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Abstract
According to the characterization of decomposableMS-algebras in terms of triples
(M,D,ϕ), whereM is a de Morgan algebra, D is a distributive lattice with 1 and ϕ is a
(0,1)-homomorphism ofM into F(D), the filter lattice of D, we characterize complete
decomposableMS-algebras in terms of complete decomposableMS-triples. Also, we
describe the complete homomorphisms of complete decomposableMS-algebras by
means of complete decomposableMS-triples.

Keywords: MS-algebras, Complete lattice, Complete decomposableMS-algebras,
Complete decomposableMS-triples, Triple homomorphisms, Complete
homomorphisms

AMSMathematics Subject Classification (2010): Primary 06D30; Secondary 06D15.

Introduction
Morgan Stone algebras (or simplyMS-algebras) are introduced and characterized by T.S.
Blyth and J.C. Varlet [1] as a generalization of both de Morgan algebras and Stone alge-
bras. In [2], T.S. Blyth and J.C. Varlet described the lattice �(MS) of subclasses of the
class MS of all MS-algebras. A. Badawy, D. Guffova, and M. Haviar [3] introduced and
characterized decomposable MS-algebras by means of decomposable MS-triples. More-
over, they constructed a one-to-one correspondence between decomposableMS-algebras
and decomposableMS-triples. A. Badawy and R. El-Fawal [4] studied many properties of
decomposableMS-algebras in terms of decomposableMS-triples as homomorphisms and
subalgebras. Also, they formulated and solved some fill in problems concerning homo-
morphisms and subalgebras of decomposableMS-algebras. A. Badawy [5] introduced the
notion of dL-filters of principal MS-algebras. Recently, A. Badawy [6] studied the rela-
tionship between deMorgan filters and congruences of decomposableMS-algebras. Also,
many properties of ideals ofMS-algebras are given in [7] and [8].
Several authors studied complete p-algebras, like C.C. Chain and G. Grätzer [9] for

Stone algebras, S. El-Assar, and M. Atallah [10] for distributive p-algebras and P. Mederly
[11] for modular p-algebras.
In this paper, we introduce complete decomposableMS-algebras and complete decom-

posable MS-triples. We show that a decomposable MS-algebra L constructed from the
decomposable MS-triple (M,D,ϕ) is complete if and only if the triple (M,D,ϕ) is com-
plete. Also, a description of complete homomorphisms of decomposable MS-algebras is
given in terms of complete decomposableMS-triples.
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Preliminaries
In this section, we present definitions and main results which are needed through this
paper. We refer the reader to [1–4, 12–15] for more details.
A de Morgan algebra is an algebra (L;∨,∧,− , 0, 1) of type (2,2,1,0,0) where

(L;∨,∧, 0, 1) is a bounded distributive lattice and the unary operation of involution −

satisfies
x = x, (x ∨ y) = x ∧ y, (x ∧ y) = x ∨ y.

An MS-algebra is an algebra (L;∨,∧,◦ , 0, 1) of type (2,2,1,0,0) where (L;∨,∧, 0, 1) is
a bounded distributive lattice and the unary operation ° satisfies
x ≤ x◦◦, (x ∧ y)◦ = x◦ ∨ y◦, 1◦ = 0.
The following Theorem gives the basic properties ofMS-algebras.

Theorem 1 ( [1, 12]). For any two elements a, b of an MS-algebra L, we have
(1) 0◦ = 1,
(2) a ≤ b ⇒ b◦ ≤ a◦,
(3) a◦◦◦ = a◦,
(4) (a ∨ b)◦ = a◦ ∧ b◦,
(5) (a ∨ b)◦◦ = a◦◦ ∨ b◦◦,
(6) (a ∧ b)◦◦ = a◦◦ ∧ b◦◦.

Lemma 1 ( [1, 3]). Let L be an MS-algebra. Then
(1) L◦◦ = {x ∈ L : x = x◦◦} is a de Morgan subalgebra of L,
(2) D(L) = {x ∈ L : x◦ = 0} is a filter (filter of dense elements) of L.

For any lattice L, let F(L) denotes the set of all filters of L. It is known that, (F(L);∧,∨)

is a distributive lattice if and only if L is a distributive lattice, where the operation ∧ and
∨ are given by
F∧G = F∩G and F∨G = {

x ∈ L : x ≥ f ∧ g, f ∈ F , g ∈ G
}
, respectively for everyF ,G ∈

F(L).
Also, [ a) = {x ∈ L : x ≥ a} is a principal filter of L generated by a.

