Complete decomposable MS-algebras

Abd El-Mohsen Badawy ${ }^{1 *}$ and Ahmed Gaber ${ }^{2}$

*Correspondence:
abdel-mohsen.mohamed@science. tanta.edu.eg
${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
Full list of author information is available at the end of the article

Abstract

According to the characterization of decomposable MS-algebras in terms of triples (M, D, φ), where M is a de Morgan algebra, D is a distributive lattice with 1 and φ is a $(0,1)$-homomorphism of M into $F(D)$, the filter lattice of D, we characterize complete decomposable MS-algebras in terms of complete decomposable MS-triples. Also, we describe the complete homomorphisms of complete decomposable MS-algebras by means of complete decomposable MS-triples.

Keywords: MS-algebras, Complete lattice, Complete decomposable MS-algebras, Complete decomposable MS-triples, Triple homomorphisms, Complete homomorphisms

AMS Mathematics Subject Classification (2010): Primary 06D30; Secondary 06D15.

Introduction

Morgan Stone algebras (or simply $M S$-algebras) are introduced and characterized by T.S. Blyth and J.C. Varlet [1] as a generalization of both de Morgan algebras and Stone algebras. In [2], T.S. Blyth and J.C. Varlet described the lattice Λ (MS) of subclasses of the class MS of all $M S$-algebras. A. Badawy, D. Guffova, and M. Haviar [3] introduced and characterized decomposable $M S$-algebras by means of decomposable $M S$-triples. Moreover, they constructed a one-to-one correspondence between decomposable $M S$-algebras and decomposable $M S$-triples. A. Badawy and R. El-Fawal [4] studied many properties of decomposable $M S$-algebras in terms of decomposable $M S$-triples as homomorphisms and subalgebras. Also, they formulated and solved some fill in problems concerning homomorphisms and subalgebras of decomposable $M S$-algebras. A. Badawy [5] introduced the notion of d_{L}-filters of principal $M S$-algebras. Recently, A. Badawy [6] studied the relationship between de Morgan filters and congruences of decomposable MS-algebras. Also, many properties of ideals of $M S$-algebras are given in [7] and [8].

Several authors studied complete p-algebras, like C.C. Chain and G. Grätzer [9] for Stone algebras, S. El-Assar, and M. Atallah [10] for distributive p-algebras and P. Mederly [11] for modular p-algebras.

In this paper, we introduce complete decomposable $M S$-algebras and complete decomposable $M S$-triples. We show that a decomposable $M S$-algebra L constructed from the decomposable $M S$-triple (M, D, φ) is complete if and only if the triple (M, D, φ) is complete. Also, a description of complete homomorphisms of decomposable $M S$-algebras is given in terms of complete decomposable $M S$-triples.

Preliminaries

In this section, we present definitions and main results which are needed through this paper. We refer the reader to $[1-4,12-15]$ for more details.

A de Morgan algebra is an algebra ($L ; \vee, \wedge,^{-}, 0,1$) of type ($2,2,1,0,0$) where ($L ; \vee, \wedge, 0,1$) is a bounded distributive lattice and the unary operation of involution satisfies

$$
\overline{\bar{x}}=x, \overline{(x \vee y)}=\bar{x} \wedge \bar{y}, \overline{(x \wedge y)}=\bar{x} \vee \bar{y} .
$$

An $M S$-algebra is an algebra ($L ; \vee, \wedge,{ }^{\circ}, 0,1$) of type $(2,2,1,0,0)$ where $(L ; \vee, \wedge, 0,1)$ is a bounded distributive lattice and the unary operation ${ }^{\circ}$ satisfies

$$
x \leq x^{\circ \circ},(x \wedge y)^{\circ}=x^{\circ} \vee y^{\circ}, 1^{\circ}=0
$$

The following Theorem gives the basic properties of $M S$-algebras.

Theorem 1 ([1, 12]). For any two elements a, b of an MS-algebra L, we have
(1) $0^{\circ}=1$,
(2) $a \leq b \Rightarrow b^{\circ} \leq a^{\circ}$,
(3) $a^{\circ \circ 0}=a^{\circ}$,
(4) $(a \vee b)^{\circ}=a^{\circ} \wedge b^{\circ}$,
(5) $(a \vee b)^{\circ \circ}=a^{\circ \circ} \vee b^{\circ \circ}$,
(6) $(a \wedge b)^{\circ \circ}=a^{\circ \circ} \wedge b^{\circ \circ}$.

Lemma 1 ([1, 3]). Let L be an MS-algebra. Then
(1) $L^{\circ \circ}=\left\{x \in L: x=x^{\circ \circ}\right\}$ is a de Morgan subalgebra of L,
(2) $D(L)=\left\{x \in L: x^{\circ}=0\right\}$ is a filter (filter of dense elements) of L.

For any lattice L, let $F(L)$ denotes the set of all filters of L. It is known that, $(F(L) ; \wedge, \vee)$ is a distributive lattice if and only if L is a distributive lattice, where the operation \wedge and \checkmark are given by
$F \wedge G=F \cap G$ and $F \vee G=\{x \in L: x \geq f \wedge g, f \in F, g \in G\}$, respectively for every $F, G \in$ $F(L)$.

Also, $[a)=\{x \in L: x \geq a\}$ is a principal filter of L generated by a.
Definition 1 [9]. Let $L=\left(L ; \vee, \wedge, 0_{L}, 1_{L}\right)$ and $L_{1}=\left(L_{1} ; \vee, \wedge, 0_{L_{1}}, 1_{L_{1}}\right)$ be bounded lattices. The map $h: L \rightarrow L_{1}$ is called (0,1)-lattice homomorphism if
(1) $0_{L} h=0_{L_{1}}$ and $1_{L} h=1_{L_{1}}$,
(2) h preserves joins, that is, $(x \vee y) h=x h \vee y h$ for every $x, y \in L$,
(3) h preserves meets, that is, $(x \wedge y) h=x h \wedge y h$ for every $x, y \in L$.

Definition 2 [14] A (0,1)-lattice homomorphism $h: L \rightarrow L_{1}$ of an MS-algebra L into an MS-algebra L_{1} is called a homomorphism if $x^{\circ} h=x h^{\circ}$ for all $x \in L$. If L and L_{1} are de Morgan algebras, then h is called a de Morgan homomorphism.

