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Introduction and preliminaries
Consider the generalized Sylvester matrix equation

AV +BW = EVF + C, (1.1)

where A, EEeR"*?, BeR"*9, FER"™", and Ce R"*"” while VeR’*” and We RT*" are
matrices to be determined. An 7 x 1 real matrix Pe R**" is called a generalized reflection
matrix if P = P and P*= . An n x n matrix A is said to be reflexive matrix with respect to
the generalized reflection matrix P if A = PAP for more details see [1, 2]. The symbol A ® B
stands for the Kronecker product of matrices A and B. The vectorization of an m x n matrix
A, denoted by vec(A), is the mn x 1 column vector obtains by stacking the columns of the
matrix A on top of one another: vec(A) = (al al ...aZ;)T. We use t(A) and A”to denote
the trace and the transpose of the matrix A respectively. In addition, we define the inner
product of two matrices A, B as (4, B = tr(B"A). Then, the matrix norm of A induced by this
inner product is Frobenius norm and denoted by llAll where (4, A) = lAlI>.

The reflexive matrices with respect to the generalized reflection matrix P€ R"*" have many
special properties and widely used in engineering and scientific computations [2, 3]. Several
authors have studied the reflexive solutions of different forms of linear matrix equations; see
for example [4—7]. Ramadan et al. [8] considered explicit and iterative methods for solving the
generalized Sylvester matrix equation. Dehghan and Hajarian [9] constructed an iterative algo-
rithm to solve the generalized coupled Sylvester matrix equations (AY — ZB, CY — ZD) = (E, F) over
reflexive matrices. Also, Dehghan and Hajarian [10] proposed three iterative
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algorithms for solving the linear matrix equation A;X1B; + A>X,B, = C over reflex-
ive (anti -reflexive) matrices. Yin et al. [11] presented an iterative algorithm to solve

the general coupled matrix equations i:Ai,'X iBij = M;(i=1,2,---,p) and their optimal
=1

approximation problem over generalized reflexive matrices. Li [12] presented an
iterative algorithm for obtaining the generalized (P, Q)-reflexive solution of a

u ~
quaternion matrix equation Y AXB;+ >, ; C;XDs; = F. In [13], Dong and Wang
=

presented necessary and sufficient conditions for the existence of the {P, Q, k + 1}-reflexive
(anti-reflexive) solution to the system of matrices AX = C, XB = D. In [14], Nacevska found
necessary and sufficient conditions for the generalized reflexive and anti-reflexive solution
for a system of equations ax =b and xc =d in a ring with involution. Moreover, Hajarian
[15] established the matrix form of the biconjugate residual (BCR) algorithm for computing
the generalized reflexive (anti-reflexive) solutions of the generalized Sylvester matrix equation

S
> AXB; + Z;Zl C;YD; = M. Liu [16] established some conditions for the existence and
=

the representations for the Hermitian reflexive, anti-reflexive, and non-negative definite
reflexive solutions to the matrix equation AX = B with respect to a generalized reflection
P by using the Moore-Penrose inverse. Dehghan and Shirilord [17] presented a generalized
MHSS approach for solving large sparse Sylvester equation with non-Hermitian and complex
symmetric positive definite/semi-definite matrices based on the MHSS method. Dehghan
and Hajarian [18] proposed two algorithms for solving the generalized coupled Sylvester
matrix equations over reflexive and anti-reflexive matrices. Dehghan and Hajarian [19] estab-
lished two iterative algorithms for solving the system of generalized Sylvester matrix equa-
tions over the generalized bisymmetric and skew-symmetric matrices. Hajarian and Dehghan
[20] established two gradient iterative methods extending the Jacobi and Gauss Seidel iter-
ation for solving the generalized Sylvester-conjugate matrix equation A;XB; + A,XB, +
C\YD, + C,YD, = E over reflexive and Hermitian reflexive matrices. Dehghan and Hajarian
[21] proposed two iterative algorithms for finding the Hermitian reflexive and skew—Hermit-
ian solutions of the Sylvester matrix equation AX + XB = C. Hajarian [22] obtained an iterative
algorithm for solving the coupled Sylvester-like matrix equations. El-Shazly [23] studied the

perturbation estimates of the maximal solution for the matrix equation X + ATVXTA =P.
Khader [24] presented numerical method for solving fractional Riccati differential equation
(FRDE). Balaji [25] presented a Legendre wavelet operational matrix method for solving the
nonlinear fractional order Riccati differential equation. The generalized Sylvester matrix equa-
tion has numerous applications in control theory, signal processing, filtering, model reduction,
and decoupling techniques for ordinary and partial differential equations (see [26—-29]).