Definition 1 [9]. Let L = (L;∨,∧, 0L, 1L) and L1 = (L1;∨,∧, 0L1 , 1L1) be bounded
lattices. The map h : L → L1 is called (0,1)-lattice homomorphism if
(1) 0Lh = 0L1 and 1Lh = 1L1 ,
(2) h preserves joins, that is, (x ∨ y)h = xh ∨ yh for every x, y ∈ L,
(3) h preserves meets, that is, (x ∧ y)h = xh ∧ yh for every x, y ∈ L.

Definition 2 [14] A (0,1)-lattice homomorphism h : L → L1 of an MS-algebra L into an
MS-algebra L1 is called a homomorphism if x◦h = xh◦ for all x ∈ L. If L and L1 are de
Morgan algebras, then h is called a de Morgan homomorphism.

Definition 3 [3] An MS-algebra L is called decomposable MS-algebra if for every x ∈ L
there exists d ∈ D(L) such that x = x◦◦ ∧ d.

Definition 4 [3] A decomposable MS-triple is (M,D,ϕ), where
(i) (M;∨,∧, ,̄ 0, 1) is a de Morgan algebra,
(ii) (D;∨,∧, 1) is a distributive lattice with 1,
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(iii) ϕ is a (0, 1)-homomorphism fromM into F(D) such that for every element a ∈ M and
for every y ∈ D there exists an element t ∈ D with aϕ ∩ [

y) = [t).

Theorem 2 [3] (Construction Theorem) Let (M,D,ϕ) be a decomposable MS-triple.
Then

L = {(a, āϕ ∨ [x)) : a ∈ M, x ∈ D}
is a decomposable MS-algebra, if we define

(a, āϕ ∨ [x)) ∨ (b, b̄ϕ ∨ [
y)) =

(
a ∨ b, (a ∨ b)ϕ ∨ [t)

)
for somet ∈ D,

(a, āϕ ∨ [x)) ∧ (b, b̄ϕ ∨ [
y)) =

(
a ∧ b, (a ∧ b)ϕ ∨ [

x ∧ y)
)
,

(a, āϕ ∨ [x))◦ = (ā, aϕ),

1L = (1, [1)),

0L = (0,D).

Conversely, every decomposable MS-algebra L can be associated with the decomposable
MS-triple (L◦◦,D(L),ϕ(L)), where
aϕ (L) = [a◦) (L) , a ∈ L◦◦.

The decomposableMS-algebra L constructed in Theorem 2 is called the decomposable
MS-algebra associated with the decomposable MS-triple (M,D,ϕ) and the construction
of L described in Theorem 2 is called a decomposableMS-construction.

Corollary 1 [3] Let L be a decomposable MS-algebra associated with the decomposable
MS-triple (M,D,ϕ). Then
(1) L◦◦ = {(a, āϕ) : a ∈ M},
(2) D(L) = {(1, [ x)) : x ∈ D},
(3) D ∼= D(L) and M ∼= L◦◦,
(4) The order of L is given as follows: (a, āϕ∨[ x)) ≤ (b, b̄ϕ∨[ y)) iff a ≤ b and āϕ∨[ x) ⊇
b̄ϕ∨[ y).

Definition 5 [14] A lattice L is called complete if infL H and supL H exist for each φ 
=
H ⊆ L.

Definition 6 [14] A lattice L is called conditionally complete if every upper bounded
subset of L has a supermum in L and every lower bounded subset of L has an infimum in L.

AnMS-algebra L is called complete if it is complete as a lattice.

Definition 7 [14] A lattice homomorphism h : L → L1 of a complete lattice L into a
complete lattice L1 is called complete if

(infL H)h = infL1 Hh and (supL H)h = supL1 Hh for each φ 
= H ⊆ L.

A homomorphism h : L → L1 of a completeMS-algebra L into a completeMS-algebra
L1 is called complete if it is complete as a lattice homomorphism.
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Characterization of complete decomposableMS-algebras via triples
In this section, we introduce and characterize complete decomposable MS-triples of

complete decomposableMS-algebras.
Let L be a decomposableMS-algebra L. For φ 
= N ⊆ L, define N◦ as follows:
N◦ = {n◦ : n ∈ N}.

Lemma 2 If L is a complete decomposable MS-algebra, then for φ 
= N ⊆ L, φ 
= C ⊆
L◦◦ and φ 
= E ⊆ D(L), we have
(1) (supL N)◦ = infL N◦,
(2) supL◦◦ C = (supL C)◦◦ = (infL C◦)◦,
(3) infL◦◦ C = infL C,
(4) infD(L) E = infL E and supD(L) E = supL E.

