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Abstract

Consider the bi-harmonic differential expression of the form

A = �2
M + q

on a manifold of bounded geometry (M, g) with metric g, where �M is the scalar
Laplacian onM and q ≥ 0 is a locally integrable function onM.
In the terminology of Everitt and Giertz, the differential expression A is said to be
separated in Lp (M) , if for all u ∈ Lp (M) such that Au ∈ Lp (M), we have qu ∈ Lp (M) . In
this paper, we give sufficient conditions for A to be separated in Lp (M) ,where
1 < p < ∞.
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Introduction
In the terminology of Everitt and Giertz, the concept of separation of differential opera-
tors was first introduced in [1]. Several results of the separation problem are given in a
series of pioneering papers [2–5]. For more backgrounds concerning to our problem, see
[6–8]. Atia et al. [9] have studied the separation property of the bi-harmonic differential
expression A = �2

M + q , on a Riemannian manifold (M, g) without boundary in L2 (M) ,
where �M is the Laplacian onM and 0 ≤ q ∈ L2loc (M) is a real-valued function.
Recently, Atia [10] has studied the sufficient conditions for the magnetic bi-harmonic

differential operator B of the form B = �2
E + q to be separated in L2 (M) , on a complete

Riemannian manifold
(
M, g

)
with metric g , where �E is the magnetic Laplacian on M

and q ≥ 0 is a locally square integrable function on M. In [11], Milatovic has studied the
separation property for the Schrodinger-type expression of the form L = �M+q , on non-
compact manifolds in Lp (M) . Let (M, g) be a Riemannian manifold without boundary,
with metric g (i.e.,M is a C∞ −manifold without boundary and g = (gjk) is a Riemannian
metric on M) and dimM = n. We will assume that M is connected. We will also assume
that we are given a positive smooth measure dμ, i.e., in any local coordinates x1, x2, . . . , xn

, there exists a strictly positive C∞−density ρ (x) such that dμ = ρ (x) dx1dx2 . . . dxn. In
the sequel, L2 (M) is the space of complex-valued square integrable functions on M with
the inner product:
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(u, v) =
∫

M

(
uv−)

dμ, (1)

and ‖.‖ is the norm in L2 (M) corresponding to the inner product (1). We use the notation
L2

(
�1T∗M

)
for the space of complex-valued square integrable 1-forms on M with the

inner product:

(W ,�)L2(�1T∗M) =
∫

M

〈
W ,�

〉
dμ, (2)

where for 1-forms W = Wjdxj and � = �kdxk , we define 〈W ,�〉 = gjkWj�k , where
(gjk) is the inverse matrix to (gjk) , and � = �kdxk (above, we use the standard Einstein
summation convention).
The notation ‖.‖L2(�1T∗M) stands for the norm in L2

(
�1T∗M

)
corresponding to the

inner product (2). To simplify notations, we will denote the inner products (1) and (2) by
(., .). In the sequel, for 1 ≤ p < ∞, Lp (M) is the space of complex-valued p-integrable
functions onM with the norm:

‖u‖p =
⎛

⎝
∫

M

|u|p dμ

⎞

⎠

1
p

, (3)

In what follows, byC1 (M) , we denote the space of continuously differentiable complex-
valued functions onM, and by C∞ (M) , we denote the space of smooth complex-valued
functions on M, by C∞

c (M)−the space of smooth compactly supported complex-valued
functions on M, by �1 (M) − the space of smooth 1-forms on M , and by �1

c (M)

−the space of smooth compactly supported 1-forms on M. In the sequel, the operator
d : C∞ (M) → �1 (M) is the standard differential and d∗ : �1 (M) → C∞ (M) is the for-
mal adjoint of d defined by the identity: (du, v)L2(�1T∗M) = (u, d∗v) , u ∈ C∞

c (M) , v ∈
�1 (M) .By�M = d∗d , we will denote the scalar Laplacian onM. We will use the product
rule for d∗ as follows:

d∗(uv) = ud∗v − 〈du, v〉 , u ∈ C1 (M) , v ∈ �1 (M) . (4)

We consider the bi-harmonic differential expression:

A = �2
M + q, (5)

where q ≥ 0 is a locally integrable function onM.

