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Introduction

Morgan Stone algebras (or simply MS-algebras) are introduced and characterized by T.S.
Blyth and J.C. Varlet [1] as a generalization of both de Morgan algebras and Stone alge-
bras. In [2], T.S. Blyth and J.C. Varlet described the lattice A(MS) of subclasses of the
class MS of all MS-algebras. A. Badawy, D. Guffova, and M. Haviar [3] introduced and
characterized decomposable MS-algebras by means of decomposable MS-triples. More-
over, they constructed a one-to-one correspondence between decomposable MS-algebras
and decomposable MS-triples. A. Badawy and R. El-Fawal [4] studied many properties of
decomposable MS-algebras in terms of decomposable MS-triples as homomorphisms and
subalgebras. Also, they formulated and solved some fill in problems concerning homo-
morphisms and subalgebras of decomposable MS-algebras. A. Badawy [5] introduced the
notion of dj -filters of principal MS-algebras. Recently, A. Badawy [6] studied the rela-
tionship between de Morgan filters and congruences of decomposable MS-algebras. Also,
many properties of ideals of MS-algebras are given in [7] and [8].

Several authors studied complete p-algebras, like C.C. Chain and G. Grétzer [9] for
Stone algebras, S. El-Assar, and M. Atallah [10] for distributive p-algebras and P. Mederly
[11] for modular p-algebras.

In this paper, we introduce complete decomposable MS-algebras and complete decom-
posable MS-triples. We show that a decomposable MS-algebra L constructed from the
decomposable MS-triple (M, D, ¢) is complete if and only if the triple (M, D, ¢) is com-
plete. Also, a description of complete homomorphisms of decomposable MS-algebras is
given in terms of complete decomposable MS-triples.
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Preliminaries
In this section, we present definitions and main results which are needed through this
paper. We refer the reader to [1-4, 12-15] for more details.

A de Morgan algebra is an algebra (L;V,A,7,0,1) of type (2,2,1,0,0) where
(L; v, A,0,1) is a bounded distributive lattice and the unary operation of involution ~
satisfies

X=x,(xVY) =XAY,XAY) =XV

An MS-algebra is an algebra (Z; v, A,°, 0, 1) of type (2,2,1,0,0) where (L; v, A,0,1) is
a bounded distributive lattice and the unary operation ° satisfies
x <x°,(xAY)°=x°Vy°,1°=0.
The following Theorem gives the basic properties of MS-algebras.

Theorem 1 ([1, 12]). For any two elements a, b of an MS-algebra L, we have

(1)0° =1,
2)a<b=b°<a°
(3) aOOO — ao’

(4) (aV b)° =a® A b°,
(5) (aV b)*° = a°° v b°°,
(6) (a A b)°° = a®° A b°°.

Lemma 1 ([1, 3]). Let L be an MS-algebra. Then
(1) L°° = {x € L : x = x°°} is a de Morgan subalgebra of L,
(2) D(L) = {x € L : x° = 0} is a filter (filter of dense elements) of L.

For any lattice L, let F(L) denotes the set of all filters of L. It is known that, (F(L); A, V)
is a distributive lattice if and only if L is a distributive lattice, where the operation A and
V are given by

FAG =FNGand FVG = {x eL:x>fArgfeF,ge G} , respectively for everyF, G €
F(L).

Also, [a) = {x € L : x > a} is a principal filter of L generated by a.

Definition 1 [9]. Let L = (L;V,A,0r,11) and L1 = (L1;V,A,0r,,11,) be bounded
lattices. The map h : L — L; is called (0,1)-lattice homomorphism if
(1)0h =0, and 11h =1y,
(2) h preserves joins, that is, (x V y)h = xh \V yh for every x,y € L,
(3) h preserves meets, that is, (x A\ y)h = xh A yh for every x,y € L.

Definition 2 [14] A (0,1)-lattice homomorphism h : L — Ly of an MS-algebra L into an
MS-algebra L is called a homomorphism if x°h = xh° for all x € L. If L and Ly are de
Morgan algebras, then h is called a de Morgan homomorphism.

