,2,---,m

So, the vertex labels will be

fH(w) =[f(e1) + f(e2)] mod (2p) =0,
f*(v1) =f(e1) =mn+ 2 and
fT(n) =f(e2) =2p—[2n+ 2i]

which are even and distinct from each pendant vertices. Thus, the graph (Kj 2, : K1,2/) is

an edge even graceful graph. O
Lemma 4 The corona [6] P3 © Ko, is an edge even graceful graph.

Proof In this graph p = 6m + 3 and g = 6m + 2. Let the vertex and edge symbols be
given as in Fig. 6.
We can define the mapping f : E(P3 © Ky, ) — {2,4,- -+ ,2q} as follows:

f(e) =6m+2i for i=1,2
f(Alj)ZZ(i_l)m+ 2j for i=1,2,---,m
f(By) = 2p—[2(i — Ym + 2j] for i=1,2,---,m

Itis clear that  f(A;) +f(By) =0mod 2p) for j=1,2,---,m

Fig.6 P3 © K>y with ordinary labeling
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Fig.7 Edge even graceful labeling of the graph P3 © Ky

So the vertex labels will be,

o) =fe1) =6m+2 ,  f*(v3) =f(ex) =6m+4 and
f*(2) =[ f(e1) + f(e2)] mod (2p) = [(6m + 2) + (6m 4 4)] mod (2p) = 0

Therefore, all the vertices are even and distinct which complete the proof. O

Ilustration: The edge even labeling of the graph P3 ® K¢ is shown in Fig. 7.
The generalization of the previous result is presented in the following theory

Theorem 1 The graph Pa,—1 © Koy, is an edge even graceful graph.

Proof In this graph, p = 4nm +2(m —m) — 1 and q = 4nm + 2(n — m) — 2. The
middle vertex in the path Py,_; will be v, , and we start the labeling from this vertex. Let
the vertex and edge symbols be given as in Fig. 8.

Define the mapping f : E(G) — {2,4,-- - ,2q} by the following arrangement

fle) =2¢ for i=1,2,---,n—1

fb)=2p— 2" for i=1,2---,n—1

f(A;)  will take any number from the reminder set of the labeling not contains
2! nor 2p— 2ifor j=1,2,---,mand

f(Dy) =2p—[f(A4j)] for j=1,2,---,m.

It is clear that [ f(Aj) +f(D;)] mod (2p) =0mod (2p) for j=1,2,---,m.

So, the vertex labels will be

F*n) =[f(er) +£(b)] mod (2p) = 0mod (2p),

For any vertex vy whenk < n,let k=n—i andi=1,2,--- ,n—2

[f(e) +f(bix1)] mod 2p) =f(by) if i is odd

S i) = i) = [f(Bi) +f(ei41)] mod (2p) = f(e;) ifiis even

Whenk > n,letk=n+iandi=1,2,--- ,n—2

[f (i) + f (ei+1)] mod (2p) =f(e;) if i is odd

) =f*Vpri) = [f(en) +f(bir1)] mod (2p) = f(by) if i is even

(7 Un—4 b Un—3 e Un—2 be Un—1 e Up, b Un+1 e Un+2 b Un+3 e Un+4 Van—1
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Fig.9 Edge even graceful labeling of the graph P11 @ Ky

The pendant vertices v; and vy,_1 of the path Py, will take the labels of its pendant
edges of Py;,_1,i.e.,

If n is even, then f*(v1) = f(ey—1), and f*(vau—1) =f(by—1)

If nis odd, then f*(v1) = f(b,—1), and [*(voy—1) =f(en—1)

Then, the labels of the vertices of the path Py, takes the labels of the edges of the path
Py,_1 , and each pendant vertex takes the labels of its incident edge. Then, there are no
repeated vertex labels, which complete the proof. O

Mlustration: The graph P1; © Ky labeled according to Theorem 1 is presented in Fig. 9.
A double fan graph F,,, is defined as the graph join Ky + P, where K; is the empty
graph on two vertices and P, be a path of length n.

Theorem 2 The double fan graph F,, is an edge even graceful labeling when n is even.