Definition 1 The set Dp :

Let A be as in (5), we will use the notation

Dp = {u ∈ Lp (M) : Au ∈ Lp (M)}. (6)

Remark 1 In general, it is not true that for all u ∈ Dp, we have �2
Mu ∈ Lp (M) and

qu ∈ Lp (M) separately. Using the terminology of Everitt and Giertz, we will say that the
differential expression A = �2

M + q is separated in Lp (M) when the following statement
holds true: for all u ∈ Dp , we have qu ∈ Lp (M) .

We will give sufficient conditions for A to be separated in Lp (M) . Assume that the
manifold (M, g) has bounded geometry, that is
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(a) infx∈M rinj(x) > 0, where rinj(x) is the injectivity radius of (M, g),
(b) all covariant derivatives ∇ jR of the Riemann curvature tensor R are bounded:∣

∣∇ jR
∣∣ ≤ Kj, j = 0, 1, 2, ...,where Kj are constants.

Let (M, g) be a manifold of bounded geometry. Then, there exists a sequence of
functions (called cut-off functions)

{
φj

}
in C∞

c (M) such that for all j = 1, 2, 3...,
(i) 0 ≤ φj ≤ 1;
(ii) φj ≤ φj+1;
(iii) for every compact set S ⊂ M , there exists j such that φj|S = 1;
(iv) supx∈M

∣∣dφj
∣∣ ≤ C1, supx∈M

∣∣�Mφj
∣∣ ≤ C1 , and supx∈M

∣∣�2
Mφj

∣∣ ≤ C1, where C1 > 0
is a constant independent of j. For the construction of φj satisfying the above properties,
see [12].

Preliminary lemma
In the following, we introduce a preliminary lemma which will be used in the sequel.

Lemma 1 Assume that (M, g) is a connected C∞−Riemannian manifold without
boundary, with metric g and has bounded geometry. Assume that there exist a constant γ

such that 0 < γ ≤ q ∈ C1 (M), and

∣∣�Mq(x)
∣∣ ≤ σq

3
2 (x), for all x ∈ M, (7)

where 0 < σ < 2√
p−1 , 1 < p < ∞ , and

∣∣�Mq(x)
∣∣ denotes the norm of �Mq(x) ∈ T∗

xM
with respect to the inner product in T∗

xM induced by the metric g. Assume that f ∈ Lp (M)

and that u ∈ Lp (M) ∩ C1 (M) is a solution of the equation

�2
Mu + qu = f . (8)

Additionally assume that for all k ∈ [− 1
2 , p − 1

]
,

|u|p qk+ 1
2 ∈ L1 (M) and lim

j→∞

(
�Muqkdu,u |u|p−4 φjdu

)
= 0. (9)

Then, the following properties hold:

lim
j→∞

(
�Mu, qku |u|p−2 �Mφj

)
= 0, (10)

and

qk+1 |u|p ∈ L1 (M) , and
∫

M
qk+1 |u|p dμ ≤ C1

∥∥f
∥∥p
p , (11)

for all k ∈ [− 1
2 , p − 1

]
, where

{
φj

}
is as in (i-iv) and C1 ≥ 0 is a constant independent of u.
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Proof We first prove (10): Since u ∈ Lp (M) ∩ C1 (M) , using integration by parts,
product rule of d, the definition of �M = d∗d , and the formula d(uε) = udu

uε
, we have

(
�Mu, qku |u|p−2 �Mφj

)
= lim

ε→0+

(
�Mu, qku(uε)

p−2�Mφj
)

= lim
ε→0+

(
du, d

(
qku(uε)

p−2�Mφj
))

= lim
ε→0+

(
dudqk ,u(uε)

p−2�Mφj
)