Definition 3 [3] An MS-algebra L is called decomposable MS-algebra iffor every $x \in L$ there exists $d \in D(L)$ such that $x=x^{\circ \circ} \wedge d$.

Definition 4 [3] A decomposable MS-triple is (M, D, φ), where
(i) $(M ; \vee, \wedge,,-0,1)$ is a de Morgan algebra,
(ii) $(D ; \vee, \wedge, 1)$ is a distributive lattice with 1 ,
(iii) φ is a $(0,1)$-homomorphism from M into $F(D)$ such that for every element $a \in M$ and for every $y \in D$ there exists an element $t \in D$ with $a \varphi \cap[y)=[t)$.

Theorem 2 [3] (Construction Theorem) Let (M, D, φ) be a decomposable MS-triple. Then

$$
L=\{(a, \bar{a} \varphi \vee[x)): a \in M, x \in D\}
$$

is a decomposable MS-algebra, if we define

$$
\begin{aligned}
& (a, \bar{a} \varphi \vee[x)) \vee(b, \bar{b} \varphi \vee[y))=(a \vee b, \overline{(a \vee b)} \varphi \vee[t)) \text { for somet } \in D, \\
& (a, \bar{a} \varphi \vee[x)) \wedge(b, \bar{b} \varphi \vee[y))=(a \wedge b, \overline{(a \wedge b)} \varphi \vee[x \wedge y)), \\
& (a, \bar{a} \varphi \vee[x))^{\circ}=(\bar{a}, a \varphi), \\
& 1_{L}=(1,[1)), \\
& 0_{L}=(0, D) .
\end{aligned}
$$

Conversely, every decomposable MS-algebra L can be associated with the decomposable MS-triple $\left(L^{\circ \circ}, D(L), \varphi(L)\right)$, where

$$
a \varphi(L)=\left[a^{\circ}\right)(L), a \in L^{\circ \circ}
$$

The decomposable $M S$-algebra L constructed in Theorem 2 is called the decomposable $M S$-algebra associated with the decomposable $M S$-triple (M, D, φ) and the construction of L described in Theorem 2 is called a decomposable $M S$-construction.

Corollary 1 [3] Let L be a decomposable MS-algebra associated with the decomposable MS-triple (M, D, φ). Then
(1) $L^{\circ \circ}=\{(a, \bar{a} \varphi): a \in M\}$,
(2) $D(L)=\{(1,[x)): x \in D\}$,
(3) $D \cong D(L)$ and $M \cong L^{\circ \circ}$,
(4) The order of L is given as follows: $(a, \bar{a} \varphi \vee[x)) \leq(b, \bar{b} \varphi \vee[y))$ iff $a \leq b$ and $\bar{a} \varphi \vee[x) \supseteq$ $\bar{b} \varphi \vee[y)$.

Definition 5 [14] A lattice L is called complete if $\inf _{L} H$ and $\sup _{L} H$ exist for each $\phi \neq$ $H \subseteq L$.

Definition 6 [14] A lattice L is called conditionally complete if every upper bounded subset of L has a supermum in L and every lower bounded subset of L has an infimum in L.

An $M S$-algebra L is called complete if it is complete as a lattice.

Definition 7 [14] A lattice homomorphism $h: L \rightarrow L_{1}$ of a complete lattice L into a complete lattice L_{1} is called complete if
$\left(\inf _{L} H\right) h=\inf _{L_{1}} H h$ and $\left(\sup _{L} H\right) h=\sup _{L_{1}}$ Hh for each $\phi \neq H \subseteq L$.

A homomorphism $h: L \rightarrow L_{1}$ of a complete $M S$-algebra L into a complete $M S$-algebra L_{1} is called complete if it is complete as a lattice homomorphism.

Characterization of complete decomposable MS-algebras via triples

In this section, we introduce and characterize complete decomposable $M S$-triples of complete decomposable $M S$-algebras.

Let L be a decomposable $M S$-algebra L. For $\phi \neq N \subseteq L$, define N° as follows:
$N^{\circ}=\left\{n^{\circ}: n \in N\right\}$.

Lemma 2 If L is a complete decomposable MS-algebra, then for $\phi \neq N \subseteq L, \phi \neq C \subseteq$ $L^{\circ \circ}$ and $\phi \neq E \subseteq D(L)$, we have
(1) $\left(\sup _{L} N\right)^{\circ}=\inf _{L} N^{\circ}$,
(2) $\sup _{L^{\circ \circ}} C=\left(\sup _{L} C\right)^{\circ \circ}=\left(\inf _{L} C^{\circ}\right)^{\circ}$,
(3) $\inf _{L^{\circ \circ}} C=\inf _{L} C$,
(4) $\inf _{D(L)} E=\inf _{L} E$ and $\sup _{D(L)} E=\sup _{L} E$.

Proof (1). Let $x=\sup _{L} N$. Then $x \geq n$ for all $n \in N$ implies $x^{\circ} \leq n^{\circ}$. Hence x° is a lower bound of N°. Let y be a lower bound of N°. Then $y \leq n^{\circ}$ for all $n \in N$ implies $y^{\circ} \geq n^{\circ \circ} \geq n$. So, y° is an upper bound of N. Thus $x \leq y^{\circ}$ as $x=\sup _{L} N$. This gives $x^{\circ} \geq y^{\circ \circ} \geq y$. Therefore $x^{\circ}=\inf _{L} N^{\circ}=\left(\sup _{L} N\right)^{\circ}$.
(2) Let $\sup _{L} C=x$. Then $x^{\circ \circ}=\left(\sup _{L} C\right)^{\circ \circ}$. We have to show that $x^{\circ \circ}=\sup _{L^{\circ \circ}} C$. Since $\sup _{L} C=x$, then $x \geq c$ for all $c \in C$. so, $x^{\circ \circ} \geq c^{\circ \circ}=c$ for all $c \in C$. Therefore $x^{\circ \circ}$ is an upper bound of C. Let y be another upper bound of C in $L^{\circ \circ}$. Then $y \geq c$ for all $c \in C$. Thus $y^{\circ \circ} \geq c^{\circ \circ}=c$. Hence $y^{\circ \circ}$ is an upper bound of C. So $y^{\circ \circ} \geq x$ as $x=\sup _{L} C$. It follows that $y=y^{\circ \circ} \geq x^{\circ \circ}$. Hence $x^{\circ \circ}$ is the least upper bound of C. Since $x^{\circ \circ} \in L^{\circ \circ}$, then $x^{\circ \circ}=\sup _{L^{\circ \circ}} C$. By (1) we have $\left(\sup _{L} C\right)^{\circ \circ}=\left(\inf _{L} C^{\circ}\right)^{\circ}$.
(3) Let $x=\inf _{L} C$. Then $x \leq c$ for all $c \in C$. Then $x^{\circ \circ} \leq c^{\circ \circ}=c$. Hence $x^{\circ \circ}$ is a lower bound of C. Thus $x \geq x^{\circ \circ}$ as $x=\inf _{L} C$. But $x \leq x^{\circ \circ}$. Then $x^{\circ \circ}=x$ and $x \in L^{\circ \circ}$. Thus $\inf _{L^{\circ \circ}} C=x$.
(4) Let $x=\inf _{L} E$ and $y=\inf _{D(L)} E$. Then $x \leq e$ and $y \leq e$ for all $e \in E$ imply that $x=y$. Now we prove $\sup _{D(L)} E=\sup _{L} E$. Let $y=\sup _{L} E$. Then $y \geq e$ for all $e \in E$. It follows that $y^{\circ} \leq e^{\circ}=0$. Then $y \in D(L)$ implies $y=\sup _{D(L)} E$.