Definition 3 [3] An MS-algebra L is called decomposable MS-algebra if for every x € L
there exists d € D(L) such that x = x°° A d.

Definition 4 [3] A decomposable MS-triple is (M, D, ), where
(i) (M;V,A,0,1) is a de Morgan algebra,
(ii) (D; V, A\, 1) is a distributive lattice with 1,
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(iii) ¢ is a (0, 1)-homomorphism from M into F(D) such that for every element a € M and
foreveryy € D there exists an element t € D with ap N [y) = [1).

Theorem 2 [3] (Construction Theorem) Let (M, D, ¢) be a decomposable MS-triple.
Then

L={(a,apV [x)):aeM,xe D}

is a decomposable MS-algebra, if we define

(a,ap Vv [x)) V (b, l;go Vv [y)) = (d Vb, (aVv bV [t))forsomet €D,

(a,ap V [x)) A (b, by v [») = (a Ab,(anbpV|x Ay)) ,
(a,a9 V [x))° = (a,ap),
1 = (1,[D),

0, = (0,D).

Conversely, every decomposable MS-algebra L can be associated with the decomposable
MS-triple (L°°, D(L), ¢(L)), where
ap (L) =[a°) (L),a € L*°.

The decomposable MS-algebra L constructed in Theorem 2 is called the decomposable
MS-algebra associated with the decomposable MS-triple (M, D, ¢) and the construction
of L described in Theorem 2 is called a decomposable MS-construction.

Corollary 1 [3] Let L be a decomposable MS-algebra associated with the decomposable
MS-triple (M, D, ). Then
(D L*° ={(a,ap) : a € M},
(2)D(L) = {(1,[x) : x € D},
(3) D= D(L) and M = L°°,
(4) The order of L is given as follows: (a,apV[x)) < (b,boV[y)) iffa < b and apv[x) 2
bpVv[y).

Definition 5 [14] A lattice L is called complete if inf; H and sup; H exist for each ¢ #
HCL

Definition 6 [14] A lattice L is called conditionally complete if every upper bounded
subset of L has a supermum in L and every lower bounded subset of L has an infimum in L.

An MS-algebra L is called complete if it is complete as a lattice.

Definition 7 [14] A lattice homomorphism h : L — L; of a complete lattice L into a
complete lattice Ly is called complete if
(inf, H)h = infy, Hh and (sup, H)h = sup; Hh for each ¢ # H C L.

A homomorphism 4 : L — L; of a complete MS-algebra L into a complete MS-algebra
L, is called complete if it is complete as a lattice homomorphism.
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Characterization of complete decomposable MS-algebras via triples
In this section, we introduce and characterize complete decomposable MS-triples of
complete decomposable MS-algebras.
Let L be a decomposable MS-algebra L. For ¢ # N C L, define N° as follows:
N° ={n°:n e N}.

Lemma 2 If L is a complete decomposable MS-algebra, then for ¢ # N C L, ¢ # C C
L°° and ¢ # E C D(L), we have
(1) (sup; N)° = inf; N°,
(2) supyo. C = (sup; C)°° = (infy C°)°,
(3) infee C = inf; C,
(4) infp() E = infy E and supp ) E = sup E.

Proof (1). Let x = sup; N. Then x > n for all » € N implies x° < n° . Hence x° is a
lower bound of N°. Let y be a lower bound of N°. Then y < »° for all n € N implies
y° > n°° > n. So, y° is an upper bound of N. Thus x < y° as ¥ = sup; N. This gives
x° > y°° > y . Therefore x° = inf; N° = (sup; N)°.

(2) Let sup; C = x. Then x°° = (sup; C)°°. We have to show that x°° = sup;.. C. Since
sup; C = x, thenx > cforall ¢ € C. so, x°° > ¢°° = cfor all ¢ € C. Therefore x°° is an
upper bound of C. Let y be another upper bound of C in L°°. Theny > cforallc¢ € C.
Thus y°° > ¢°° = ¢. Hence »°° is an upper bound of C. So y°° > x as x = sup; C. It
follows that y = y°° > x°°. Hence x°° is the least upper bound of C. Since x°° € L°°, then
x°° = sup;e C. By (1) we have (sup; C)°° = (inf; C°)°.