+ lim
ε→0+

(
duqkdu, (uε)

p−2�Mφj
)

+(p − 2) lim
ε→0+

(
duqkdu,u2(uε)

p−4�Mφj
)

+ lim
ε→0+

(
du, qku(uε)

p−2d(�Mφj)
)

= lim
ε→0+

(
du, dqku(uε)

p−2�Mφj
)

+ lim
ε→0+

(
du, qku(uε)

p−2d(�Mφj)
)

+(p − 1)
(
du, qkdu |u|p−2 �Mφj

)

= lim
ε→0+

(
u, d∗ (

dqku(uε)
p−2�Mφj

))

+ lim
ε→0+

(
u, d∗ (

qku(uε)
p−2d(�Mφj)

))

+(p − 1) lim
ε→0+

(
u, d∗ (

qkdu(uε)
p−2�Mφj

))
,

using the product rule (4) of d∗, we get
(
�Mu, qku |u|p−2 �Mφj

)
= − lim

ε→0+

(
ud

(
u(uε)

p−2�Mφj
)
, dqk

)

+ lim
ε→0+

(
u,u(uε)

p−2�Mφj�Mqk
)

−(p − 1) lim
ε→0+

(
ud

(
qk(uε)

p−2�Mφj
)
, du

)

+(p − 1) lim
ε→0+

(
u, qk(uε)

p−2�Mφj�Mu
)

− lim
ε→0+

(
ud

(
qku(uε)

p−2
)
, d(�Mφj)

)

+ lim
ε→0+

(
u, qku(uε)

p−2�2
Mφj

)
,

using the product rule of d again, we get
(
�Mu, qku |u|p−2 �Mφj

)
= − lim

ε→0+

(
ud

(�Mφj
)
,u(uε)

p−2dqk
)

− lim
ε→0+

(
u�Mφjdu, (uε)

p−2dqk
)

−(p − 2) lim
ε→0+

(
u�Mφjdu,u2(uε)

p−4dqk
)

+ lim
ε→0+

(
u,u(uε)

p−2�Mφj�Mqk
)

+ lim
ε→0+

(
u, qku(uε)

p−2�2
Mφj

)
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+(p − 1) lim
ε→0+

(
udqk , (uε)

p−2�Mφjdu
)

+(p − 1) lim
ε→0+

(
uqkd

(�Mφj
)
, (uε)

p−2du
)

−(p − 1)(p − 2) lim
ε→0+

(
uqkdu,u(uε)

p−4�Mφjdu
)

−(p − 1) lim
ε→0+

(
u, qk(uε)

p−2�Mφj�Mu
)

+ lim
ε→0+

(
udqk ,u(uε)

p−2d(�Mφj)
)

− lim
ε→0+

(
udqkdu, (uε)

p−2d(�Mφj)
)

−(p − 2) lim
ε→0+

(
udqkdu,u2(uε)

p−4d(�Mφj)
)
.

Hence, we obtain

p
(
�Mu, qku |u|p−2 �Mφj

)
=

(
u�Mqk ,u |u|p−2 �Mφj

)
+

(
u, qku |u|p−2 �2

Mφj
)

−(p − 1)(p − 2)
(
uqkdu,u |u|p−4 �Mφjdu

)
.

Taking the limit as j → ∞, we get

p lim
j→∞

(
�Mu, qku |u|p−2 �Mφj

)
= lim

j→∞

(
u�Mqk ,u |u|p−2 �Mφj

)

+ lim
j→∞

(
u, qku |u|p−2 �2

Mφj
)

−(p − 1)(p − 2) lim
j→∞

(
uqkdu,u |u|p−4 �Mφjdu

)
.

By properties of
{
φj

}
, it follows that for all x ∈ M, φj(x) → 1, dφj(x) → 0, �Mφj(x) → 0

and �2
Mφj(x) → 0 as j → ∞, we apply dominated convergence theorem by using the

assumption (7), the assumption |u|p qk+ 1
2 ∈ L1 (M) and the condition (iv), we obtain (10).