Proof (1). Let x = supL N . Then x ≥ n for all n ∈ N implies x◦ ≤ n◦ . Hence x◦ is a
lower bound of N◦. Let y be a lower bound of N◦. Then y ≤ n◦ for all n ∈ N implies
y◦ ≥ n◦◦ ≥ n. So, y◦ is an upper bound of N. Thus x ≤ y◦ as x = supL N . This gives
x◦ ≥ y◦◦ ≥ y . Therefore x◦ = infL N◦ = (supL N)◦.
(2) Let supL C = x. Then x◦◦ = (supL C)◦◦. We have to show that x◦◦ = supL◦◦ C. Since
supL C = x, then x ≥ c for all c ∈ C. so, x◦◦ ≥ c◦◦ = c for all c ∈ C. Therefore x◦◦ is an
upper bound of C. Let y be another upper bound of C in L◦◦. Then y ≥ c for all c ∈ C.
Thus y◦◦ ≥ c◦◦ = c. Hence y◦◦ is an upper bound of C. So y◦◦ ≥ x as x = supL C. It
follows that y = y◦◦ ≥ x◦◦. Hence x◦◦ is the least upper bound of C. Since x◦◦ ∈ L◦◦, then
x◦◦ = supL◦◦ C. By (1) we have (supL C)◦◦ = (infL C◦)◦.
(3) Let x = infL C. Then x ≤ c for all c ∈ C. Then x◦◦ ≤ c◦◦ = c . Hence x◦◦ is a lower
bound of C. Thus x ≥ x◦◦ as x = infL C. But x ≤ x◦◦ . Then x◦◦ = x and x ∈ L◦◦. Thus
infL◦◦ C = x.
(4) Let x = infL E and y = infD(L) E . Then x ≤ e and y ≤ e for all e ∈ E imply that x = y.
Now we prove supD(L) E = supL E. Let y = supL E. Then y ≥ e for all e ∈ E. It follows that
y◦ ≤ e◦ = 0. Then y ∈ D(L) implies y = supD(L) E.

Let (M,D,ϕ) be a decomposable MS-triple. For any ∅ 
= E ⊆ D, consider the set
ME as follows:
ME = {a ∈ M : āϕ∨[ z) ⊃ E for some z ∈ D}.

Lemma 3 Let (M,D,ϕ) be a decomposable MS-triple. For any ∅ 
= E ⊆ D, we have
(1) ME is an ideal of M,
(2) [E) = ∪{[ t) : t ∈ E},
(2) ME = M[E).

Proof (1). Let a, b ∈ ME . Then āϕ∨[ z1) ⊃ E and b̄ϕ∨[ z2) ⊃ E for some z1, z2 ∈ D.
Hence E ⊂ (āϕ∨[ z1)) ∩ (b̄ϕ∨[ z2)) = (a ∨ b)ϕ∨[ t) for some t ∈ D (see Theorem 2).
It follows that a ∨ b ∈ ME . Now, let a ∈ ME and c ∈ M. Then, ∃z ∈ D such that
āϕ∨[ z) ⊃ E. Since a ∧ c ≤ a, then a ∧ c ≥ ā. This gives (a ∧ c)ϕ ⊇ āϕ. It follows
that (a ∧ c)ϕ∨[ z) ⊇ āϕ∨[ z) ⊃ E. Then a ∧ c ∈ ME . Consequently, ME is an ideal
ofM.
(2) Obvious.
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(3) Clearly, M[E) ⊆ ME . Let a ∈ ME . Then, ∃z ∈ D such that āϕ∨[ z) ⊃ E. Since āϕ∨[ z)
is a filter of D and [E) is the smallest filter of D containing E, then āϕ∨[ z) ⊃[E). Hence,
a ∈ M[E) andME ⊆ M[E). Therefore ,ME = M[E).

Definition 8 A complete decomposableMS-triple is a decomposableMS-triple (M,D,ϕ)

satisfying the following conditions:
(i) M is complete,
(ii) D is conditionally complete,
(iii) For each ∅ 
= E ⊆ D, the set ME has the greatest element in M.

Theorem 3 Let L be a complete decomposable MS-algebra constructed from the decom-
posable MS-triple (M,D,ϕ). Then, the triple (M,D,ϕ) is complete.