In this paper, we will investigate the reflexive solutions of the generalized Sylvester matrix
equation AV + BW = EVF + C. The paper is organized as follows: First, in the “Iterative algo-
rithm for solving AV + BW = EVF + C” section, an iterative algorithm for obtaining reflexive
solutions of this problem is derived. The complexity of the proposed algorithm is presented.
In the “Convergence analysis for the proposed algorithm” section, the convergence analysis
for the proposed algorithm is given. Also, the least Frobenius norm reflexive solutions can be
obtained when special initial reflexive matrices are chosen. Finally, in “Numerical samples”
section, four numerical examples are considered for ensuring the performance of the pro-
posed algorithm.
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Iterative algorithm for solving AV + BW =EVF + C
In this part, we consider the following problem:
Problem 2.1. For given matrices A, B, E, CER"*", Fe R"*”, and two generalized reflec-

tion Matrices P, S of size n, find the matrices VeR?*"(P) and WeR"*"(S) such that
AV +BW =EVF+C (2.1)

Where the subspace R?*"(P) is defined by R"*"(P) = {QeR™" : Q = PQP}, where P is the
generalized reflection matrix: P> =1, P" = P.

An iterative algorithm for solving the consistent Problem 2.1
This subsection, an iterative algorithm is proposed for solving Problem 2.1 assuming that this

problem is consistent.
Algorithm 2.1
Step 1: Input matrices 4,B,E,CeR™*" and F e R"";
Step 2: Choose arbitrary V; e R*"(P) and W, e R}*"(S) where P and S are two

generalized reflection matrices of size n;
Step 3: Compute
R, =C—AV,+EV,F —BW, ;

P, :é[ATRI +PA"R,P—E"R,FT —PETRIFTP] ;

0 :é[BTRI + SBTR,S];
k:=1;

Step 4: If R, =0, then stop and [V, , W, ] is the solution; else if R, #0, but 2, =0
and Q, =0 then stop and the generalized Sylvester matrix Eq. (2.1) is
inconsistent over reflexive matrices; else k .=k +1;

Step 5: Compute

k.|

B 1
A +lodl

Vier =Vi +

L.
Il +loul

Ry =C—AVi +EVi F = BWyy,

- & (4P, — EP,F + BO,|;
K 3 5 1A, — ER.F + BO; |,
[2e]” + (1]
1{,r T HRk+1H2
Ops1 :5[8 Riy1 +SB Rk+1S]+Rsz ;
k
I 1 T T T T T HRk+1H2
Pk+1:E[A Riyy + PA" Ry P = E" Ry " = PE" Ry F P]+ [’ k-
k

Step 6: Go to step 4.
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In the next theorem, we prove that the solutions {V4, 1} and {W}, 1} are reflexive solutions
for the matrix Eq. (2.1).

Theorem 2.1 The solutions {Vy , 1} and{Wj , 1} generated from Algorithm 2.1 are reflexive
solutions with respect to the generalized reflection matrices P and S of the matrix Eq. (2.1).

Proof By using the induction we can prove this theorem as follows:

For k=1,
R 12
PVgP:PVlP—&-% 1
[P1I” + Qi
HR1H2 1 T 24T 2 T T 2T T p2
1 WE[PA Ry\P+ P°A"RyP*-PE"RF' P-P°E'R  F P]
1 1
R 1
=V +%7 [PATR,P + AR\ ~PETR, FTP-ETR, FT] = V,
[Pl” + llQul” 2

Assume that PV, P =V ie.,

IR *

[[Re-a I
S S| Py = Vi
1Pl + | Qa1 :

PV(P = PV, 1P+ e
1Pl + 11 Qe

PPy P = Vi1 +

Now,

2
PV P =PViP+—18%__ ppp
Vi Vil + o PP

= Vi+ AR (1[PATR,P + P2ATRP*~PE Ry FT P-P2ETR, FTP?] + %L ppy_, p)

TP+ QT P o
_ [IR 1 T Tp _prT Tp_pT T IR | _ )
= Vit miar GIPA RL + ARPEREP-ETRCET |+ ipPit) = Vi

Similarly, we can prove W, is reflexive solution with respect to the generalized

reflection matrix S of the matrix Eq. (2.1).

The complexity of the proposed iterative algorithm

Algorithmic complexity is concerned about how fast or slow particular algorithm per-
forms. We define complexity as a numerical function 7(n) —time versus the input size
n. The complexity of an algorithm signifies the total time required by the program to
run till its completion. The time complexity of algorithms is most commonly expressed
using the big O notation. It is an asymptotic notation to represent the time complexity.
A theoretical and very crude measure of efficiency is the number of floating point oper-
ations (flops) needed to implement the algorithm. A “flop” is an arithmetic operation:
+, X, or /. In this subsection, we compute the flops of the proposed Algorithm 2.1 of
the Sylvester matrix equation AV + BW =EVF + C.