We now prove (11): Since u ∈ Lp (M) ∩C1 (M) , using (8), integration by parts, product
rule of d, the definition of �M = d∗d , and the formula d(uε) = udu

uε
, we have

(
f , qku |u|p−2 φj

)
=

(
�2

Mu, qku |u|p−2 φj
)

+
(
qu, qku |u|p−2 φj

)

= lim
ε→0+

(
�2

Mu, qku(uε)
p−2φj

)
+

(
qu, qku |u|p−2 φj

)

= lim
ε→0+

(
d (�Mu) , d

(
qku(uε)

p−2φj
))

+
(
qu, qku |u|p−2 φj

)

= lim
ε→0+

(
d (�Mu) , qku(uε)

p−2dφj
)

+ lim
ε→0+

(
d (�Mu) , qk(uε)

p−2φjdu
)

+(p − 2) lim
ε→0+

(
d (�Mu) , qku2(uε)

p−4φjdu
)

+ lim
ε→0+

(
d (�Mu) ,u(uε)

p−2φjdqk
)

+
(
qu, qku |u|p−2 φj

)

=
(
d (�Mu) , qku |u|p−2 dφj

)
+

(
d (�Mu) ,u |u|p−2 φjdqk

)

+(p − 1)
(
d (�Mu) , qk |u|p−2 φjdu

)
+

(
qu, qku |u|p−2 φj

)

= lim
ε→0+

(
�Mu, d∗ (

qku(uε)
p−2dφj

))
+ (p − 1) lim

ε→0+

(
�Mu, d∗ (

qk(uε)
p−2φjdu

))

+ lim
ε→0+

(
�Mu, d∗ (

u(uε)
p−2φjdqk

))
+

(
qu, qku |u|p−2 φj

)
,
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using the product rule (4) of d∗, we get

(
f , qku |u|p−2 φj

)
= − lim

ε→0+

(
�Mud

(
qku(uε)

p−2
)
, dφj

)
+ lim

ε→0+

(
�Mu, qku(uε)

p−2�Mφj
)

− lim
ε→0+

(
�Mud

(
u(uε)

p−2φj
)
, dqk

)
+ lim

ε→0+

(
(�Mu)u(uε)

p−2φj,�Mqk
)

−(p − 1) lim
ε→0+

(
�Mud

(
qk(uε)

p−2φj
)
, du

)

+(p − 1) lim
ε→0+

(
�Muqk(uε)

p−2φj,�Mu
)

+
(
qu, qku |u|p−2 φj

)
,

using the product rule of d again, we get

(
f , qku |u|p−2 φj

)
= − lim

ε→0+

(
�Mudqk ,u(uε)

p−2dφj
)

− lim
ε→0+

(
�Muqkdu, (uε)

p−2dφj
)

−(p − 2) lim
ε→0+

(
�Muqkdu,u2(uε)

p−4dφj
)

+
(
�Mu, qku |u|p−2 �Mφj

)
+ lim

ε→0+

(
�Mudφj,u(uε)

p−2dqk
)

− lim
ε→0+

(
�Muφjdu, (uε)

p−2dqk
)

+
(
(�Mu)u |u|p−2 φj,�Mqk

)

−(p − 2) lim
ε→0+

(
�Muφjdu,u2(uε)

p−4dqk
)

+(p − 1) lim
ε→0+

(
�Mudqk , (uε)

p−2φjdu
)

+(p − 1) lim
ε→0+

(
�Muqk , (uε)

p−2dφjdu
)

−(p − 1)(p − 2) lim
ε→0+

(
�Muqkdu,u(uε)

p−4φjdu
)

+(p − 1)
(
�Muqk |u|p−2 φj,�Mu

)
+

(
qu, qku |u|p−2 φj

)
.