Proof Since L is associated with the decomposable MS-triple (M,D,ϕ), then by
Theorem 2, we have
L = {(a, āϕ∨[ x)) : a ∈ M, x ∈ D}.
Corollary 1(1)-(3), gives
L◦◦ = {(a, āϕ) : a ∈ M} ∼= M and D(L) = {(1, [ x)) : x ∈ D} ∼= D.
We have to prove that a decomposableMS-triple (M,D,ϕ) is complete. So we proceed

to prove (i)–(iii) of Definition 8. For (i), let ∅ 
= C ⊆ M. Consider a subset Ć = {(c, c̄ϕ) :
c ∈ C} of L◦◦ corresponding to C. Since L is complete, then infL Ć = (a, āϕ∨[ x)) for some
(a, āϕ∨[ x)) ∈ L. Thus, (a, āϕ∨[ x)) ≤ (c, cϕ) for all c ∈ C. Then a ≤ c for all c ∈ C implies
that a is a lower bound of C. We verify that a is the greatest lower bound of C inM. Let b
be a lower bound of C. Then b ≤ c for all c ∈ C. This gives b̄ϕ ⊇ c̄ϕ. Therefore, (b, b̄ϕ) ≤
(c, c̄ϕ) for all c ∈ C and (b, bϕ) is a lower bound of Ć. Then (a, āϕ∨[ x)) ≥ (b, bϕ) as
infL C = (a, āϕ∨[ x)). Consequently, a ≥ b and a = infM C. Since a = infM C and M is
bounded above by 1, then,M is complete.
Now we prove (ii). Let φ 
= E ⊆ D. Consider É ⊆ D(L) corresponding to E. Then
É = {(1, [ e)) : e ∈ D}.
Let z be a lower bound of E. Since L is complete, then infL É exists. Let infL É =

(a, āϕ∨[ x)). Since z ≤ e for all e ∈ E as z is a lower bound of E. Then, [ z) ⊇[ e) and
(1, [ z)) ≤ (1, [ e)). Thus, (1, z) is a lower bound of É. Then, (a, āϕ∨[ x)) ≥ (1, [ z)) because
of infL É = (a, āϕ∨[ x)). This implies that a ≥ 1 and āϕ∨[ x) ⊆[ z). Consequently, a = 1
and āϕ∨[ x) = 0ϕ∨[ x) =[ x). Thus [ x) ⊆[ z) implies x ≥ z. This shows that x is the great-
est lower bound of E in D and x = infD E. Using a similar way, we can show that, if E has
an upper bound, then supD E exists. Therefore, D is a conditionally complete lattice as
required.
Now we prove (iii). Let ∅ 
= E ⊆ D. Consider É ⊆ D(L) corresponding to E. Then

É = {(1, [ x)) : x ∈ E} .

Since L is complete, then infL É exists. Let (b, b̄ϕ∨[ z)) = infL É. We show that b is the
largest element of ME . Since (b, b̄ϕ∨[ z)) = infL É, then (b, b̄ϕ∨[ z)) ≤ (1, [ x)), ∀x ∈ E.
This gives b ≤ 1 and b̄ϕ∨[ z) ⊇[ x), ∀x ∈ E. Therefore, b̄ϕ∨[ z) ⊇ ∪x∈E[ x) =[E) ⊃ E.
Thus, b ∈ ME . Now, let c ∈ ME . Then c̄ϕ∨[ y) ⊃ E for some y ∈ D. It follows that
c̄ϕ∨[ y) ⊇[E) ⊇[ x) for all x ∈ E. Hence, (1, [ x)) ≤ (c, c̄ϕ∨[ y)) for all x ∈ E. Thus,
(c, c̄ϕ∨[ y)) is a lower bound of É and therefore (c, c̄ϕ∨[ y)) ≤ (b, b̄ϕ∨[ z)). Then, c ≤ b.
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This deduce that b is the largest element of ME in M. Therefore, (M,D,ϕ) is a complete
decomposableMS-triple.

The converse of the above theorem is given in the following.

Theorem 4 Let L be a decomposable MS-algebra constructed from the complete decom-
posable MS-triple (M,D,ϕ). Then L is complete.

Proof Let (M,D,ϕ) be a complete decomposable MS-triple. Then –(iii) of Definition 8
hold. Let ∅ 
= N ⊆ L, where L is constructed as in construction Theorem from the
decomposableMS-triple (M,D,ϕ) as follows:
L = {(a, āϕ∨[ x)) : a ∈ M, x ∈ D}.
Since L is bounded, it is enough to show the existence of infL N . Denote a = infM N◦◦

and F = ∪ {[ t) : (c, c̄ϕ∨[ t)) ∈ N for some c ∈ M} (∪ means the union in F(D)). Let b =
maxMF . Now, we prove that there exists an element z ∈ D such that b̄ϕ∨[ z) ⊃ F and
if b̄ϕ∨[ y) ⊃ F for some y ∈ D then b̄ϕ∨[ y) ⊇ b̄ϕ∨[ z). For this purpose, consider the
following set:{

xγ : γ ∈ �for allxγwithb̄ϕ∨[ xγ ) ⊃ F
}
.