The flop counts for step 3:

The residual R; requires 4mn(2n — 1) + 3mn flops, computing the reflection matrix P;
requires 4#n°(2m — 1) + 4n*(2n — 1) + 2mn(2n — 1) + 4n* flops, and computing the reflec-
tion matrix Q; requires 2n*(2m — 1) + n*(2n — 1) + mn(2n — 1) + 21 flops.

The flop counts for step 5:

Computing Vj,; requires (61 + 2mn + 5] flops, Wy .1 requires (612 + 2mn + 5]
flops, Ry 1

requires [4mn(2n — 1) + 4n* + 6mn + 5] flops, Qi 1 requires [21*(2m — 1) + n*(2n - 1) +
mn(2n - 1) + 4n* + 4mn + 3] flops, and Py, ; requires [4n2(2m - 1) + 3n%(2n - 1) + 2mn(2n
— 1) + 61* + 4mn + 3] flops.

Thus, the total count of Algorithm 2.1 is:

Page 4 of 16
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k[6n*(2m-1) + 4n*(2n-1) 4+ 7mn(2n-1) + 260 + 18mn + 21]
+6n*(2m-1) + 5n*(2n-1) + 7mn(2n-1) + 6n*> + 3mn ~ k[12n°m + 8n° + 14mn”|
+121°m + 10n° + 14mn*

where k represents the number of iterations which is needed to find the reflexive solu-
tions of Eq. (2.1). We can conclude that the total flop count of Algorithm 2.1 is O(x>).

Convergence analysis for the proposed algorithm
In this section, first, we present two lemmas which are important tools for the conver-
gence of Algorithm 2.1.

Lemma 3.1 Assume that the sequences {R;}, {P;} and{Q;} are obtained by Algorithm
2.1, if there exists an integer number s > 1, such that R;=0, for all i=1, 2, ..., s, then we

have
tr(RjTRi) —0 and tr(PjTPi n QjTQ,»> —0,i,j=1,2,....5,i#] (3.1)

Proof In view of the fact that tr(Y) = tr(Y”) for arbitrary matrix Y. Therefore, we only
need to prove that

tr(Rl.TRi) —0, tr(PjTPi n QITQi) — 0, for 1<i < j<s (3.2)
We prove the conclusion (3.2) by induction through the following two steps.
Step 1: First, we show that

tr(RL\R;) = 0and tr(P] P, + Q[,,Q) = 0,i=1,2,....s (3.3)

To prove (3.3), we also use induction.
For i =1, noting that P; = PP,P, and Q; = SQ,S, from the iterative Algorithm 2.1, we

2 T
can write tr(RIR,) = tr([Ry-—8__ (AP,~EP, F + BQ,)] R,)

21+l 1P
) L I r(PfA"R,-F"PE"R, + Q{B"R,)
- 1 1 1
1Py )1* + H2Q1H2
”Rl” T AT T T T T pT
= ||Ry||*- ——5——— tr(PTATR,-PTETR, FT + QTB"R,
11> + | Qi1 (1 ' ' )
— IRy 2= Ry [ < T{ATkl +PATR1P—ETR1FT—PETR1FTP}
- 1
; ||P1IIZJ;HQlH2 ; ; 2
Lor BTR, + SBTR,S r[BTR-SBTR,S
1 2 1 2 (3 4)
pT {ATRl—PATRlP—ETRl FT 4 PETRlFTP} )] '
1
2
— IRy~ IRy [tr ( pr {ATRl + PATR\P-ETR, FT-PETR, FTP}
- 2 2 1
[PLI” + Q| 2
Lor BTR, + SBTR,S
1 2
_ 2 IR |I* pIp T _
=Rl —W [tr(PTPy + Q[ Q)] = 0.
1

Similarly, we can write
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ATRy + PATR,P-ETR,FT-PETR, FTP N (IR } P
1

PIP Q) =
TBR+ Q) = 2 Il?