Proof In the graph F,, wehave p =n+2 and q = 3n—1.Letthe graph Fp, be
given as indicated in Fig. 10.
Define the edge labeling function f: E( F,) — {2,4,---, 6n — 2} as follows:

flai) =2i i=1,2,--n
f(b) =2q — 2 =6n—2(i + 1); i=1,2-n
2+ 2i ifl<i<?
fe)={6n-2 ifi=12

2n+2(i—1) if§<i§n—1
Hence, the induced vertex labels are
) = (XL, (f(@))) mod(6n—2)= (31, (2i)) mod(6n—2) = (n*+n) mod(6n—2)

ffv = (L)) mod(én — 2) = (YX1L,(2g—2i)) mod(6n — 2) =
(—n2 — n) mod(6n — 2)

Fig.10 F,, with ordinary labeling
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Fr) = [ (Fa)+f (b)) +f (e +f(ei—1))] mod(6n—2) = (4n+4i—2) mod(6n—
2),2<i<?-1
Fr) =i (@) +f(b) +f(e) +f(ei—1))] mod(6n—2) = (4n+4i—6) mod(6n—
2), 3+2<i<n-1
Since [f(a;) + f(b;)] mod(6n — 2) = 0, we see that
[fv) = fle1) =2n+2,
f*(vn) = f(en—l) =4n — 4,
f*(Vg) = f(eg,l) =3n—2 and
Srvap) = fleg) =3n

Thus, the set of vertices vi,vy,v3,--- , VI, VI, VI, V0, Vs, V2, V1, Vp Are
labeled by 2n+2, 4n+6, 4n+10,--- ,6n—6, 3n—2, 3n, 4,8, --- ,2n—12, 2n—8, 4n—4
respectively.

Clearly, f*(u) and f*(v) are different from all the labels of the vertices. Hence Fy, is
an edge even graceful when # is even. O

Illustration: The double fan Fj ;o labeled according to Theorem 2 is presented in
Fig. 11.

Edge even graceful for some cycle related graphs

Definition 2 For n > 4, a cycle ( of order n ) with one chord is a simple graph obtained
from an n-cycle by adding a chord. Let the n-cycle be vivy - - - v,v1. Without loss of gener-
ality, we assume that the chord joins v with any one v;, where 3 < i < n — 1. This graph is
denoted by C,(i).

Lemma 5 The graph C, (%) is an edge even graceful graph if n is even.

Proof Let {v1,vy, - V1,V Vg, v} be the vertices of the graph C, (g) , and
the edges are ¢; = (v;v;4+1) for i < i < n — 1 and the chord ey = (V1Vg) connecting the
vertex vy with vz as in Fig. 12.

Here, p = nand g = n + 1, so 2k = 2q = 2n + 2; first, we label the edges as follows:

fle)=2i+2 i=012,---n

Fig. 11 Edge even graceful labeling of the double fan F, 19
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en
>0z

Fig. 12 G, () with ordinary labeling

Then, the induced vertex labels are as follows:

FH*v1) = [f(eo) + f(e1) + f(en) | mod (21 + 2) = (2 + 4 + 21 + 2)mod (21 + 2) = 6,
frwg) = [f(eo +f(ex) +f(eg_1)] mod(2+2) = (2n+4) mod(2n+2) =2

for any other vertex v;, i#1,5

) = fe) + flei—1) = (4n+4) mod(2n +2) = (4i + 2)mod(2n + 2)

Hence, the Ilabels of the vertices vg,vi,v2, -, VA1, VA, Vi1, Ve are
6, 10, 14,---, 2n — 2, 2, 4,---, 2n respectively, which are even and distinct. So, the
graph C, (%) is an edge even graceful graph if # is even. O

Definition 3 Let C, denote the cycle of length n. The flag FL, is obtained by joining one
vertex of Cy, to an extra vertex called the root, in this graphp = g =n + 1.

Lemma 6 The flag graph FL,, is edge even graceful graph when n is even.

Proof Let {vi,va,---,v,} be the vertices of the cycle C, and the edges are ¢; =
(viviy1) for 1 < i < n and the edge e = (v1vp) connecting the vertex v; with v as in
Fig. 13.