Thus, we have to find a z ∈ Dwith b̄ϕ∨[ y) ⊃ F and b̄ϕ∨[ y) ⊇ b̄ϕ∨[ z) for all γ ∈ �. The
set

{
xγ : γ ∈ �for allxγwithb̄ϕ∨[ xγ ) ⊃ F

}
is bounded from above. Then, by (ii), there

exists s = supD{xγ : γ ∈ �}. We prove that ∩γ∈�[ xγ ) =[ s).

y ∈ ∩γ∈�[ xγ ) ⇔ y ∈[ xγ ), ∀γ ∈ �

⇔ y ≥ xγ , ∀γ ∈ �

⇔ y is an upper bound of {xγ : γ ∈ �}
⇔ y ≥ s as s = sup

D
{xγ : γ ∈ �}

⇔ y ∈[ s).

Then it is sufficient to prove the following equality.

∩γ∈� (b̄ϕ∨[ xγ )) = b̄ϕ ∨ ∩γ∈�[ xγ ) = b̄ϕ∨[ s). (1)

Let t ∈ b̄ϕ∨[ s). Then

t ∈ b̄ϕ∨[ s) ⇒ t ≥ t1 ∧ s where t1 ∈ b̄ϕ

⇒ t ≥ t1 ∧ (s ∨ xγ ) as s ≥ xγ for all γ ∈ �

⇒ t ≥ (t1 ∧ s) ∨ (t1 ∧ xγ )

⇒ t ≥ t1 ∧ xγ

⇒ t ∈ b̄ϕ∨[ xγ ) for all γ ∈ �.

Then b̄ϕ ∨ ∩γ∈�[ xγ ) ⊆ b̄ϕ∨[ xγ ) implies b̄ϕ ∨ ∩γ∈�[ xγ ) ⊆ ∩γ∈�(b̄ϕ∨[ xγ )). Conversely,
let y ∈ ∩γ∈�(b̄ϕ∨[ xγ )). Then y ∈ b̄ϕ∨[ xγ ) for all γ ∈ �. Hence y ≥ t ∧ z for t ∈ b̄ϕ and
z ∈[ xγ ) for all γ ∈ �. It follows that z ≥ xγ for all γ ∈ �. This means that z is an upper
bound of the set {xγ : γ ∈ �}. Then s ≤ z as s = supD{xγ : γ ∈ �}. Now



Badawy and Gaber Journal of the EgyptianMathematical Society           (2019) 27:23 Page 7 of 11

y ≥ t ∧ z

= t ∧ (s ∨ z) as s ≤ z

= (t ∧ s) ∨ (t ∧ z) by distributivity of D

≥ t ∧ s ∈ b̄ϕ∨[ s).
Then y ∈ b̄ϕ∨[ s). Therefore, ∩γ∈�(b̄ϕ∨[ xγ )) ⊆ b̄ϕ∨[ s).

We prove the existence of infL N . First, we claim that
i =

(
a ∧ b, (a ∧ b)ϕ∨[ z)

)
= infL N (we put thenz = s).

First, we show that i is a lower bound of N. Let (f , f̄ ϕ∨[ y)) ∈ N . Since a = infM N◦◦,
we get a ≤ f . So, a ∧ b ≤ a ≤ f . Then a ∧ b ≤ f implies that a ∧ b ≥ f̄ . Consequently,
(a ∧ b)ϕ = āϕ ∨ b̄ϕ ⊇ f̄ ϕ. Moreover, [ y) ⊆ F ⊆ b̄ϕ∨[ z) as y ∈ F . Then

(a ∧ b)ϕ∨[ z) = (ā ∨ b̄)ϕ∨[ z)
= (āϕ ∨ b̄ϕ) ∨ (b̄ϕ∨[ z))
⊇ f̄ ϕ∨[ y).