(3) Let x = inf; C. Thenx < cforall ¢ € C. Then x°° < ¢°° = ¢. Hence x°° is a lower
bound of C. Thus x > x°° asx = inf; C. But x < x°° . Then x°° = x and x € L°°. Thus
infLoo C=u

(4) Letx = infy Eand y = infpz) E . Thenx < eand y < efor all e € E imply that x = y.
Now we prove supp ;) E = sup; E. Let y = sup; E. Then y > efor all e € E. It follows that
y° <e® =0.Theny € D(L) implies y = supp;, E. O

Let (M, D, ) be a decomposable MS-triple. For any # # E C D, consider the set
M as follows:
Mg ={aeM:apVv|z) D E for some z € D}.

Lemma 3 Let (M, D, ¢) be a decomposable MS-triple. For any ) # E C D, we have
(1) Mg is an ideal of M,
(2)[E)=U{[p):t € E},
(2) Mg = Mip).

Proof (1). Let a,b € Mg. Then apV|[z;) D E and l;q)\/[zz) D E for some z1,zp € D.
Hence E C (apV[z1)) N (bpV[z2)) = (a Vv bypV[¢t) for some ¢ € D (see Theorem 2).
It follows that a vV b € Mg. Now, let a € Mg and ¢ € M. Then, 3z € D such that
apV[z) D E. Since a A ¢ < a, then a Ac > a. This gives Ww D agp. It follows
that (a A c)gpV[z) 2 apVv[z) D E. Then a A ¢ € Mg. Consequently, Mg is an ideal
of M.

(2) Obvious.
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(3) Clearly, Mgy € M. Leta € Mg. Then, 3z € D such that apV([z) D E. Since apV|z)
is a filter of D and [ E) is the smallest filter of D containing E, then agpV[z) D[ E). Hence,
a € Mgy and Mg C Mig). Therefore , Mg = M[g). O

Definition 8 A complete decomposable MS-triple is a decomposable MS-triple (M, D, )
satisfying the following conditions:
(i) M is complete,
(ii) D is conditionally complete,
(iii) Foreach W) # E C D, the set Mg has the greatest element in M.

Theorem 3 Let L be a complete decomposable MS-algebra constructed from the decom-
posable MS-triple (M, D, ). Then, the triple (M, D, ) is complete.

Proof Since L is associated with the decomposable MS-triple (M,D,¢), then by
Theorem 2, we have

L ={(a,apVv|[x)):a € M,x € D}.

Corollary 1(1)-(3), gives

L°° = {(a,ap) :a e M} =Mand D(L) = {(1,[x)) : x € D} = D.

We have to prove that a decomposable MS-triple (M, D, ¢) is complete. So we proceed
to prove (i)—(iii) of Definition 8. For (i), let # # C € M. Consider a subset C= {(c,cp) :
¢ € C} of L°° corresponding to C. Since L is complete, then inf C= (a,apV[x)) for some
(a,apV[x)) € L. Thus, (a,apV[x)) < (¢,cp) forallc € C. Thena < cforall ¢ € C implies
that a is a lower bound of C. We verify that « is the greatest lower bound of C in M. Let b
be a lower bound of C. Then b < ¢ for all ¢ € C. This gives by D ¢g. Therefore, (b, by) <
(c,ce) for all ¢ € C and (b, by) is a lower bound of C. Then (a,apVv[x)) > (b, by) as
inf; C = (a,a¢V[x)). Consequently, a > b and a = infy; C. Since a = infy; C and M is
bounded above by 1, then, M is complete.

Now we prove (ii). Let ¢ # E C D. Consider EcC D) corresponding to E. Then

E={Q,[e):ecD}.