BTR2+SBTR2$ (IR Q} o
1 1
2 HR (&

, pT ATR, + PATR,P-ETRy FT-PETR, FTP
(IR ]| T T ! 2
= tr(PTP ¢
R " QL)+ Lo [BRe £ SBTR:S
! 2
R ATRy + ATRy~ETR, FT-ETR, FT 3.5
= Il o+ ) (o [ A (35)
BTRy + B'R,
o [f

IR oy 4 uIP) + o (RT AP -EP, F + BQL)

HR II?
_ HRZH (le” +HQIH )+tr<RT|P1”+|Q1|(R1—R2))

)7 I
R P 2 +
_ ll 2H2 (HPIH2 n HQ1”2) +Mtr(R;RI)_|‘R2H2 =
IRy IRy

Now, assume that (3.3) holds for 1 <i<¢-1<s, noting that P, = PP,P, and Q,=SQ,S,

then we have for i =¢

T
IR
RTR) =tr| |R-——" {AP,—EP,F + BQ,}| R
iRk { 1P + P ‘
2
— IR R (pATRFTRETR, + QBTR))
PP+ P
2 HRtH T AT T T T T nT
= 77tPAR7PERF+ B R,
VRl o g (e 4 R PO E RS + QIBTR)

- IR +[ATR, + PATR,P-E"R,F*-PE"R,F'P (3.6)
T 2 '

+Qf

2 2
e IR T (o R Y ar (g IR
R =+ 1 | T R o e

2 2

— R MR Nyp e - R e, 1 Qo) | =0

IR TN ENNTON N b TR P Y
t ]

[BTR[ +SBTR,S

Also, we have

T
ATRiy + PA"Ri 1\ P~E"Rps FT-PE"Ry 1 FTP | |Resa | P} »
t t

T T
tr(P P+ QL Q) = tr 2 IR
t

n BTRt+1+SBTRz+1S HRz+1H Q Q
t t
2 HRtH2
o {ATRM + PATRHIP—ETRHIFT—PETRZHFTP}
t
2

Rl or T
= 7tr(Pl P+ Q QL) + tr

IR +Qf w
! 2
HRz+1”2 T T T
= TG tr(PI P, + Qf Q,) + tr(R] | [AP,~EP,F + BQ,])
t
R 2 P, 2+ Q 2
Hirtern - ara o (P o
Il IRl
[Resa | 1P+ 11Q. 1
= HRtHZ tr(P{Pt+Q?Q3)+T|2t (RtTH ) ”RtHH —o

(3.7)
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Therefore, the conclusion (3.3) holds for i =£. Hence, (3.3) holds by the principle of

induction.
Step 2: In this step, we show for 1<i<s-1

tr (RT

[R) =0and tr(P/,P;+ Q[ ,Q) =0 (3.8)

for[=1,2, ..., s The case of / = 1 has been proven in step 1. Assume that (3.8) holds for /< v.
Now, we prove that tr(R},, ;R;) =0 and tr(P], . P;i+ Q/,.;Q) =0 through the

following two substeps.
Substep 2.1: In this substep, we show that

tr(RL,R;) =0 (3.9)

tr(Pl,,P1 + QL.,Q) =0 (3.10)

By Algorithm 2.1 and the induction assumptions, we have

- ||RV+1||2
2
1Peiall” + (| Quia |
R’
:tr(RZ:rlRl)—Hp ::ZIIHQ Hztr(PVT+1 [ATR-E"R,F"] + QL. ,B"Ry)
v+1 v+1
Ry < T {ATRl—ETRlPT—&—PATRIP—PETRlFTP}

) ||Pv+1||2 + ||Qv+1||2 o 2

+ [BTR, +SBTR,S
+Qu i1 S

tr(RVTHRl) =tr

T
s (APV+1_EPV+1F+BQV+1)‘| Ry

IRys1]*

PP+ Qs

tr(PvTHPl + QVTHQI) =0,

and tr(PT P+ Q3+2Q1)

A"Ry1s + PATR,2P-E"Ry (s FT-PE"R, .2 F'P  |Rysa®

P
D) v+1 1
||Rv+1 ”2

=tr

T
Qv+1 Ql

L B Rvs2 + SBTRy:5S [ Ry2l”
2 IR,

R,.ol?
_ :R +2:2 tr(PT. Py + QL1 Q) + tr(RY,,[AP,~EP, F + BQ,])
v+1
1P1]” + Qi
B ||121||2—1 tr(R}, 5 (Ri-Ry)) = 0

Thus, (3.9) and (3.10) hold.
Substep 2.2: By Algorithm 2.1 and the induction assumptions, we can write
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HRi+v||2
1Pl + [ Qi
[ AT _ETR ET
=tr(R],,R;)- tr(P},,[ATR~E"R;F"] + Q
PP Qe
- Risv |1 < T {ATR, ETR,»FT+PATR,»P—PETR,'FTP}
1P| + [l Qe |” N 2

BTR; + SBTR;S
+Q1+V f

(RZWHR ) =tr ity 3 (APiry=EPi F + BQiy) | Ri

HrvBTRi)