Let (M, D, φ) be a decomposable $M S$-triple. For any $\emptyset \neq E \subseteq D$, consider the set M_{E} as follows:
$M_{E}=\{a \in M: \bar{a} \varphi \vee[z) \supset E$ for some $z \in D\}$.

Lemma 3 Let (M, D, φ) be a decomposable MS-triple. For any $\emptyset \neq E \subseteq D$, we have
(1) M_{E} is an ideal of M,
(2) $[E)=\cup\{[t): t \in E\}$,
(2) $M_{E}=M_{[E]}$.
$\operatorname{Proof}(1)$. Let $a, b \in M_{E}$. Then $\bar{a} \varphi \vee\left[z_{1}\right) \supset E$ and $\bar{b} \varphi \vee\left[z_{2}\right) \supset E$ for some $z_{1}, z_{2} \in D$. Hence $E \subset\left(\bar{a} \varphi \vee\left[z_{1}\right)\right) \cap\left(\bar{b} \varphi \vee\left[z_{2}\right)\right)=\overline{(a \vee b)} \varphi \vee[t)$ for some $t \in D$ (see Theorem 2). It follows that $a \vee b \in M_{E}$. Now, let $a \in M_{E}$ and $c \in M$. Then, $\exists z \in D$ such that $\bar{a} \varphi \vee[z) \supset E$. Since $a \wedge c \leq a$, then $\overline{a \wedge c} \geq \bar{a}$. This gives $\overline{(a \wedge c)} \varphi \supseteq \bar{a} \varphi$. It follows that $\overline{(a \wedge c)} \varphi \vee[z) \supseteq \bar{a} \varphi \vee[z) \supset E$. Then $a \wedge c \in M_{E}$. Consequently, M_{E} is an ideal of M.
(2) Obvious.
(3) Clearly, $M_{[E)} \subseteq M_{E}$. Let $a \in M_{E}$. Then, $\exists z \in D$ such that $\bar{a} \varphi \vee[z) \supset E$. Since $\bar{a} \varphi \vee[z)$ is a filter of D and $[E)$ is the smallest filter of D containing E, then $\bar{a} \varphi \vee[z] \supset[E)$. Hence, $a \in M_{[E)}$ and $M_{E} \subseteq M_{[E)}$. Therefore , $M_{E}=M_{[E)}$.

Definition 8 A complete decomposable MS-triple is a decomposable MS-triple (M, D, φ) satisfying the following conditions:
(i) M is complete,
(ii) D is conditionally complete,
(iii) For each $\emptyset \neq E \subseteq D$, the set M_{E} has the greatest element in M.

Theorem 3 Let L be a complete decomposable MS-algebra constructed from the decomposable MS-triple (M, D, φ). Then, the triple (M, D, φ) is complete.

Proof Since L is associated with the decomposable $M S$-triple (M, D, φ), then by Theorem 2, we have
$L=\{(a, \bar{a} \varphi \vee[x)): a \in M, x \in D\}$.
Corollary 1(1)-(3), gives
$L^{\circ \circ}=\{(a, \bar{a} \varphi): a \in M\} \cong M$ and $D(L)=\{(1,[x)): x \in D\} \cong D$.
We have to prove that a decomposable $M S$-triple (M, D, φ) is complete. So we proceed to prove (i)-(iii) of Definition 8. For (i), let $\emptyset \neq C \subseteq M$. Consider a subset $\mathcal{C}=\{(c, \bar{c} \varphi)$: $c \in C\}$ of $L^{\circ \circ}$ corresponding to C. Since L is complete, then $\inf _{L} \dot{C}=(a, \bar{a} \varphi \vee[x))$ for some $(a, \bar{a} \varphi \vee[x)) \in L$. Thus, $(a, \bar{a} \varphi \vee[x)) \leq(c, c \varphi)$ for all $c \in C$. Then $a \leq c$ for all $c \in C$ implies that a is a lower bound of C. We verify that a is the greatest lower bound of C in M. Let b be a lower bound of C. Then $b \leq c$ for all $c \in C$. This gives $\bar{b} \varphi \supseteq \bar{c} \varphi$. Therefore, $(b, \bar{b} \varphi) \leq$ $(c, \bar{c} \varphi)$ for all $c \in C$ and $(b, b \varphi)$ is a lower bound of \dot{C}. Then $(a, \bar{a} \varphi \vee[x)) \geq(b, b \varphi)$ as $\inf _{L} C=(a, \bar{a} \varphi \vee[x))$. Consequently, $a \geq b$ and $a=\inf _{M} C$. Since $a=\inf _{M} C$ and M is bounded above by 1 , then, M is complete.
Now we prove (ii). Let $\phi \neq E \subseteq D$. Consider $E \subseteq D(L)$ corresponding to E. Then $\dot{E}=\{(1,[e)): e \in D\}$.
Let z be a lower bound of E. Since L is complete, then $\inf _{L} E$ exists. Let $\inf _{L} E=$ (a, $\bar{a} \varphi \vee[x)$). Since $z \leq e$ for all $e \in E$ as z is a lower bound of E. Then, $[z) \supseteq[e)$ and $(1,[z)) \leq(1,[e))$. Thus, $(1, z)$ is a lower bound of \dot{E}. Then, $(a, \bar{a} \varphi \vee[x)) \geq(1,[z))$ because $\operatorname{of~}_{\inf _{L}} E^{\prime}=(a, \bar{a} \varphi \vee[x))$. This implies that $a \geq 1$ and $\bar{a} \varphi \vee[x) \subseteq[z)$. Consequently, $a=1$ and $\bar{a} \varphi \vee[x)=0 \varphi \vee[x)=[x)$. Thus $[x) \subseteq[z)$ implies $x \geq z$. This shows that x is the greatest lower bound of E in D and $x=\inf _{D} E$. Using a similar way, we can show that, if E has an upper bound, then $\sup _{D} E$ exists. Therefore, D is a conditionally complete lattice as required.