Then (a ∧ b, (a ∧ b)ϕ∨[ z)) ≤ (f , f̄∨[ y)) for all (f , f̄∨[ y)) ∈ N . Therefore, i is a lower
bound of N. It remains to show that i is the greatest lower bound of N. Let (c, c̄ϕ∨[ x)) be
a lower bound of N. Then, (c, c̄ϕ∨[ x)) ≤ (f , f̄ ϕ∨[ y)), ∀(f , f̄ ϕ∨[ y)) ∈ N . So, c ≤ f , ∀f ∈
N◦◦. Then c is a lower bound of N◦◦. Thus c ≤ a as a = inf

M
N◦◦. On the other hand,

c̄ϕ∨[ x) ⊇ f̄ ϕ∨[ y), ∀(f , f̄ ϕ∨[ y)) ∈ N . So, c̄ϕ∨[ x) ⊇[ y), ∀y ∈ F . Therefore, c̄ϕ∨[ x) ⊇ F .
Hence, c̄ϕ∨[ x) ⊇ b̄ϕ∨[ z) by using equality (1). Then c̄ϕ∨[ x) ⊇ F implies that c ∈ MF .
So, c ≤ b as b = max

M
MF ∈ M. Now, we have c ≤ a and c ≤ b. Then c ≤ a ∧ b. Moreover,

we have c̄ϕ ⊇ āϕ because of c ≤ a. Also, c̄ϕ∨[ x) ⊇ b̄ϕ∨[ z). So, c̄ϕ∨[ x) ⊇ āϕ∨ b̄ϕ∨[ z) =
(a ∧ b)ϕ∨[ z). Therefore, (c, c̄ϕ∨[ x)) ≤ i. Then i = infL N and L is complete.

Corollary 2 If M and D are complete, then so is L.

Proof . We need only to prove that the condition (iii) of Definition 8 holds. Let E ⊆ D
and t = infD E. Then, [ t) =[ infD E) ⊇ E. So, (1, 1̄ϕ∨[ t)) = (1, [ t)) ∈ L. Therefore,
1 ∈ ME . Hence, by the above Theorem, L is complete.

Corollary 3 If M is finite and D is conditionally complete, then L is complete.

Proof Since M is finite and ME is an ideal of M (see Lemma 1(1)), then M is com-
plete and ME is a principal ideal of M. Therefore, ME contains the greatest element
in M. So, the conditions (i)–(iii) of Definition 8 are satisfied and consequently, L is
complete.

Combining Theorems 3 and 4, we get the following theorem.

Theorem 5 Let L be a decomposable MS-algebra constructed from the decomposable
MS-triple (M,D,ϕ). Then L is complete if and only if (M,D,ϕ) is complete.

Let L be a complete decomposable MS-algebra. In the proof of Theorem 4 arbitrary
meets in L are described. In the following Lemma, we describe joins in L.
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Lemma 4 Let L be a complete decomposable MS-algebra constructed from the decom-
posable MS-triple (M,D,ϕ). Let φ 
= N ⊆ L and a = supM N◦◦. Then there exists
an element z ∈ D such that [ z) = ⋂ {c̄ϕ∨[ t) : (c, c̄ϕ∨[ t)) ∈ N} ∩ aϕ and supN =
(a, āϕ∨[ z)).

Proof Let φ 
= N ⊆ L and supL N = (b, b̄ϕ∨[ z)). We can assume that z ∈ aϕ. We prove
that b = a = supM N◦◦. Using Lemma 2(2), we get
supM N◦◦ = (supL N)◦◦ = (b, b̄ϕ∨[ z))◦◦ = (b, b̄ϕ).
But a = (a, āϕ) = supM N◦◦. Then b = a. Hence, āϕ∨[ z) is the greatest filter of the

form āϕ∨[ x), x ∈ D with
āϕ∨[ z)) ⊂ c̄ϕ∨[ t) for each (c, c̄ϕ∨[ t)) ∈ N .
The last condition is equivalent to
[ z) ⊂ ⋂ {c̄ϕ∨[ t) : (c, c̄ϕ∨[ t)) ∈ N} ∩ aϕ.
Let

⋂ {c̄ϕ∨[ t) : (c, c̄ϕ∨[ t)) ∈ N} ∩ aϕ = R. If [ z) 
= R, then there is y ∈ R, y 
≥ z. It
follows that y∧z < z and y∧z ∈ R. Then [ z) ⊂[ y∧z) implies āϕ∨[ z) ⊂ āϕ∨[ y∧z). Since
y∧z ∈ R then [ y∧z) ⊂ c̄ϕ∨[ t) for all (c, c̄ϕ∨[ t)) ∈ N . Since a ≥ c (as a = supM N◦◦) then
ā ≤ c̄. It follows that āϕ ≤ c̄ϕ. Therefore, āϕ∨[ y ∧ z) ⊂ c̄ϕ∨[ t) for all (c, c̄ϕ∨[ t)) ∈ N .
Consequently,
āϕ∨[ z) ⊂ āϕ∨[ y ∧ z) ⊂ c̄ϕ∨[ t) for all (c, c̄ϕ∨[ t)) ∈ N ,
which contradicts the maximality of āϕ∨[ z).