IR . IR
- P 1| +QL, | Q- Q;
IR | U R

(|R:||*
[

tr(PL,Pii +QF,Q1 1)

l|Riv || T
PP+ HQHVHz”( B
_ IR tr(PT P+ Q7. Q) -

1P+l I L7 T
R [|Ris]

R P (1Pl + Q)

(P,T+V i1+ QiTJeri-l)

(3.11)

Also, we have

tr(Pz+v+1P + Ql+v+1Qi)
Tp. Tp. _ . _ Tp. T . 2 r
A Rz+v+1 +PA Rz+v+1P E Rl+V+1F PE Rz+v+1F P ||RZ+V+1|| P
i+v i

=tr 3
2 [[Ris|

+ lBTRi+v+1 + SB"Riyy11S | |[Risvsr |

T
Qi+v QL’
2 IRiso |

Ri v
= M (PZH/P + Qt+in) + tr(RZHhLl[APi_EPiF + BQI])

IRiso |
1P + QI e 1P + Qi
= (R [RimRen]) = ==t (R R)
IRI IR
_ PP+ 1R [RIPIRw

tr(PL,Pi1 +QF,Q1,)
RIE R P (12l + ol T)

(3.12)

Repeating the above process (3.11) and (3.12), we can obtain, for certain & and /3
tr(RY 1 Ri) = atr(Py,P1+ Q) Q) » and  tr(PL,  Pi+ Q)1 Q) = Btr(Py,P1
+QV+2Q1)'
Combining these two relations with (3.10) implies that (3.8) holds for /=v + 1.
From steps 1 and 2, the conclusion (3.1) holds by the principle of induction.
Lemma 3.2 Let Problem 2.1 be consistent over reflexive matrices, and V' and W~ be

arbitrary reflexive solutions of Problem 2.1. Then for any initial reflexive matrices V
andW,, we have

tr((V*—Vi)TPi + (W*—Wi)TQi) — Rl fori=1,2,... (3.13)

where the Sequences {R;}, {P}, {Q3}, {Vi} and{W} are generated by Algorithm 2.1.
Proof We can prove the conclusion (3.13) by using the induction as follows
For i =1, noting that V"' - V; = P(V" - V)P, and W - W, = Z(W" - W1)Z, we have

Page 8 of 16
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tr((V*—VI)TPl + (W*—Wl)TQ1>

ATRy + PATR,P-E"R FT-PETR, FTP BTR, 4+ SBTR,S
r((V*—V )T|: 1+ 1 ; 1 1 (W*—WI)T{ 1+2 1 })

7 [ATR, + PATR,P-ETR, FT- PETRlFTP+ATR1 -PATRP-ETR, FT

~ (v

PETR,FTP
++}+(W*—W )7

{B Ry + SBTR,S +BTR1 SBTR, D

—or((v'-vi) [ATR, ETRIFT] (w*-w)" [B"R] )
= tr(RT[A(V* -V 1)-E(V*-V1)F + B(W*-W1)))
tr(RT[C-AV1 + EV F-BW1)) = ||Ri|*.

(3.14)
Assume that the conclusion (3.13) holds for i = t. Now, for i = £ + 1, we have

tr((V*—VtH)TPtH + (W*_Wt+l)TQt+1)
=tr <(V*_Vt+1)T A"Risy + PA"R  P-E" Ry FT-PE"R y F'P | || R |

2
2 IRl
7 |BTRui1 + SBTR1S  ||Reia|

2 IRe[|* )

- tr((V*—VHl)T [ATR 1 ~ETRr FT| + (W =W )" [BTR. ]

Rent|* 1, -
el v, 0,70
t

= tV(RtTH[C—AVtH +EV i F-BW,4]) = R

t

+(W*—Wt+1) Qt

(3.15)

Hence, Lemma 3.2 holds for all i =1, 2, ... by the principle of induction.

Theorem 3.1 Assume that Problem 2.1 is consistent over reflexive matrices, then by
using Algorithm 2.1 for any arbitrary initial reflexive matrices V,€R!*"(P) and W€
R>M(S), reflexive solutions of Problem 2.1 can be obtained within a finite iterative steps
by Algorithm 2.1 in absence of roundoff errors.

Proof Assume that R;#0 for i=1, 2, ..., mn. From Lemma 3.2, we get P;#0 or Q,=0
for i=1, 2, ..., mn. Therefore, we can compute R, 1, Vyun+1 and W, .1 by Algo-
rithm 2.1. Also from Lemma 3.1, we have

tr(RL, . \R;) =0fori=1,2,.. mn, (3.16)
and
tr(R[R;) = 0fori,j=1,2,...,mn, (i#j). (3.17)

Therefore, the set {Ry, R, ..., R,,,} is an orthogonal basis of the matrix space R”*”,
which implies that R,,,+1 =0, i.e., V,.,,,1, and W,,,, .1 are reflexive matrices solutions
of Problem 2.1. Hence, the proof is completed.