Now we prove (iii). Let $\emptyset \neq E \subseteq D$. Consider $E \subseteq D(L)$ corresponding to E. Then

$$
E=\{(1,[x)): x \in E\}
$$

Since L is complete, then $\inf _{L} E$ exists. Let $(b, \bar{b} \varphi \vee[z))=\inf _{L} E$. We show that b is the largest element of M_{E}. Since $(b, \bar{b} \varphi \vee[z))=\inf _{L} E$, then $(b, \bar{b} \varphi \vee[z)) \leq(1,[x)), \forall x \in E$. This gives $b \leq 1$ and $\bar{b} \varphi \vee[z) \supseteq[x), \forall x \in E$. Therefore, $\bar{b} \varphi \vee[z) \supseteq \cup_{x \in E}[x)=[E) \supset E$. Thus, $b \in M_{E}$. Now, let $c \in M_{E}$. Then $\bar{c} \varphi \vee[y) \supset E$ for some $y \in D$. It follows that $\bar{c} \varphi \vee[y) \supseteq[E) \supseteq[x)$ for all $x \in E$. Hence, $(1,[x)) \leq(c, \bar{c} \varphi \vee[y))$ for all $x \in E$. Thus, $(c, \bar{c} \varphi \vee[y))$ is a lower bound of E and therefore $(c, \bar{c} \varphi \vee[y)) \leq(b, \bar{b} \varphi \vee[z))$. Then, $c \leq b$.

This deduce that b is the largest element of M_{E} in M. Therefore, (M, D, φ) is a complete decomposable $M S$-triple.

The converse of the above theorem is given in the following.

Theorem 4 Let L be a decomposable MS-algebra constructed from the complete decomposable MS-triple (M, D, φ). Then L is complete.

Proof Let (M, D, φ) be a complete decomposable $M S$-triple. Then -(iii) of Definition 8 hold. Let $\emptyset \neq N \subseteq L$, where L is constructed as in construction Theorem from the decomposable $M S$-triple (M, D, φ) as follows:
$L=\{(a, \bar{a} \varphi \vee[x)): a \in M, x \in D\}$.
Since L is bounded, it is enough to show the existence of $\inf _{L} N$. Denote $a=\inf _{M} N^{\circ \circ}$ and $F=\cup\{[t):(c, \bar{c} \varphi \vee[t)) \in N$ for some $c \in M\}(\cup$ means the union in $F(D))$. Let $b=$ $\max M_{F}$. Now, we prove that there exists an element $z \in D$ such that $\bar{b} \varphi \vee[z) \supset F$ and if $\bar{b} \varphi \vee[y) \supset F$ for some $y \in D$ then $\bar{b} \varphi \vee[y) \supseteq \bar{b} \varphi \vee[z)$. For this purpose, consider the following set:
$\left\{x_{\gamma}: \gamma \in \Gamma\right.$ for all x_{γ} with $\left.\bar{b} \varphi \vee\left[x_{\gamma}\right) \supset F\right\}$.
Thus, we have to find $\mathrm{a} z \in D$ with $\bar{b} \varphi \vee[y) \supset F$ and $\bar{b} \varphi \vee[y) \supseteq \bar{b} \varphi \vee[z)$ for all $\gamma \in \Gamma$. The set $\left\{x_{\gamma}: \gamma \in \Gamma\right.$ for all x_{γ} with $\left.\bar{b} \varphi \vee\left[x_{\gamma}\right) \supset F\right\}$ is bounded from above. Then, by (ii), there exists $s=\sup _{D}\left\{x_{\gamma}: \gamma \in \Gamma\right\}$. We prove that $\cap_{\gamma \in \Gamma}\left[x_{\gamma}\right)=[s)$.

$$
\begin{aligned}
y \in \cap_{\gamma \in \Gamma}\left[x_{\gamma}\right) & \Leftrightarrow y \in\left[x_{\gamma}\right), \quad \forall \gamma \in \Gamma \\
& \Leftrightarrow y \geq x_{\gamma}, \forall \gamma \in \Gamma \\
& \Leftrightarrow y \text { is an upper bound of }\left\{x_{\gamma}: \gamma \in \Gamma\right\} \\
& \Leftrightarrow y \geq s \text { as } s=\sup _{D}\left\{x_{\gamma}: \gamma \in \Gamma\right\} \\
& \Leftrightarrow y \in[s) .
\end{aligned}
$$

Then it is sufficient to prove the following equality.

$$
\begin{equation*}
\cap_{\gamma \in \Gamma}\left(\bar{b} \varphi \vee\left[x_{\gamma}\right)\right)=\bar{b} \varphi \vee \cap_{\gamma \in \Gamma}\left[x_{\gamma}\right)=\bar{b} \varphi \vee[s) \tag{1}
\end{equation*}
$$