Hence, we obtain

(
f , qku |u|p−2 φj

)
= −(p − 1)(p − 2)

(
�Muqkdu,u |u|p−4 φjdu

)

+
(
�Mu, qku |u|p−2 �Mφj

)
+ (p − 1)

(
�Mu, qk |u|p−2 φj�Mu

)

+
(
�Mu,u |u|p−2 φj�Mqk

)
+

(
qu, qku |u|p−2 φj

)
. (12)

We now estimate the term
(�Mu,u |u|p−2 φj�Mqk

)
.

Using the assumption (7), we get

∣
∣∣�Mqk

∣∣∣ ≤ σ |k| qk+ 1
2 . (13)

Using (13) and the inequality ab ≤ (p − 1)a2 + b2
4(p−1) , for all 0 ≤ a, b ∈ R, we have

∣∣∣
(
�Mu,u |u|p−2 φj�Mqk

)∣∣∣ ≤
∫

M

|�Mu|
∣∣∣�Mqk

∣∣∣ |u|p−1 φj dμ
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≤
∫

M

σ |�Mu| |k| qk+ 1
2 |u|p−1 φj dμ

=
∫

M

(
|�Mu| |u| p−2

2 φ
1
2
j q

k
2

) (
σ |k| q k+1

2 φ
1
2
j |u| p2

)
dμ

≤ (p − 1)
∫

M

|�Mu|2 |u|p−2 φjqk dμ + σ 2k2

4(p − 1)

∫

M

qk+1φj |u|p dμ

= (p − 1)
(
�Mu, qk |u|p−2 φj�Mu

)
+ σ 2k2

4(p − 1)

(
qu, qku |u|p−2 φj

)

= (p − 1)
(
�Mu, qk |u|p−2 φj�Mu

)
+ (1 − α)

(
qu, qku |u|p−2 φj

)
, (14)

where α = 1 − σ 2k2
4(p−1) , and α ∈ (0, 1] .

From (14), we get
(
�Mu,u |u|p−2 φj�Mqk

)
≥ −

∣
∣∣
(
�Mu,u |u|p−2 φj�Mqk

)∣
∣∣

≥ (1 − p)
(
�Mu, qk |u|p−2 φj�Mu

)
+ (α − 1)

(
qu, qku |u|p−2 φj

)
. (15)

From (15) into (12), we obtain
(
f , qku |u|p−2 φj

)
≥ −(p − 1)(p − 2)

(
�Muqkdu,u |u|p−4 φjdu

)

+
(
�Mu, qku |u|p−2 �Mφj

)
+ (p − 1)

(
�Mu, qk |u|p−2 φj�Mu

)

+(1 − p)
(
�Mu, qk |u|p−2 φj�Mu

)

+(α − 1)
(
qu, qku |u|p−2 φj

)
+

(
qu, qku |u|p−2 φj

)

= −(p − 1)(p − 2)
(
�Muqkdu,u |u|p−4 φjdu

)

+
(
�Mu, qku |u|p−2 �Mφj

)
+ α

(
u, qk+1u |u|p−2 φj

)
. (16)

Now, we use the inequality:

|ab| ≤ |a|p
λp

+ λ |b|t , (17)

where 1
p + 1

t = 1, a, b ∈ R , and λ ∈ (0, 1) . Since φj ≤ 1 and t = p
p−1 > 1, this implies

(φj)t ≤ φj.
Using this and (17), we have

(
f , qku |u|p−2 φj

)
≤

∣∣∣
(
f , qku |u|p−2 φj

)∣∣∣

≤ 1
λp

∫

M

∣∣f
∣∣p dμ + λ

∫

M

(φj)
tqkt |u|t |u|(p−2)t dμ

≤ λ−p ∥∥f
∥∥p
p + λ

∫

M

φjqkt |u|t |u|(p−2)t dμ

= λ−p ∥∥f
∥∥p
p + λ

(
q

kp
p−1 |u| ,φj |u|p−1

)
. (18)
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From (18) into (16), we get
(
�Mu, qku |u|p−2 �Mφj

)
+ α

(
u, qk+1u |u|p−2 φj

)

−(p − 1)(p − 2)
(
�Muqkdu,u |u|p−4 φjdu

)
≤ λ−p ∥∥f

∥∥p
p + λ

(
q

kp
p−1 |u| ,φj |u|p−1

)
.