First, we label the edges as follows:

fle)=2i+2 i=0,1,2---n
Then, the induced vertex labels are as follows f*(vo) = f(e0) =2,

F 1) = [f(eo) + f(e1) + f(en) | mod(2n +2) = (2+ 4+ 21+ 2) mod(2n +2) =6
ffv) = [f(e,) + f(ei_l)] mod(2n+2) = (4i+2)mod(2n+2) i=2,3,---,n

Hence, the labels of the vertices vg,vq,va,:-- VIV VELY, Yy will be
2,6,10,14,---,2n—2, 0, 4,-- -, 2n respectively. O

Lemma 7 The graph Ky, © C, is edge even graceful graph when n is odd.



Zeen El Deen Journal of the Egyptian Mathematical Society (2019) 27:20 Page 9 of 15

(Y v
en L e '0
€1
U2
€2
U3
€3
-7y
~ \./ -~
Fig. 13 Fl, with ordinary labeling

Proof Let {Vl, Vo, Vi, v/l, V/zr cee, v;l} be the vertices of the graph K, ® C,, and the

edges are {ej,ex, -+ , ey, e/l, e/z, e ,e;q} as shown in Fig. 14. Here, p = 2nand g = 2n+1,
50 2k = 4n + 2.
First, we label the edges as follows:

fle) = 2i; 1<i<n+1
fe)y=2n+23i+1); 1<i<n
We can see that [f(e,) +f(ey+1)] mod(2g) = (4n+2) mod(4n+2) =0
Then, the induced vertex labels are as follows
ff) =[f(e)) +f(eix1)] mod(dn+2) 1<i<n-1
=[6+4+4(i—1)] mod(4n+2), 1<i<n-1
ffv) = [f(e;.) +f(e§+1)] mod(4n +2) =[8+4(i—1)] mod(dn+2), 1<i<mn
S*(vn) = [f(er) +f(en) +f(en+1) ] mod(4n +2) = f(e1) mod(4n +2) =2
FEw) = [f€) +flens) + f (€,)] mod(dn +2) = 4

Clearly, the vertex labels are all even and distinct. Hence, the graph Ky © C, is edge
even graceful for odd n. O

Fig. 14 The graphs K, © C, with ordinary labeling
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Fig.15 {C, — {v1}} ©® Kym—1 with ordinary labeling

Let C, denote the cycle of length n. Then, the corona of all vertices of C,, except one

vertex {v1} with the complement graph Ky, is denoted by {C,, — {v1}} © K3,,—1 , in this

graphp =g =2m(n—1) + 1.
Lemma 8 The graph {C,, — {v1}} © Kyu—1 is an edge even graceful graph.

Proof Let the vertex and edge symbols be given as in Fig. 15.
Define the mapping f : E(G) — {2,4,- - ,2q} as follows:

SE) =2(—Dm+2 for i=1,2,---,n—1
f(En) =2q

fleir1) =2q—[2(i — 1ym + 2] for i=1,2,---,n—1
SfA) =20—1)m+2j+2 for j=1,2,---,m—1

fBy) =2q—[2G —m+2j+2] for j=1,2,--- ,m—1

We realize the following:
[f(A,j) +f(B,«,)] mod (2g) = 0 mod (29) for j=1,2,--- ,m—1
Also, [f(Ei—1) + f(e)] mod (29) = 0mod (2q)  for i=2,3,---,n
So, verifying the vertex labels, we get that,
f*(v1) = [f(Ev) 4+ f(En)] mod (29) = (2 + 2g) mod (29) =2,

m—1 m—1
frwy=| Y fAN+Y fBP+fE) +f(Ei) +f(e) | mod (2q) i=2,3,---,n
j=1 j=1

=f(E) mod (2q) =2(G@—1)m+2mod (2g9), i=23,---,n

Hence, the labels of the vertices v1, va, - - - , v, takes the label of the edges of the cycles and
each of the pendant vertices takes the label of its edge, so they are all even and different

numbers. O

Illustration: In Fig. 16, we present an edge even graceful labeling of the graph {Cg —
nl} OKs.

Lemma 9 The double cycle graph {C,,} is an edge even graceful graph when n is odd.