To obtain least Frobenius norm solution of the generalized solution pair of Problem
2.1, we first present the following lemma.

Lemma 3.3 [4] Assume that the consistent system of linear equations Ax = b has a so-
lution x" € R(A™), then x° is a unique least Frobenius norm solution of the system of lin-
ear equations.

Theorem 3.2 Suppose that Problem 2.1 is consistent over reflexive matrices. Let the
initial iteration matrices Vi = A"G + PATGP-E"GFT-PE"GF'P and W, =BG

Page 9 of 16
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+SBT GS where G and G are arbitrary, or especially Vi =0 andW | = 0, then the re-
flexive solutions V" andW" obtained by Algorithm 2.1, are the least Frobenius norm re-
flexive solutions of Eq. (2.1).

Proof The solvability of the matrix Eq. (2.1) over reflexive matrices is equivalent to the
solvability of the system of equations

(3.18)

AV-EVF +BW = C,
APVP-EPVPF + BSWS = C.

And the system of equations (3.18) is equivalent to

(o teratsy Gosm) i) = (@) 319

Now, assume that G and G are arbitrary matrices, we can write

vec(ATG + PA" GP-E" GFT-PE"GF'P) )

vec(BTG + SBTGS)
_ <(1 ®AT)-(F®ET) (P®PAT)—(PF®PET)) <Vec(g)>
(I®B") (S® SBT) vec(G)

_( (I@A)-(FT®E)  (IB) >T<vec(g))
“\(P®AP)-(FTP®EP) (S®BS)) \vec(G)

" < (I®A)-(FT ® E) (1®B)>T
(P® AP)-(FTP®EP) (S® BS)

If we consider Vi = A"G + PA"GP-E" GF"-PE"GF'P and W, = B"G+ SB'GS
then all Vi And W, generated by Algorithm 2.1 satisfy

(vec(Vk))eR ( (I®A)-(FT®E)  (I®B) )T
vec(W) (P® AP)-(FTP®EP) (S®BS)

By applying Lemma 3.3 with the initial iteration matrices V; = AT G + PATGP-E”
GFT-PETGFTP and W, = BTG + SBTGS where G and G are arbitrary, or especially
V1 =0 and W; = 0, the reflexive solutions V" and W~ obtained by Algorithm 2.1 are
the least Frobenius norm reflexive solutions of Eq. (2.1).

Numerical examples

In this section, four numerical examples are presented to illustrate the performance
and the effectiveness of the proposed algorithm. We implemented the algorithms in
MATLAB (writing our own programs) and ran the programs on a PC Pentium IV.

Example 4.1
Consider the generalized Sylvester matrix equation AV + BW = EVF + C where

Page 10 of 16
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3 2 41 5 0 2 3 -3 2 4 0
0 -2 1 3 5 0 4 1 2 0 -3 2

A=1|5 2 3 2|,B= 3 4 5 2|,E= 3 2 3 0
2 1 3 4 3 2 2 3 3 4 3 O
2 0 2 0 0 3 4 6 3 0 3 2
3 _4 5 1 84 -46 49 81
2 4 1 3 -13 19 11 8

F= and C = 29 70 18 15
4221 26 53 29 8
-3 0 -2 -12

61 35 -24 68

Choosing arbitrary initial matrices V; = W; =0. Applying Algorithm 2.1, we get the

reflexive solutions of the matrix Eq. (2.1) as follows:

0.0000
0.0000
1.0000
2.0000

<R (P)

eRM(S)

0.0000 0.0000 4.0000 2.0000 r

0000 3.0000

, with the corresponding residual

1.0000  3.0000 0.0000
Vo — | ~2:0000 20000 0.0000
B 71 0.0000 0.0000 2.0000
0.0000 0.0000 4.0000
2.0000 1.0000 0.0000 0.0000
3.0000 3.0000 0.0000 0.0000
and Wzg:
0.0000 0.0000 -1.
10 0 O
01 0 0
where P =S = 00 -1 0
00 0 -1

IRl = IC = (AV,g + BW,yg — EVyeF)ll = 6.8125 x 107'°, Moreover, It can be verified
that PV,gP = V,g and SW,sS = W,g. Table 1 indicates the number of iterations k and

norm of the corresponding residual:

Now let V = , W

w oo

1 1 0

-1 -1 0 o
0 0 - 1
0 O -1

1-10 0
110 o0
"o 0o 1 2
0 0 -2 1

By applying Algorithm 2.1 for the generalized Sylvester matrix equation AV + BW

=EVF+C, and letting the initial

pair Vi =W,; =0, we can obtain the least

Frobenius norm generalized solution V', W' of the generalized Sylvester matrix Eq.