Since k ≤ p − 1 and λ ∈ (0, 1) is arbitrary, we can choose a sufficiently small λ > 0 such
that

−(p − 1)(p − 2)
(
�Muqkdu,u |u|p−4 φjdu

)

+
(
�Mu, qku |u|p−2 �Mφj

)
+ α

2

(
u, qk+1u |u|p−2 φj

)
≤ λ−p ∥∥f

∥∥p
p . (19)

By Fatou’s lemma, we have
∫

M

qk+1 |u|p dμ ≤ lim
j→∞ inf

(
u, qk+1u |u|p−2 φj

)
. (20)

Combining (19) and (20) and using (9) and (10), we obtain
∫

M
qk+1 |u|p dμ ≤ C1

∥∥f
∥∥p
p ,

where C1 ≥ 0 is a constant independent of u, which is the proof of (11) and the lemma.

Preparatory result
The following proposition is the most important result of this section.

Proposition 1 Assume that (M, g) is a connected C∞−Riemannian manifold without
boundary, with metric g and has bounded geometry. Assume that the hypotheses (7), (8),
and (9) of the Lemma 1 are satisfied. Then

∥∥qu
∥∥
p ≤ C

∥∥f
∥∥
p , (21)

where C ≥ 0 is a constant independent of u.

Proof Let m be an integer such that m
2 < p ≤ m+1

2 . By the result (11) in Lemma 1
with k = − 1

2 , 0,
1
2 , 1,

3
2 , ...,

m
2 , we get q

1
2 |u|p ∈ L1 (M) , q |u|p ∈ L1 (M) , ..., q

m
2 +1 |u|p ∈

L1 (M) . Since q(x) ≥ γ > 0, thus |u|p qp− 1
2 = |u|p qm

2 +1qβ ≤ |u|p qm
2 +1γ β ,where β =

p − m+1
2 ≤ 0. This implies |u|p q(p−1)+ 1

2 ∈ L1 (M) , so by (11) (for k = p − 1), we obtain
qp |u|p ∈ L1 (M) and

∫

M
qp |u|p dμ ≤ C1

∥∥f
∥∥p
p , which implies

∥∥qu
∥∥p
p ≤ C1

∥∥f
∥∥p
p , that is

∥∥qu
∥∥
p ≤ C

∥
∥f

∥
∥
p ,where C ≥ 0 is a constant independent of u. Hence, the proof of the

proposition.

Lemma 2 Let (M, g) be a Remannian manifold, and let u ∈ L1loc (M) , �Mu ∈ L1loc (M) .

Then, �2
M |u| ≤ Re

(
(�2

Mu)signu
)
, where signu(x) =

{
u(x)
|u(x)| if u(x) �= 0
0 otherwise

. See [13].

Distributional inequality For 1 < p < ∞ and λ > 0, we consider the inequality,
(�2

M + λ
)
u = v ≥ 0, u ∈ Lp (M) ,where v ≥ 0means that v is a positive distribution,

i.e., 〈v,φ〉 ≥ 0 for every 0 ≤ φ ∈ C∞
c (M) . See [14].

Lemma 3 Let (M, g) be a manifold of bounded geometry and let 1 < p < ∞ .
If u ∈ Lp (M) satisfies the distributional inequality:

(�2
M + λ

)
u ≥ 0,then u ≥ 0

(almost every where or, equivalently, as a distribution). See [15].
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Lemma 4 If u ∈ Lp (M) satisfies the equation �2
Mu + qu = 0, (which is understood in

distributional sense), then u = 0.