Let z be a lower bound of E. Since L is complete, then infLE exists. Let infLE =
(a,apV[x)). Since z < e for all e € E as z is a lower bound of E. Then, [z) D[e) and
(1,[2)) < (1,[e)). Thus, (1, 2) is a lower bound of E. Then, (a,apV[x)) > (1,[2)) because
ofinf, E = (a,apVv[x)). This implies that > 1 and agV[x) C[z). Consequently, a = 1
and apV[x) = 0pV[x) =[x). Thus [x) C[z) implies x > z. This shows that x is the great-
est lower bound of E in D and x = infp E. Using a similar way, we can show that, if E has
an upper bound, then supj, E exists. Therefore, D is a conditionally complete lattice as
required.

Now we prove (iii). Let # # E C D. Consider E C D(L) corresponding to E. Then

E={(1,[x):x€E}.

Since L is complete, then infLé exists. Let (b, l_)gov[z)) = inf; E. We show that b is the
largest element of M. Since (b, beV[z)) = infy E, then (b,bpV[2)) < (1,[x)), Vx € E.
This gives b < 1 and beV|[z) D[x), Vx € E. Therefore, bpV[z) D Uyer[x) =[E) D E.
Thus, b € Mg. Now, let ¢ € Mg. Then cpV[y) D E for some y € D. It follows that
coV[y) D[E) 2[«x) for all x € E. Hence, (1,[x)) < (¢,cpV[y)) for all x € E. Thus,
(¢, cpV[y)) is a lower bound of E and therefore (¢, coVv[y)) < (b, beV[2)). Then, ¢ < b.
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This deduce that b is the largest element of Mg in M. Therefore, (M, D, ¢) is a complete
decomposable MS-triple. O

The converse of the above theorem is given in the following.

Theorem 4 Let L be a decomposable MS-algebra constructed from the complete decom-
posable MS-triple (M, D, ). Then L is complete.

Proof Let (M, D, ¢) be a complete decomposable MS-triple. Then —(iii) of Definition 8
hold. Let ¥ # N C L, where L is constructed as in construction Theorem from the
decomposable MS-triple (M, D, ) as follows:

L ={(a,apV[x)):a € M,x € D}.

Since L is bounded, it is enough to show the existence of inf; N. Denote a = infy; N°°
and F = U{[?) : (c,cepV[t)) € Nfor some ¢ € M} (U means the union in F(D)). Let b =
max Mr. Now, we prove that there exists an element z € D such that l_a(pv[z) D Fand
if l_7<p\/[y) D F for some y € D then l_ago\/[y) D byV|z). For this purpose, consider the
following set:

{xy .y € I'for allx, withbpVv[x,) D F}.

Thus, we have to find az € D with l_)go\/[y) D Fand Bgo\/[y) 2 l;gpv[z) forally € I'. The
set {xy .y € I'for allxywithl_ﬂpv[xy) D F} is bounded from above. Then, by (ii), there
exists s = supp{x, : y € I'}. We prove that N, er[x,) =[s).

y € Nyerlxy) & y€lxy), Vy el
& y=>x, Yy el
& yisan upper bound of {x, : y € T}

& y>sass=supfx, :y €'}
D

& y€ls).
Then it is sufficient to prove the following equality.
Nyer (bpV[x,)) = by v Nyerlxy) = bpV[s). (1)
Lett e l_xpv[s). Then

tel_w\/[s) = t >t Aswheret; el_ﬂp
=t>tHAGVr)ass>wforally eT
= t> ({1 AS)V (&L Axy)
= t>H A%,

=te Bwv[xy) forally eT.

Then by v Nyer[xy) € l;(p\/[x,,) implies b v Nyerlx,) € ﬂygp(l_ago\/[xy)). Conversely,
lety e ﬂyer(éwv[xy)). Theny € Z)(pv[xy) forally e I'.Hencey >t Azfort € by and
z €[xy) forall y € I'. It follows that z > x,, for all y € I'. This means that z is an upper
bound of the set {x,, : y € I'}. Thens < zass = supp{x, : y € I'}. Now
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y=tAz

=tA(SVz)ass <z

(t A s) V (t A z) by distributivity of D

v

tASE l;(p\/[s).

Theny € l;(p\/[s). Therefore, ﬂyer(l_)<pv[xy)) C l_upv[s).