(2.1) as follows

Table 1 The number of iterations and norm

of the corresponding residual for the reflexive

solution of the generalized Sylvester matrix equation Example 4.1

Number of iterations k

Norm of the corresponding residual I[RIl

26
27
28
29

1.1974x 1078
6.9049 % 107°
6.8125x107"°
1.1489%107°
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~-0.0000 2.0000  0.0000 0.0000
7 _77,, — | ~1.0000 3.0000  0.0000 0.0000
727 | 0.0000 0.0000 4.0000 0.0000 |’
0.0000 0.0000  1.0000 3.0000
1.0000 2.0000  0.0000 0.0000
e 2.0000 4.0000  0.0000 0.0000 ) .
Wo=Wa=10,0000 00000 3.0000 -0.0000 | @ With the corresponding
0.0000 0.0000  1.0000 2.0000
residual

|Ras|| = ||C~(AV 29 + BWo9—EV 9 F)|| = 5.0896 x 107

Table 2 indicates the number of iterations k and norm of the corresponding residual
with V; = W =0.

Example 4.2
(Special case) Consider the generalized Sylvester matrix equation AV+BW =EVF+C
where
-0.2 1 0 0 2 0 0O -2 1 0 O
1 -0.1 0 0 01 0 O -1 4 0 O
A= 0 0 -03 O E= 0 0 3 0 B = 0 0 -3 0
0 0 0 0.4 0 0 0 2 0O 0 0 3
2 0 0 0 1 0 0 0
0 1 0 0 0 -0.2 0 0
F=10 0 —02 o|®™C=1¢o o 1 0
00 0 4 0 0 -0.1 3

Choosing arbitrary initial iterative matrices V; = W; = 0. Applying Algorithm 2.1,
we get the reflexive solutions of the matrix Eq.(2.1) after 7 iterations when £=10""° as

follows:
-0.177130 -0.016697 0.000000 0.000000
. 0.041119 0.014553 0.000000 0.000000 44
Vr = 0.000000 0.000000 0.033003 0.000000 €R, (P) and
0.000000 0.000000 -0.008300 -0.341520
-0.085183 0.005417 0.000000 0.000000
W — 0.044574  -0.040468 0.000000 0.000000 R4 ( S)
7 0.000000 0.000000 -0.330030 0.000000 r
0.000000  0.000000 -0.031125 0.134810

Table 2 The number of iterations and norm of the corresponding residual for Example 4.1 with V;

=W, =0

Number of iterations k

Norm of the corresponding residual [[RIl

26
27
28
29
30

29491 % 107
6.3498% 107
25150% 107
50896 % 107"
2.7365% 107"
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where P =

S O O+
oS O = O

0

0
-1
0

0
0
0
-1

and S

(2019) 27:27 Page 13 of 16

=P.

It can be verified that PV,P =V, and SW,S = W,. Moreover, the corresponding re-
sidual IR;ll = IC - AV5 + EV,F - BW,|l = 8.1907¢ - 10.

Example 4.3

Consider the generalized Sylvester matrix equation AV + BW = EVF + C where

2 -1 -3 3
3 -1 1 -2
3 2 0 1
A= 2 -1 3 2
4 -1 2 -2
2 -1 0 3
3 2 0 -1
1 -1 4 2
3 2 -1 0
F= 0 -1 2 -3
2 -1 4 0
2 -1 3 2

N Lo NN WO ® o

.
Hw%’_.;bpuucbwmo

owom b oo

and C =

31 2 0 -2 1 0 -2 -1 3 4
2 4 1 -2 3 2 -3 3 4 0 2
0 4 3 2 -3 B— 1 0 3 -2 2 -3
2 4 2 0 3/ 2 -1 4 0 -3 1
2 1 4 1 2 0 -1 0 2 3 1
2 0 -2 -3 4 2 -1 3 -3 4 1

0 -1 1 22 -30 14

-37 19 -122 -22 -4 28

65 -21 4 32 -77 -9

127 -77 5 -36 -65
-11 33 -67 60 -52 -43
-37 19 -68 -39 61 3

Choosing arbitrary initial matrices V; = W; = 0. Applying Algorithm 2.1, we get the
reflexive solutions of the matrix Eq. (2.1) after 108 iterations when & = 107*° as follows:

1 3
1 3
1 3
V= 0 0
0 0
0 0
2 -1
2 -1
2 -1
W= 0 0
0 0
0 0
1
0
0
where P =S = 0
0
0

el ool "

0

-2
-2
2
0
0
0
3
3
-3

0
0
0

S O = OO

0

0
0
0
2
2
2
0
0
0
2
2
2
0 O
0 O
0 O
-1 0
0 -1
0 O

0 0
0 0
10 20 €R®*®(P) and
1 -2
1 2
0 0
0 0
D )
-1 3
-1 -3
0
0
(()) , with the corresponding residual
0
-1

IR, 08ll = IC = (AVi08 + BWigs — EVipsE)ll = 3.0452 x 107°. Moreover, It can be verified
that PViggP = Vipg and SW;ogS = Wipg. Table 3 indicates the number of iterations k and

norm of the corresponding residual:

Example 4.4

Consider the generalized Sylvester matrix equation AV + BW = EVF + C where
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Table 3 The number of iterations and norm of the corresponding residual for the reflexive
solution of the generalized Sylvester matrix equation Example 4.3

Number of iterations k Norm of the corresponding residual I[RIl
89 73204 % 10
99 55252% 10
108 3.0452% 10°7°
127 26502 x 107
2 -1 -3 3 -1 0 4 -3 1 2 0 -2 1 0 -2 -1 3 4
5 -2 0 5 1 -3 0O 2 4 1 -2 3 3 5 -3 2 4 1
3 -1 1 -2 0 6 2 0 4 3 2 -3 2 -3 3 4 0 2
A_|1 53203, | 325430, [103-223:3
13 2 0 -5 4 30""" | 12 4 2 0 3| |4 5 -3 4-1 0}
2 -1 3 -5 0 -3 1 -3 2 4 0 2 2 -1 4 0 -3 1
4 -1 2 -2 3 1 3 2 1 4 1 2 0O -1 0 2 3 1
2 -1 0 3 -2 1 -1 2 0 -2 -3 4 2 -1 3 -3 4 1
-11 -51 -58 29 -15 68
32 0 -1 2 1 -27 85 -124 52 -26 -82
1 -1 4 2 1 -3 59 -93 109 39 -6 28
F— 3 2 -1 0 2 1 and C — -18 22 -24 -14 -5 86
o -1 2 -3 1 4 - 59 125 -144 -41 -68 -11
2 -1 4 0 2 3 -40 56 -105 -5 -89 -27
2 -1 3 2 -3 1 -43 43 -110 15 -53 -10

-54 144 -109 14 20 -75

Choosing arbitrary initial matrices V; = W; = 0. Applying Algorithm 2.1, we get the
reflexive solutions of the matrix Eq. (2.1) after 96 iterations when & = 10™'? as follows:

1 3 -2 0 0 0
2 -2 1 0 0 0
|2 1 -3 0 0 0 656
V= 0 0 0 4 1 - €R*°(P) and
0 0 0 -3 -2 -1
0 0 0 -1 4 1
2 -1 3 0 0 0
-3 2 1 0 0 0
|3 4 1 0 0 0 | __6xe
=159 o 0 2 -1 3 |RT(S)
0 0 0 4 2 1
0 0 0 1 -3 2
1 0 0 0 O O
0O 1 0 0 0 O
O 0 1 0 0 O . . .
where P =S = 000 -1 0 ol with the corresponding residual [|Rogll = |l
o 0 0O o0 -1 O

0 0 0 0 0 -1
diag(C - (AVog + BWog — EVeF))ll = 3.0152 x 107*2,

Table 4 The number of iterations and norm of the corresponding residual for the reflexive
solution of the generalized Sylvester matrix equation Example 4.4

Number of iterations k Norm of the corresponding residual I[RIl
77 1.2455x 10
81 2.1035x 108
84 22031x 10"

% 30152% 10772
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Moreover, It can be verified that PVogP = Vo and SWoeS = Woe. Table 4 indicates the
number of iterations k and norm of the corresponding residual.

Conclusions

In this paper, an iterative method to solve the generalized Sylvester matrix equa-
tions over reflexive matrices is derived. With this iterative method, the solvability
of the generalized Sylvester matrix equation can be determined automatically. Also,
when this matrix equation is consistent, for any initial reflexive matrices, one can
obtain reflexive solutions within finite iteration steps. In addition, both the com-
plexity and the convergence analysis for our proposed algorithm are presented.
Furthermore, we obtained the least Frobenius norm reflexive solutions when special
initial reflexive matrices are chosen. Finally, four numerical examples were pre-
sented to support the theoretical results and illustrate the effectiveness of the pro-
posed method.
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