Let $t \in \bar{b} \varphi \vee[s)$. Then

$$
\begin{aligned}
t \in \bar{b} \varphi \vee[s) & \Rightarrow t \geq t_{1} \wedge s \text { where } t_{1} \in \bar{b} \varphi \\
& \Rightarrow t \geq t_{1} \wedge\left(s \vee x_{\gamma}\right) \text { as } s \geq x_{\gamma} \text { for all } \gamma \in \Gamma \\
& \Rightarrow t \geq\left(t_{1} \wedge s\right) \vee\left(t_{1} \wedge x_{\gamma}\right) \\
& \Rightarrow t \geq t_{1} \wedge x_{\gamma} \\
& \Rightarrow t \in \bar{b} \varphi \vee\left[x_{\gamma}\right) \text { for all } \gamma \in \Gamma .
\end{aligned}
$$

Then $\bar{b} \varphi \vee \cap_{\gamma \in \Gamma}\left[x_{\gamma}\right) \subseteq \bar{b} \varphi \vee\left[x_{\gamma}\right)$ implies $\bar{b} \varphi \vee \cap_{\gamma \in \Gamma}\left[x_{\gamma}\right) \subseteq \cap_{\gamma \in \Gamma}\left(\bar{b} \varphi \vee\left[x_{\gamma}\right)\right)$. Conversely, let $y \in \cap_{\gamma \in \Gamma}\left(\bar{b} \varphi \vee\left[x_{\gamma}\right)\right)$. Then $y \in \bar{b} \varphi \vee\left[x_{\gamma}\right)$ for all $\gamma \in \Gamma$. Hence $y \geq t \wedge z$ for $t \in \bar{b} \varphi$ and $z \in\left[x_{\gamma}\right.$) for all $\gamma \in \Gamma$. It follows that $z \geq x_{\gamma}$ for all $\gamma \in \Gamma$. This means that z is an upper bound of the set $\left\{x_{\gamma}: \gamma \in \Gamma\right\}$. Then $s \leq z$ as $s=\sup _{D}\left\{x_{\gamma}: \gamma \in \Gamma\right\}$. Now

$$
\begin{aligned}
y & \geq t \wedge z \\
& =t \wedge(s \vee z) \text { as } s \leq z \\
& =(t \wedge s) \vee(t \wedge z) \text { by distributivity of } D \\
& \geq t \wedge s \in \bar{b} \varphi \vee[s) .
\end{aligned}
$$

Then $y \in \bar{b} \varphi \vee[s)$. Therefore, $\cap_{\gamma \in \Gamma}\left(\bar{b} \varphi \vee\left[x_{\gamma}\right)\right) \subseteq \bar{b} \varphi \vee[s)$.

We prove the existence of $\inf _{L} N$. First, we claim that $i=(a \wedge b, \overline{(a \wedge b)} \varphi \vee[z))=\inf _{L} N($ we put then $z=s)$.
First, we show that i is a lower bound of N. Let $(f, \bar{f} \varphi \vee[y)) \in N$. Since $a=\inf _{M} N^{\circ \circ}$, we get $a \leq f$. So, $a \wedge b \leq a \leq f$. Then $a \wedge b \leq f$ implies that $\overline{a \wedge b} \geq \bar{f}$. Consequently, $\overline{(a \wedge b)} \varphi=\bar{a} \varphi \vee \bar{b} \varphi \supseteq \bar{f} \varphi$. Moreover, $[y) \subseteq F \subseteq \bar{b} \varphi \vee[z)$ as $y \in F$. Then

$$
\begin{aligned}
\overline{(a \wedge b)} \varphi \vee[z) & =(\bar{a} \vee \bar{b}) \varphi \vee[z) \\
& =(\bar{a} \varphi \vee \bar{b} \varphi) \vee(\bar{b} \varphi \vee[z)) \\
& \supseteq \bar{f} \varphi \vee[y) .
\end{aligned}
$$

Then $(a \wedge b, \overline{(a \wedge b)} \varphi \vee[z)) \leq(f, \bar{f} \vee[y))$ for all $(f, \bar{f} \vee[y)) \in N$. Therefore, i is a lower bound of N. It remains to show that i is the greatest lower bound of N. Let ($c, \bar{c} \varphi \vee[x)$) be a lower bound of N. Then, $(c, \bar{c} \varphi \vee[x)) \leq(f, \bar{f} \varphi \vee[y)), \forall(f, \bar{f} \varphi \vee[y)) \in N$. So, $c \leq f, \forall f \in$ $N^{\circ \circ}$. Then c is a lower bound of $N^{\circ \circ}$. Thus $c \leq a$ as $a=\inf _{M} N^{\circ \circ}$. On the other hand, $\bar{c} \varphi \vee[x) \supseteq \bar{f} \varphi \vee[y), \forall(f, \bar{f} \varphi \vee[y)) \in N$. So, $\bar{c} \varphi \vee[x) \supseteq[y), \forall y \in F$. Therefore, $\bar{c} \varphi \vee[x) \supseteq F$. Hence, $\bar{c} \varphi \vee[x) \supseteq \bar{b} \varphi \vee[z)$ by using equality (1). Then $\bar{c} \varphi \vee[x) \supseteq F$ implies that $c \in M_{F}$. So, $c \leq b$ as $b=\max _{M} M_{F} \in M$. Now, we have $c \leq a$ and $c \leq b$. Then $c \leq a \wedge b$. Moreover, we have $\bar{c} \varphi \supseteq \bar{a} \varphi$ because of $c \leq a$. Also, $\bar{c} \varphi \vee[x) \supseteq \bar{b} \varphi \vee[z)$. So, $\bar{c} \varphi \vee[x) \supseteq \bar{a} \varphi \vee \bar{b} \varphi \vee[z)=$ $\overline{(a \wedge b)} \varphi \vee[z)$. Therefore, $(c, \bar{c} \varphi \vee[x)) \leq i$. Then $i=\inf _{L} N$ and L is complete.

Corollary 2 If M and D are complete, then so is L.

Proof. We need only to prove that the condition (iii) of Definition 8 holds. Let $E \subseteq D$ and $t=\inf _{D} E$. Then, $[t)=\left[\inf _{D} E\right) \supseteq E$. So, $(1, \overline{1} \varphi \vee[t))=(1,[t)) \in L$. Therefore, $1 \in M_{E}$. Hence, by the above Theorem, L is complete.

Corollary 3 If M is finite and D is conditionally complete, then L is complete.

Proof Since M is finite and M_{E} is an ideal of M (see Lemma 1(1)), then M is complete and M_{E} is a principal ideal of M. Therefore, M_{E} contains the greatest element in M. So, the conditions (i)-(iii) of Definition 8 are satisfied and consequently, L is complete.