We prove the existence of inf; N. First, we claim that

i= (a A b,mgo\/[z)) = inf; N (we put thenz = s).

First, we show that i is a lower bound of N. Let (f,]_‘(pv[y)) € N. Since a = infy; N°°,
wegeta < f.So,aAb <a <f.Thenanb < fimpliesthata Ab > f. Consequently,
(anbyp =apv by Qﬂp. Moreover, [y) C F C l_o(p\/[z) asy € F. Then

(@nbgv[z) = @V bev]z)
= (g v by) v (bpV[2))
> foviy).
Then (a A b, (a Ab)pV[z)) < (f,f\/[y)) for all (f,f\/[y)) € N. Therefore, i is a lower
bound of N. It remains to show that i is the greatest lower bound of N. Let (¢, co V[ x)) be

a lower bound of N. Then, (¢, cpV[%)) < (f,.foV[9), Y(f.fov[y) € N.So,c < f, Vf €
N°°. Then c is a lower bound of N°°. Thus ¢ < aasa = i}t‘l/IfN“. On the other hand,

coV|x) wav[y), V(f,f(p\/[y)) € N. So, coV[x) D[y), Vy € F. Therefore, coVv[x) D F.
Hence, coV[x) D boV|[z) by using equality (1). Then cpVv([x) D F implies that ¢ € MF.
So,c<basb= mA%pr € M. Now, we have ¢ < g and ¢ < b. Then ¢ < a A b. Moreover,
we have ¢p D ag because of ¢ < a. Also, cpV[x) D bpV[z).So, cpV[x) D apVbeVv|z) =
(a A b)pV|[z). Therefore, (c,coV[x)) <i. Theni = inf; N and L is complete. O

Corollary 2 If M and D are complete, then so is L.

Proof . We need only to prove that the condition (iii) of Definition 8 holds. Let E € D
and t = infpE. Then, [£) =[infpE) D E. So, (1,1pVv[t)) = (1,[t)) € L. Therefore,
1 € MEg. Hence, by the above Theorem, L is complete. O

Corollary 3 If M is finite and D is conditionally complete, then L is complete.

Proof Since M is finite and Mg is an ideal of M (see Lemma 1(1)), then M is com-
plete and Mg is a principal ideal of M. Therefore, Mg contains the greatest element
in M. So, the conditions (i)—(iii) of Definition 8 are satisfied and consequently, L is
complete. O

Combining Theorems 3 and 4, we get the following theorem.

Theorem 5 Let L be a decomposable MS-algebra constructed from the decomposable
MS-triple (M, D, ¢). Then L is complete if and only if (M, D, ¢) is complete.

Let L be a complete decomposable AMS-algebra. In the proof of Theorem 4 arbitrary
meets in L are described. In the following Lemma, we describe joins in L.
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Lemma 4 Let L be a complete decomposable MS-algebra constructed from the decom-
posable MS-triple (M,D, ¢). Let ¢ # N C L and a = sup,; N°°. Then there exists
an element z € D such that [z) = (\{cpVv[?): (c,cpVv[t)) € N} Nagp and supN =
(a,apV|2)).

Proof Let ¢ # N C L and sup; N = (b, beV[z)). We can assume that z € agp. We prove
that b = a = sup,,; N°°. Using Lemma 2(2), we get

supy N°° = (supy N)*° = (b, by /[ 2))*° = (b, b).

But a = (a,a¢) = sup,; N°°. Then b = a. Hence, apV|z) is the greatest filter of the
form apV|x), x € D with

apV[z)) C coV[t) for each (c,copV[t)) € N.

The last condition is equivalent to

[2) c N{cpVvD) : (c,coVv[t)) € N} Nagp.