Proof Since q ∈ C1 (M) ⊂ L∞
loc (M) , it follows that qu ∈ L1loc (M) . Since we have �2

Mu+
qu = 0, it follows that �2

Mu = −qu ∈ L1loc (M) . From Lemma 2 and the assumption
q ≥ γ > 0, we get

�2
M |u| ≤ Re

(
(�2

Mu)signu
) = −Re

(
(qu)signu

) = −qu
u
|u| = −q

|u|2
|u| = −q |u| ≤ −γ |u| ,

which implies
(�2

M + γ
) |u| ≤ 0. From Lemma 3, we get |u| ≤ 0. This implies u = 0 ,

hence the proof.

TheMain result
We now introduce our main result of this paper.

Theorem 1 Assume that (M, g) is a connected C∞−Riemannian manifold without
boundary, with metric g and has bounded geometry. Assume that the assumption (7) of the
Lemma 1 is satisfied. Then

∥∥qu
∥∥
p ≤ C ‖Au‖p , for all u ∈ Dp, (22)

where C ≥ 0 is a constant independent of u.

Proof Let u ∈ Dp and
(�2

M + q
)
u = f , (23)

so f ∈ Lp (M) . Thus, there exist a sequence
(
fj
)
in C∞

c (M) such that fj → f in Lp (M) as
j → ∞. Let T be the closure of

(�2
M + q

) |C∞
c (M) in Lp (M) . By [15], it follows that:

(i) Dom(T) = Dp, and Tu = (�2
M + q

)
u for all u ∈ Dp.

(ii) The operator T is invertible, and T−1 : Lp (M) → Lp (M) is a bounded linear
operator.
Consider the sequence T−1fj = wj , since T−1 : Lp (M) → Lp (M) is a bounded linear

operator, so wj → T−1f in Lp (M) as j → ∞. Let w = T−1f . Using the property (i) of T,
we get

(�2
M + q

)
w = f . (24)

From (23) and (24), we get
(�2

M + q
)
(u − w) = 0. By Lemma 4, we obtain u = w. Since

T−1fj = wj, it follows that wj ∈ Dp, and by the property (i) of T , we get
(�2

M + q
)
wj = fj. (25)

In (25), we have q ∈ C1(M) and fj ∈ C∞
c (M) , so by elliptic regularity, we get wj ∈

W 2,p
loc (M) . By Sobolev embedding theorem [16], we get wj ∈ W 2,p

loc (M) ⊂ Ltloc (M) ,
where 1

t = 1
p − 2

m . Hence, qwj ∈ Ltloc (M) . Using elliptic regularity again, we get
wj ∈ W 2,t

loc (M) with t > p. Applying the same procedure, we will obtain wj ∈ C1(M).
Thus, wj ∈ C1(M) ∩ Lp (M) satisfies the conditions of Proposition 1. From (25) for
j, r = 1, 2, ..., we get

(�2
M + q

)
(wj − wr) = fj − fr . Also, from (21), we get

∥∥q(wj − wr)
∥∥
p ≤ C

∥∥fj − fr
∥∥
p . (26)
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Since
(
fj
)
is a cauchy sequence in Lp (M) , from (26), it follows that

(
qwj

)
is also a cauchy

sequence in Lp (M) , which implies
(
qwj

)
converges to s ∈ Lp (M) . Let � ∈ C∞

c (M) ,
then 0 = (

qwj,�
) − (

wj, q�
) → (s,�) − (w, q�) = (s − qw,�) . So qw = s (because

C∞
c (M) is dense in Lp (M)). Hence, qwj → qw in Lp (M) as j → ∞. But, we have u = w,

so qu = qw. Since we have
∥∥qwj

∥∥
p ≤ C

∥∥fj
∥∥
p , by taking the limit as j → ∞, we obtain∥∥qu

∥∥
p ≤ C

∥∥f
∥∥
p = C ‖Au‖p , where C ≥ 0 is a constant independent of u. This concludes

the proof of the Theorem.
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