Complete homomorphisms via complete triple homomorphisms
In this section, we introduce complete triple homomorphisms of complete decom-

posable MS-algebras. Then, we characterize complete homomorphisms of complete
decomposable MS-algebras in terms of complete triple homomorphisms. For this pur-
pose, we recall from [4], the notion of triple homomorphism of decomposableMS-triples
and related properties which will be used in rest of the paper.

Definition 9 [4] Let (M,D,ϕ) and (M1,D1,ϕ1) be decomposable MS-triples. A triple
homomorphism of the triple (M,D,ϕ) into (M1,D1,ϕ1) is a pair (f , g), where f is a homo-
morphism of M into M1, g is a homomorphism of D into D1 preserving 1 such that for every
a ∈ M,

aϕg ⊆ af ϕ1 (2)

Lemma 5 [4] Let (f , g) be a triple homomorphism of a decomposableMS-triple (M,D,ϕ)

into a decomposable MS-triple (M1,D1,ϕ1). Let a, b ∈ M and x, y, t ∈ D. Then
(i) aϕ∩[ y) =[ t) implies af ϕ1∩[ yg) =[ tg),
(ii)

(
āf ϕ1∨[ xg

)
) ∩ (b̄f ϕ1∨[ yg)) = (a ∨ b)f ϕ1∨[ tg).

Theorem 6 [4] Let L and L1 be decomposable MS-algebras, (M,D,ϕ) and (M1,D1,ϕ1)

be the associated decomposable MS-triples, respectively. Let h be a homomor-
phism of L into L1 and hM, hD the restrictions of h to M and D, respectively.
Then (hM, hD) is a triple homomorphism of the decomposable MS-triples. Con-
versely, every triple homomorphism (f , g) of the decomposable MS-triples uniquely
determines a homomorphism h of L into L1 with hM = f , hD = g by the
following rule:
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xh = x◦◦f ∧ dg, for all x ∈ L, (3)

where x = x◦◦ ∧ d for some d ∈ D(L).

If L and L1 are represented as in the construction Theorem then (3) reads

(a, āϕ∨[ x))h = (af , (af )ϕ∨[ xg)) for all (a, āϕ∨[ x)) ∈ L. (4)

In the following, we will write L = (M,D,ϕ) to indicate that (M,D,ϕ) is the decom-
posable MS-triple associated with L, that is, L◦◦ = M, D(L) = D, and ϕ(L) = ϕ.
Let L = (M,D,ϕ) and L1 = (M1,D1,ϕ1) be decomposable MS-algebras, we will write
h = (f , g) to indicate that (f , g) : (M,D,ϕ) → (M1,D1,ϕ1) is the triple homomorphism
of decomposableMS-triples corresponding to the homomorphism h of L into L1.

Lemma 6 Let h = (f , g) be a homomorphism of a decomposable MS-algebra L onto a
decomposable MS-algebra L1. Then for each a ∈ L◦◦, we have
aϕg = af ϕ1.

Proof We have, aϕg ⊆ af ϕ1 by (2). It remains to show that af ϕ1 ⊆ aϕg. Let y ∈ af ϕ1.
Then
y ∈[ (af )◦) ∩ D(L1) =[ (ah)◦) ∩ D(L1) implies y ∈[ (ah)◦) and y ∈ D(L1).
Then y ≥ (ah)◦ = a◦h. Since h is onto, then g : D(L) → D(L1) is also onto. Hence,

there exists x ∈ D(L) such that xh = y. Evidently, a◦ ∨ x ∈[ a◦) ∩ D(L) and
(a◦ ∨ x)h = a◦h ∨ xh = xh as xh = y ≥ a◦h.
Therefore, y ∈[ a◦h) ∩ D(L1) = ([ a◦)h ∩ Dg) = ([ a◦) ∩ D)g = aϕg.

Now, we introduce the concept of complete triple homomorphism.

Definition 10 A triple homomorphism (f , g) of a decomposableMS-triple (M,D,ϕ) into
a decomposable MS-triple (M1,D1,ϕ1) is called complete if the following conditions are
satisfied
(i) f is a complete homomorphism of M and M1,
(ii) g is a complete homomorphism of D and D1,
(iii) (maxME)f = maxM1Eg for each φ 
= E ⊆ D.

Remark 1 First, we observe that the map g : D → D1 is a complete means that
(supD E)g = supD1 Eg for any E ⊆ D and if infD E and infD1 Mg exist then (infD E)g =
infD1 Eg.

Theorem 7 Let L = (M,D,ϕ) and L1 = (M1,D1,ϕ1) be complete decomposable MS-
algebras and let h = (f , g) be a homomorphism of L onto L1. Then h is complete if and only
if (f , g) is complete.