Let (N {coVv[t) : (c,epVv[t)) e Ny Nap = R If [z) # R, thenthereisy € R,y # z. It
follows that yAz < zand yAz € R. Then [z) C[yAz) implies apV[z) C apV[yAz).Since
yAz € Rthen [yAz) C cpVv[t) forall (c,coV[t)) € N.Sincea > ¢ (asa = sup,; N°°) then
a < c. It follows that ap < cg. Therefore, apVv[y A z) C cpV[¢) for all (c,cpVv[t)) € N.
Consequently,

apV|z) CapVv[y Az) CcpVv[e) forall (c,cpV[t)) €N,

which contradicts the maximality of ag V| 2). O

Complete homomorphisms via complete triple homomorphisms

In this section, we introduce complete triple homomorphisms of complete decom-
posable MS-algebras. Then, we characterize complete homomorphisms of complete
decomposable MS-algebras in terms of complete triple homomorphisms. For this pur-
pose, we recall from [4], the notion of triple homomorphism of decomposable MS-triples
and related properties which will be used in rest of the paper.

Definition 9 [4] Let (M, D, ¢) and (M1, D1, 1) be decomposable MS-triples. A triple
homomorphism of the triple (M, D, ¢) into (M1, D1, ¢1) is a pair (f,g), where fis a homo-
morphism of M into My, g is a homomorphism of D into D1 preserving 1 such that for every
aeM,

apg < af 1 (2)

Lemma 5 [4] Let (f, g) be a triple homomorphism of a decomposable MS-triple (M, D, ¢)
into a decomposable MS-triple (M1, D1, ¢1). Let a,b € M and x,y,t € D. Then
(i) aply) =[1t) implies af p1N[ yg) =[1g),
(i) (afe1vIxg)) N (Bfe1V([y9)) = (a v b)f o1V tg).

Theorem 6 [4] Let L and L, be decomposable MS-algebras, (M, D, ¢) and (M1, D1, ¢1)
be the associated decomposable MS-triples, respectively. Let h be a homomor-
phism of L into Ly and hy, hp the restrictions of h to M and D, respectively.
Then (hy,hp) is a triple homomorphism of the decomposable MS-triples. Con-
versely, every triple homomorphism (f,g) of the decomposable MS-triples uniquely
determines a homomorphism h of L into L with hyy = f,hp = g by the
following rule:



Badawy and Gaber Journal of the Egyptian Mathematical Society (2019) 27:23 Page 9 of 11

xh = x°°f ndg,forallx € L, (3)

where x = x°° A d for some d € D(L).

If L and L are represented as in the construction Theorem then (3) reads

(a,apV[x))h = (af,@gov[xg)) for all (a,apVv|[x)) € L. (4)

In the following, we will write L = (M, D, ¢) to indicate that (M, D, ¢) is the decom-
posable MS-triple associated with L, that is, L°° = M, D(L) = D, and ¢(L) = ¢.
Let L = (M,D,¢) and L1 = (M1, D, ¢1) be decomposable MS-algebras, we will write
h = (f,g) to indicate that (f,g) : (M,D,9) — (M1, Dy, ¢1) is the triple homomorphism
of decomposable MS-triples corresponding to the homomorphism / of L into L;.

Lemma 6 Let h = (f,g) be a homomorphism of a decomposable MS-algebra L onto a
decomposable MS-algebra Ly. Then for each a € L°°, we have

apg = af g1.

Proof We have, apg C af ¢ by (2). It remains to show that af g1 C apg. Lety € af¢;.
Then

v €l(af)°) N D(Ly) =[ (ah)°) N D(Ly) implies y €[ (ah)°) and y € D(L).

Then y > (ah)° = a°h. Since h is onto, then g : D(L) — D(L;) is also onto. Hence,
there exists x € D(L) such that x% = y. Evidently, a° v x €[a°) N D(L) and

(@ Vvx)h=a°hvxh=xhasxh=y>a‘h.

Therefore, y €[a°h) N D(L1) = ([a°)h N Dg) = ([a®) N D)g = apg. O

Now, we introduce the concept of complete triple homomorphism.

Definition 10 A triple homomorphism (f, g) of a decomposable MS-triple (M, D, ¢) into
a decomposable MS-triple (M1, D1, ¢1) is called complete if the following conditions are
satisfied
(i) fis a complete homomorphism of M and M,
(ii) g is a complete homomorphism of D and D1,
(iii) (max Mg)f = max Mg, for each ¢ # E C D.