Combining Theorems 3 and 4, we get the following theorem.

Theorem 5 Let L be a decomposable MS-algebra constructed from the decomposable MS-triple (M, D, φ). Then L is complete if and only if (M, D, φ) is complete.

Let L be a complete decomposable $M S$-algebra. In the proof of Theorem 4 arbitrary meets in L are described. In the following Lemma, we describe joins in L.

Lemma 4 Let L be a complete decomposable MS-algebra constructed from the decomposable MS-triple (M, D, φ). Let $\phi \neq N \subseteq L$ and $a=\sup _{M} N^{\circ \circ}$. Then there exists an element $z \in D$ such that $[z)=\bigcap\{\bar{c} \varphi \vee[t):(c, \bar{c} \varphi \vee[t)) \in N\} \cap a \varphi$ and $\sup N=$ (a, $\bar{a} \varphi \vee[z)$).

Proof Let $\phi \neq N \subseteq L$ and $\sup _{L} N=(b, \bar{b} \varphi \vee[z))$. We can assume that $z \in a \varphi$. We prove that $b=a=\sup _{M} N^{\circ \circ}$. Using Lemma 2(2), we get
$\sup _{M} N^{\circ \circ}=\left(\sup _{L} N\right)^{\circ \circ}=(b, \bar{b} \varphi \vee[z))^{\circ \circ}=(b, \bar{b} \varphi)$.
But $a=(a, \bar{a} \varphi)=\sup _{M} N^{\circ \circ}$. Then $b=a$. Hence, $\bar{a} \varphi \vee[z)$ is the greatest filter of the form $\bar{a} \varphi \vee[x), x \in D$ with
$\bar{a} \varphi \vee[z)) \subset \bar{c} \varphi \vee[t)$ for each $(c, \bar{c} \varphi \vee[t)) \in N$.
The last condition is equivalent to
$[z) \subset \bigcap\{\bar{c} \varphi \vee[t):(c, \bar{c} \varphi \vee[t)) \in N\} \cap a \varphi$.
Let $\bigcap\{\bar{c} \varphi \vee[t):(c, \bar{c} \varphi \vee[t)) \in N\} \cap a \varphi=R$. If $[z) \neq R$, then there is $y \in R, y \nsupseteq z$. It follows that $y \wedge z<z$ and $y \wedge z \in R$. Then $[z) \subset[y \wedge z)$ implies $\bar{a} \varphi \vee[z) \subset \bar{a} \varphi \vee[y \wedge z)$. Since $y \wedge z \in R$ then $[y \wedge z) \subset \bar{c} \varphi \vee[t)$ for all $(c, \bar{c} \varphi \vee[t)) \in N$. Since $a \geq c\left(\operatorname{as} a=\sup _{M} N^{\circ \circ}\right)$ then $\bar{a} \leq \bar{c}$. It follows that $\bar{a} \varphi \leq \bar{c} \varphi$. Therefore, $\bar{a} \varphi \vee[y \wedge z) \subset \bar{c} \varphi \vee[t)$ for all $(c, \bar{c} \varphi \vee[t)) \in N$. Consequently,
$\bar{a} \varphi \vee[z) \subset \bar{a} \varphi \vee[y \wedge z) \subset \bar{c} \varphi \vee[t)$ for all $(c, \bar{c} \varphi \vee[t)) \in N$,
which contradicts the maximality of $\bar{a} \varphi \vee[z)$.

Complete homomorphisms via complete triple homomorphisms

In this section, we introduce complete triple homomorphisms of complete decomposable $M S$-algebras. Then, we characterize complete homomorphisms of complete decomposable $M S$-algebras in terms of complete triple homomorphisms. For this purpose, we recall from [4], the notion of triple homomorphism of decomposable $M S$-triples and related properties which will be used in rest of the paper.

Definition 9 [4] Let (M, D, φ) and $\left(M_{1}, D_{1}, \varphi_{1}\right)$ be decomposable MS-triples. A triple homomorphism of the triple (M, D, φ) into $\left(M_{1}, D_{1}, \varphi_{1}\right)$ is a pair (f, g), where f is a homomorphism of M into M_{1}, g is a homomorphism of D into D_{1} preserving 1 such that for every $a \in M$,

$$
\begin{equation*}
a \varphi g \subseteq a f \varphi_{1} \tag{2}
\end{equation*}
$$

Lemma 5 [4] Let (f, g) be a triple homomorphism of a decomposable MS-triple (M, D, φ) into a decomposable MS-triple $\left(M_{1}, D_{1}, \varphi_{1}\right)$. Let $a, b \in M$ and $x, y, t \in D$. Then
(i) $a \varphi \cap[y)=[t)$ implies af $\varphi_{1} \cap[y g)=[t g)$,
(ii) $\left(\bar{a} f \varphi_{1} \vee[x g)\right) \cap\left(\bar{b} f \varphi_{1} \vee[y g)\right)=\overline{(a \vee b)} f \varphi_{1} \vee[t g)$.

Theorem 6 [4] Let L and L_{1} be decomposable MS-algebras, (M, D, φ) and ($M_{1}, D_{1}, \varphi_{1}$) be the associated decomposable MS-triples, respectively. Let h be a homomorphism of L into L_{1} and h_{M}, h_{D} the restrictions of h to M and D, respectively. Then $\left(h_{M}, h_{D}\right)$ is a triple homomorphism of the decomposable MS-triples. Conversely, every triple homomorphism (f, g) of the decomposable $M S$-triples uniquely determines a homomorphism h of L into L_{1} with $h_{M}=f, h_{D}=g$ by the following rule:

$$
\begin{equation*}
x h=x^{\circ \circ} f \wedge d g, \text { for all } x \in L \tag{3}
\end{equation*}
$$

where $x=x^{\circ \circ} \wedge d$ for some $d \in D(L)$.