Proof Here, p = n and g = 2n. Let the vertex and edge symbols be given as in Fig. 17.
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Fig.16 {Cs — (n1}} O K

Define the mapping f : E(G) — {2,4,--- ,4n} by
fe) =2i for i=1,2,---,n. So, the vertex labels will be

frv) = [f(e1) + f(en) +f(ent1) +f(e2s)] mod (4n) = 4

o = [fle) +f(eim) +f(eirn) +f(eirn-1)]mod (4n) i=2,,--,n
=@8i—4)mod (4n) i=2,3,---,n

Hence, the labels of the vertices vi,vo,V3,+«,Vus1,Vuis, --,v, will be
2 2
4,12,20,---,0,8,--- ,4n — 4 O
en +1
en + 2
eZn—l
en +3
e2n—2 s~~~ "O
Fig.17 {C,,} with ordinary labeling

Page 11 of 15
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The prism graph [],, is the cartesian product C,00K> of a cycle C, by an edge K3, and
an n-prism graph has p = 2n vertices and g = 3n edges.

Theorem 3 The prism graph ], is edge even graceful graph.

Proof In the prism graph [],, we have two copies of the cycle C,, let the vertices in one
copy be vi,va,---,v, and the vertices on the other copy be v{,v,,---,v),.In [], ,the
edges will be

Vivit1, Vi¥iyp, and v Let the vertex and edge symbols be given as in Fig. 18.

Define the mapping f : E([],) — {2,4,---,6n} by

Sfle) =2i for i=1,2,---,n
fle) =4n +2i for i=1,2,---,n
f(E) =2n+2i for i=1,2,--,n

So, the vertex labels will be
frvn=[f(er) +f(en) +f(Er) ] mod (61n) = 4n + 4
frun=[f(e) +f(eir1) + f(Enir2)] mod (6n) = (2i + 4n+2) mod (6n) i =12,3,--- ,n

Hence, the labels of the vertices vi, vy, - - - , v, willbe 4n+4, 4n+6,--- ,0, 2 respectively.
Also, f*(v)) = [ f(e}) +f(€},) +f(E1)]mod (6n) = 121 + 4 mod (6n) = 4

o) =[fE)+fe_) +f]mod(6n) i=2,, - ,n
= (2i+12n+2)mod (6n) =2i+2 i=2,3,---,n

Fig.18 [], withordinary labeling
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4
22 30
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24 28
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Fig. 19 An edge even graceful labeling of prism graphs []s and []¢

Hence, the labels of the vertices V|, v}, - - ,v) are 4, 6,8,---,2n, 2n + 2 respectively.
Overall, the vertices are even and different. Thus, the prism graph [], isan edge even
graceful graph. O

Illustration: In Fig. 19, we present an edge even graceful labeling of of prism graphs
[l and [[6-

The flower graph FL(n) (n > 3) is the graph obtained from a helm H,, by joining each
pendant vertex to the center of the helm.

Theorem 4 The flower graph FL(n) (n > 4) is an edge even graceful graph.

Proof In the flower graph FL(n) (n > 4), we have p = 2n + 1 and g = 4n . Let

{ Vo, Vi, V2, -+ Vi, V], V5, - -+, V), } be the vertices of FL(#) and
{e1,exe3,--- ,esy, E1,Ea, E3,- -+, E, } be the edges of FL(n) as in Fig. 20.

Fig. 20 The flower graph FL(n) with ordinary labeling
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Fig.21 An edge even graceful labeling of The flower graphs FL(6) and FL(7)

First, define the mapping f : E(Fl(n) ) — {2,4,--- ,8n } as the following:
f(E)=8n—2i for i=1,2,---,n and

2 if 1<i<3n—1
é;) =
S (@) {Sn if i=3n

Then, the induced vertex labels are
f*(vo) = [Z(f(e» +f(Ei>} mod(8n) = 0
i=1
1) = [f(e) +f(ensi)] mod(8m) = 2n+4i, i=1,2-,n
F200) = [f(esn) +f(eant1) + fens1) +f(E1)] mod(8n) = 61+ 2
F0h) = [f(e3n) + f(e3n-1) + f(ens2) +f(E2)] mod(8n) = 8n —2

FE0) = [f(esn—iz1) +f(esn—it2) +f(enti) + f(E)] mod(8n), 3<i<mnm
=[6(n+1)—4il mod(8n) 3 <i<n

Overall, all the vertex labels are even and distinct which complete the proof. O

Illustration: In Fig. 21, we present an edge even graceful labeling of of the flower graphs
FL(6)and FL(7).
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