Remark 1 First, we observe that the map g : D — Dy is a complete means that
(supp E)g = supp, Eg for any E C D and if infp E and infp, Mg exist then (infp E)g =
infD1 Eg.

Theorem 7 Let L = (M, D, ¢) and Ly = (M1, D1, ¢1) be complete decomposable MS-
algebras and let h = (f, g) be a homomorphism of L onto L. Then h is complete if and only

if (f,g) is complete.

Proof The decomposable MS-triples (M, D, ¢) and (M1, D1, ¢1) are associated with L
and L, respectively. Let 1 = (f,g) be a complete homomorphism of L onto L;. Then f is
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a de Morgan homomorphism of M onto M; and g is a lattice homomorphism of D onto
D preserving 1. We have to verify that f and g are complete. Let ¢ # N C M. Then

<1Ir\14fN>f = (1rLlfN>f = <1rLlfN> h= anlho = anlfo = 5\%fo by Lemma 2(3),

(supN)f = (sup N) oof = ((supN) h> - = (supNh) = sup Nf by Lemma 2(2).
M L L L My

Thus, f is complete. We prove that g is complete. Let ¢ # E € D. Then

(supp E)g = (supy E)g = (sup; N)h = sup;, Nh = supp, Eg by Lemma 2(4).

If infp E and infp, Eg exist, then

(infpE)g = (infy E)g = (infy N)h = inf;, Nh = infp, Eg by Lemma 2(4).

Now, we prove (iii). Let ¢ # E € D. Consider E corresponding the set Eon D(L), where

E={1,[x):x€E} < DL).

By (4), we have

Eh={(1,[xg)) : x € E} € D(Ly).

Since / is complete, then (inf; E)i = inf;, Eh for each ¢ # E C L. Hence, (infy E)°° =
max Mg (see the proof of Theorem 3) and similarly (inf, Ek)°° = max Mg,. Conversely,
assume that (i)—(iii) hold and let # = (f,g) be a homomorphism of L onto L;. We have
to show that % is complete. First we prove that for ¢ # H < L, (infy H)h = inf;, Hh
holds. Consider E = | J{[?) : (¢,cpV[x)) € M}. Let max Mg = b and infy; H°® = a. Then
according to the proof of Theorem 4, we get

i = (a A b,mq}v[z)) = inf; H, where z = supp {xy : l_w\/[xy) D E]. Using (4),
we have

Hi = {(of Vi) s (c,epvIm) € H],

and

ih = ((a A b)f,mwv[zg)) — (inf, F)h.

Now, infy, (Hf)°® = (infy; H°°)f = af by (i) and max Mg, = (maxME)f = bf by (iii).
Since L1 is complete and Hk C L1 then again according to the proof of Theorem 4, we get

infy, Hh = ((u AD,(a N b)f(p\/[zl)) = ih, where z; = sup {xyg: y € F} = (sup{xy :

y € I'})g = zg as g is an onto homomorphism. Therefore, inf; Mh = (infy, M)h.

Now, we prove that (sup; H)h = supy, Hh. By Lemma 4, sup; (M) = (a,apV|[2)),
where a = sup,; H°° and [z) = [ {cpV[?) : (c,cpV[£)) € H} N ap. Then supy, Hh =
(a1,d101V[z1)), where a; = SUpyy, (Hh)°° = sule(Hh)oo = supj, H°h =
(sup; M°°)h = (supp; H°®)h = ah = af (by using Lemma 2(2) and (i) of Definition 9)
and [z1) = {q_)f(plv[tg) :(c,cpV[p) € H} N ai¢1. We show that zg = z;. We have
¢f o1 = cpg by Lemma 6 and cogV[tg) = (cpV[£))g by Lemma 5(1). Then

[21) = [{epVID)g: (c,épVIt) € HY Napg

- (ﬂ {Eov[1) : (c,epv[t)) € H) N aw)g
= [zg)

which implies z; = zg. Therefore, (sup; H)h = sup;, Hh and / is complete. O
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