If L and L_{1} are represented as in the construction Theorem then (3) reads

$$
\begin{equation*}
(a, \bar{a} \varphi \vee[x)) h=(a f, \overline{(a f)} \varphi \vee[x g)) \text { for all }(a, \bar{a} \varphi \vee[x)) \in L \tag{4}
\end{equation*}
$$

In the following, we will write $L=(M, D, \varphi)$ to indicate that (M, D, φ) is the decomposable $M S$-triple associated with L, that is, $L^{\circ \circ}=M, D(L)=D$, and $\varphi(L)=\varphi$. Let $L=(M, D, \varphi)$ and $L_{1}=\left(M_{1}, D_{1}, \varphi_{1}\right)$ be decomposable $M S$-algebras, we will write $h=(f, g)$ to indicate that $(f, g):(M, D, \varphi) \rightarrow\left(M_{1}, D_{1}, \varphi_{1}\right)$ is the triple homomorphism of decomposable $M S$-triples corresponding to the homomorphism h of L into L_{1}.

Lemma 6 Let $h=(f, g)$ be a homomorphism of a decomposable MS-algebra L onto a decomposable MS-algebra L_{1}. Then for each $a \in L^{\circ \circ}$, we have

$$
a \varphi g=a f \varphi_{1}
$$

Proof We have, $a \varphi g \subseteq a f \varphi_{1}$ by (2). It remains to show that $a f \varphi_{1} \subseteq a \varphi g$. Let $y \in a f \varphi_{1}$. Then

$$
y \in\left[(a f)^{\circ}\right) \cap D\left(L_{1}\right)=\left[(a h)^{\circ}\right) \cap D\left(L_{1}\right) \text { implies } y \in\left[(a h)^{\circ}\right) \text { and } y \in D\left(L_{1}\right) .
$$

Then $y \geq(a h)^{\circ}=a^{\circ} h$. Since h is onto, then $g: D(L) \rightarrow D\left(L_{1}\right)$ is also onto. Hence, there exists $x \in D(L)$ such that $x h=y$. Evidently, $a^{\circ} \vee x \in\left[a^{\circ}\right) \cap D(L)$ and
$\left(a^{\circ} \vee x\right) h=a^{\circ} h \vee x h=x h$ as $x h=y \geq a^{\circ} h$.
Therefore, $y \in\left[a^{\circ} h\right) \cap D\left(L_{1}\right)=\left(\left[a^{\circ}\right) h \cap D g\right)=\left(\left[a^{\circ}\right) \cap D\right) g=a \varphi g$.

Now, we introduce the concept of complete triple homomorphism.

Definition 10 A triple homomorphism (f, g) of a decomposable MS-triple (M, D, φ) into a decomposable MS-triple $\left(M_{1}, D_{1}, \varphi_{1}\right)$ is called complete if the following conditions are satisfied
(i) f is a complete homomorphism of M and M_{1},
(ii) g is a complete homomorphism of D and D_{1},
(iii) $\left(\max M_{E}\right) f=\max M_{1 E g}$ for each $\phi \neq E \subseteq D$.

Remark 1 First, we observe that the map $g: D \rightarrow D_{1}$ is a complete means that $\left(\sup _{D} E\right) g=\sup _{D_{1}} E g$ for any $E \subseteq D$ and if $\inf _{D} E$ and $\inf _{D_{1}} M g$ exist then $\left(\inf _{D} E\right) g=$ $\inf _{D_{1}} E g$.

Theorem 7 Let $L=(M, D, \varphi)$ and $L_{1}=\left(M_{1}, D_{1}, \varphi_{1}\right)$ be complete decomposable MSalgebras and let $h=(f, g)$ be a homomorphism of L onto L_{1}. Then h is complete if and only if (f, g) is complete.

Proof The decomposable $M S$-triples (M, D, φ) and $\left(M_{1}, D_{1}, \varphi_{1}\right)$ are associated with L and L_{1}, respectively. Let $h=(f, g)$ be a complete homomorphism of L onto L_{1}. Then f is
a de Morgan homomorphism of M onto M_{1} and g is a lattice homomorphism of D onto D_{1} preserving 1 . We have to verify that f and g are complete. Let $\phi \neq N \subseteq M$. Then

$$
\begin{gathered}
\left(\inf _{M} N\right) f=\left(\inf _{L} N\right) f=\left(\inf _{L} N\right) h=\inf _{L_{1}} N h=\inf _{L_{1}} N f=\inf _{M_{1}} N f \text { by Lemma 2(3) } \\
\left(\sup _{M} N\right) f=\left(\sup _{L} N\right)^{\infty \circ} f=\left(\left(\sup _{L} N\right) h\right)^{\circ \circ}=\left(\sup _{L_{1}} N h\right)^{\infty}=\sup _{M_{1}} N f \text { by Lemma 2(2) }
\end{gathered}
$$

Thus, f is complete. We prove that g is complete. Let $\phi \neq E \subseteq D$. Then
$\left(\sup _{D} E\right) g=\left(\sup _{L} E\right) g=\left(\sup _{L} N\right) h=\sup _{L_{1}} N h=\sup _{D_{1}} E g$ by Lemma 2(4).
If $\inf _{D} E$ and $\inf _{D_{1}} E g$ exist, then
$\left(i \inf _{D} E\right) g=\left(\inf _{L} E\right) g=\left(\inf _{L} N\right) h=\inf _{L_{1}} N h=\inf _{D_{1}} E g$ by Lemma 2(4).
Now, we prove (iii). Let $\phi \neq E \subseteq D$. Consider E corresponding the set E on $D(L)$, where $\dot{E}=\{(1,[x)): x \in E\} \subseteq D(L)$.
By (4), we have
É $h=\{(1,[x g)): x \in E\} \subseteq D\left(L_{1}\right)$.
Since h is complete, then $\left(\inf _{L} E\right) h=\inf _{L_{1}} E h$ for each $\phi \neq E \subseteq L$. Hence, $\left(\inf _{L} E\right)^{\circ \circ}=$ $\max M_{E}$ (see the proof of Theorem 3) and similarly $\left(\inf _{L_{1}} E h\right)^{\circ \circ}=\max M_{1 E g}$. Conversely, assume that (i)-(iii) hold and let $h=(f, g)$ be a homomorphism of L onto L_{1}. We have to show that h is complete. First we prove that for $\phi \neq H \subseteq L$, $\left(\inf _{L} H\right) h=\inf _{L_{1}} H h$ holds. Consider $E=\bigcup\{[t):(c, \bar{c} \varphi \vee[x)) \in M\}$. Let $\max M_{E}=b$ and $\inf _{M} H^{\circ \circ}=a$. Then according to the proof of Theorem 4, we get

$$
i=(a \wedge b, \overline{(a \wedge b)} \varphi \vee[z))=\inf _{L} H, \text { where } z=\sup _{D}\left\{x_{\gamma}: \bar{b} \varphi \vee\left[x_{\gamma}\right) \supset E\right\} . \text { Using (4), }
$$ we have

$$
H h=\{(c f, \overline{c f} \varphi \vee[x g)):(c, \bar{c} \varphi \vee[x)) \in H\}
$$

and

$$
i h=((a \wedge b) f, \overline{(a \wedge b) f} \varphi \vee[z g))=\left(\inf _{L} H\right) h
$$