Proof The decomposable MS-triples (M,D,ϕ) and (M1,D1,ϕ1) are associated with L
and L1, respectively. Let h = (f , g) be a complete homomorphism of L onto L1. Then f is
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a de Morgan homomorphism of M onto M1 and g is a lattice homomorphism of D onto
D1 preserving 1. We have to verify that f and g are complete. Let φ 
= N ⊆ M. Then

(
inf
M

N
)
f =

(
inf
L
N

)
f =

(
inf
L
N

)
h = inf

L1
Nh = inf

L1
Nf = inf

M1
Nf by Lemma 2(3),

(
sup
M

N
)
f =

(
sup
L

N
)◦◦

f =
((

sup
L

N
)
h
)◦◦

=
(

sup
L1

Nh
)◦◦

= sup
M1

Nf by Lemma 2(2).

Thus, f is complete. We prove that g is complete. Let φ 
= E ⊆ D. Then
(supD E)g = (supL E)g = (supL N)h = supL1 Nh = supD1 Eg by Lemma 2(4).
If infD E and infD1 Eg exist, then
(infDE)g = (infL E)g = (infL N)h = infL1 Nh = infD1 Eg by Lemma 2(4).
Now, we prove (iii). Let φ 
= E ⊆ D. Consider E corresponding the set É onD(L), where
É = {(1, [ x)) : x ∈ E} ⊆ D(L).
By (4), we have
Éh = {(1, [ xg)) : x ∈ E} ⊆ D(L1).
Since h is complete, then (infL E)h = infL1 Eh for each φ 
= E ⊆ L. Hence, (infL E)◦◦ =

maxME (see the proof of Theorem 3) and similarly (infL1 Eh)◦◦ = maxM1Eg . Conversely,
assume that (i)–(iii) hold and let h = (f , g) be a homomorphism of L onto L1. We have
to show that h is complete. First we prove that for φ 
= H ⊆ L, (infL H)h = infL1 Hh
holds. Consider E = ⋃ {[ t) : (c, c̄ϕ∨[ x)) ∈ M}. Let maxME = b and infM H◦◦ = a. Then
according to the proof of Theorem 4, we get
i =

(
a ∧ b, (a ∧ b)ϕ∨[ z)

)
= infL H , where z = supD

{
xγ : b̄ϕ∨[ xγ ) ⊃ E

}
. Using (4),

we have
Hh =

{
(cf , c̄f ϕ∨[ xg)) : (c, c̄ϕ∨[ x)) ∈ H

}
,

and
ih =

(
(a ∧ b)f , (a ∧ b)f ϕ∨[ zg)

)
= (infL H)h.

Now, infL1(Hf )◦◦ = (infM H◦◦)f = af by (i) and maxM1Eg = (maxME)f = bf by (iii).
Since L1 is complete andHh ⊂ L1 then again according to the proof of Theorem 4, we get
infL1 Hh =

(
(a ∧ b)f , (a ∧ b)f ϕ∨[ z1)

)
= ih, where z1 = sup

{
xγ g : γ ∈ �

} = (sup{xγ :
γ ∈ �})g = zg as g is an onto homomorphism. Therefore, infL Mh = (infL1 M)h.
Now, we prove that (supL H)h = supL1 Hh. By Lemma 4, supL(M) = (a, āϕ∨[ z)),

where a = supM H◦◦ and [ z) = ⋂ {c̄ϕ∨[ t) : (c, c̄ϕ∨[ t)) ∈ H} ∩ aϕ. Then supL1 Hh =
(a1, ā1ϕ1∨[ z1)), where a1 = supM1(Hh)

◦◦ = supL1(Hh)
◦◦ = supL1 H

◦◦h =
(supL M◦◦)h = (supM H◦◦)h = ah = af (by using Lemma 2(2) and (i) of Definition 9)
and [ z1) = ⋂{

c̄f ϕ1∨[ tg) : (c, c̄ϕ∨[ t)) ∈ H
}

∩ a1ϕ1. We show that zg = z1. We have
cf ϕ1 = cϕg by Lemma 6 and c̄ϕg∨[ tg) = (c̄ϕ∨[ t))g by Lemma 5(1). Then

[ z1) =
⋂

{c̄ϕ∨[ t))g : (c, c̄ϕ∨[ t)) ∈ H} ∩ aϕg

=
(⋂

{c̄ϕ∨[ t) : (c, c̄ϕ∨[ t)) ∈ H} ∩ aϕ
)
g

= [ zg)

which implies z1 = zg. Therefore, (supL H)h = supL1 Hh and h is complete.
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