Now, $\inf _{L_{1}}(H f)^{\circ \circ}=\left(\inf _{M} H^{\circ \circ}\right) f=a f$ by (i) and $\max M_{1 E g}=\left(\max M_{E}\right) f=b f$ by (iii).
Since L_{1} is complete and $H h \subset L_{1}$ then again according to the proof of Theorem 4, we get $\inf _{L_{1}} H h=\left((a \wedge b) f, \overline{(a \wedge b) f} \varphi \vee\left[z_{1}\right)\right)=i h$, where $z_{1}=\sup \left\{x_{\gamma} g: \gamma \in \Gamma\right\}=\left(\sup \left\{x_{\gamma}:\right.\right.$ $\gamma \in \Gamma\}) g=z g$ as g is an onto homomorphism. Therefore, $\inf _{L} M h=\left(\inf _{L_{1}} M\right) h$.

Now, we prove that $\left(\sup _{L} H\right) h=\sup _{L_{1}} H h$. By Lemma 4, $\sup _{L}(M)=(a, \bar{a} \varphi \vee[z))$, where $a=\sup _{M} H^{\circ \circ}$ and $[z)=\bigcap\{\bar{c} \varphi \vee[t):(c, \bar{c} \varphi \vee[t)) \in H\} \cap a \varphi$. Then $\sup _{L_{1}} H h=$ $\left(a_{1}, \bar{a}_{1} \varphi_{1} \vee\left[z_{1}\right)\right)$, where $a_{1}=\sup _{M_{1}}(H h)^{\circ \circ}=\sup _{L_{1}}(H h)^{\circ \circ}=\sup _{L_{1}} H^{\circ \circ} h=$ $\left(\sup _{L} M^{\circ \circ}\right) h=\left(\sup _{M} H^{\circ \circ}\right) h=a h=a f$ (by using Lemma 2(2) and (i) of Definition 9) and $\left[z_{1}\right)=\bigcap\left\{\bar{c} f \varphi_{1} \vee[t g):(c, \bar{c} \varphi \vee[t)) \in H\right\} \cap a_{1} \varphi_{1}$. We show that $z g=z_{1}$. We have $c f \varphi_{1}=c \varphi g$ by Lemma 6 and $\bar{c} \varphi g \vee[t g)=(\bar{c} \varphi \vee[t)) g$ by Lemma 5(1). Then

$$
\begin{aligned}
{\left[z_{1}\right) } & =\bigcap\{\bar{c} \varphi \vee[t)) g:(c, \bar{c} \varphi \vee[t)) \in H\} \cap a \varphi g \\
& =(\bigcap\{\bar{c} \varphi \vee[t):(c, \bar{c} \varphi \vee[t)) \in H\} \cap a \varphi) g \\
& =[z g)
\end{aligned}
$$

which implies $z_{1}=z g$. Therefore, $\left(\sup _{L} H\right) h=\sup _{L_{1}} H h$ and h is complete.

Acknowledgements

We thank the referees for valuable comments and suggestions for improving the paper.

Authors' contributions

The manuscript is being submitted by me (Corresponding author) on behalf of all the authors. The manuscript is the original work of all authors. All authors made a significant contribution to this study. All authors have read and approved the final version of the manuscript.

Funding

No fund.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt. ${ }^{2}$ Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.

Received: 29 December 2018 Accepted: 26 March 2019
Published online: 01 August 2019

References

1. Blyth, T. S., Varlet, J. C.: On a common abstraction of de Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh. 94A, 301-308 (1983)
2. Blyth, T. S., Varlet, J. C.: Subvarieties of the class of $M S$-algebras. Proc. Roy. Soc. Edinburgh. 95A, 157-169 (1983)
3. Badawy, A., Guffova, D., Haviar, M.: Triple construction of decomposable MS-algebras. Acta Univ. Palacki. Olomuc. Fac. Rer. Nat. Math. 51(2), 53-65 (2012)
4. Badawy, A., El-Fawal, R.: Homomorphism and Subalgebras of decomposable MS-algebras. J. Egypt. Math. Soc. 25, 119-124 (2017)
5. Badawy, A.: d_{L}-Filters of principal $M S$-algebras. J. Egypt. Math. Soc. 23, 463-469 (2015)
6. Badawy, A.: Congruences and de Morgan filters of decomposable MS-algebras. SE Asia. Bull. Math. 43, 13-25 (2019)
7. Badawy, A., Sambasiva Rao, M.: Closure ideals of $M S$-algebras. Chamchuri J. Math. 6, 31-46 (2014)
8. Badawy, A.: δ-ideals in $M S$-algebras. J. Comput. Sci. Syst. Biol. 9(2), 28-32 (2016)
9. Chen, C. C., Grätzer, G.: Stone lattices II. Structure Theorems. Can. J. Math. 21, 895-903 (1969)
10. El-Assar, S., Atallah, M.: Completeness of distributive p-algebras. Qater Univ. Sci. Bull. 8, 29-33 (1988)
11. Mederly, P.: A characterization of complete modular p-algebras. Colloq. Math. Soci. János Bolyai. 17, 211-329 (1975). Contributions to Universal Algebra (Hungary)
12. Blyth, T. S., Varlet, J. C.: Ockham Algebras. Oxford University Press, Oxford (1994)
13. Blyth, T. S.: Lattices and ordered algebraic structures. Springer-Verlag, London (2005)
14. Grätzer, G.: Lattice theory, first concepts and distributive lattices, Lecture Notes. Freeman, San Francisco (1971)
15. Badawy, A.: Extensions of the Glivenko-type congruences on a Stone lattice. Math. Meth. Appl. Sci. 41, 5719-5732 (2018)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

