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Abstract
The aim of this paper is to introduce and study the notions ofM-fuzzy quantic nuclei and
conuclei on quantales. Firstly, the concept of anM-fuzzy quantic nuclei is introduced
and some of its properties are discussed. Secondly, the concept of anM-fuzzy quantic
conuclei is introduced. As an application ofM-fuzzy quantic conuclei on quantales, a
characterization of an (L,M)-quasi-fuzzy interior operator on a non-empty set X is given
and the relationship between it and an (L,M)-quasi-fuzzy topology is discussed. Finally,
the concept of anM-fuzzy left (resp., right) ideal conucleus is introduced and the
relationship with the concept ofM-fuzzy left (resp., right) ideal is introduced.
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Introduction
Quantales were introduced by C. J. Mulvey in [1], with the purpose of studying the foun-
dations of quantum mechanics and the spectrum of C∗-algebras. In 2007, Rodabaugh
[2] introduced the notion of semi-quantale as a generalization of quantale and used it as
an appropriate lattice-theoretic basis to formulate powerset, topological, and fuzzy topo-
logical theories. The notion of semi-quantale provides a useful tool to gather various
lattice-theoretic notions, which have been extensively studied in non-commutative struc-
tures; it has a wide application, especially in studying the non-commutative lattice-valued
quasi-topology [2–6].
In 2015, Demirici [7] introduced the notion of M-fuzzy semi-quantales as a fuzzy

version of notion of Rodabaugh’s semi-quantales, providing a common framework for
(L,M)-fuzzy topological spaces of Kubiak and S̆ostak [8], L-quasi-fuzzy topological
spaces of Rodabaugh [2], and L-fuzzy topological spaces of Höhle and S̆ostak [9].
As we all know, the quantic nuclei and the quantic conuclei play an important role

in quantale theory. In this paper, we aim to introduce the notions of M-fuzzy quan-
tic nuclei and conuclei on quantales and study some of their properties. Firstly, in
“The (direct) product of two quantales” section, we will define and study the (direct) prod-
uct of two quantales which will be used through this paper. In “M-fuzzy quantic nuclei”
section, the concept of an M-fuzzy quantic ( or quantale) nuclei is introduced and
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a relationship between it and the notion of M-fuzzy semi-quantales is discussed. In
“M-fuzzy quantic conuclei” section, the concept of an M-fuzzy quantic (or quantale)
conuclei is introduced. As an application of M-fuzzy quantic conuclei on quantales, we
characterize and study the notion of (L,M)-quasi-fuzzy interior operator on a non-empty
set X and discuss the relationship between it and an (L,M)-quasi-fuzzy topology on
X. Finally, in “M-fuzzy ideal conuclei on quantales” section, the concept of an M-fuzzy
left (resp., right) ideal conucleus is introduced and the relationship with the concept of
M-fuzzy left (resp., right) quantale ideals is introduced.

Preliminaries
A semi-quantale L = (L,≤,⊗) [2, 10] is a complete lattice L = (L,≤) equipped with
a binary operation ⊗ : L × L −→ L (called a tensor product) with no additional
assumptions. As convention, we denote the join, meet, top, and bottom in the com-
plete lattice (L,≤) by

∨
,
∧
,�L , and ⊥L, respectively. Semi-quantales include various

classes of ordered algebraic structures (e.g., complete residuated lattices, unit interval
[ 0, 1] equipped with t-norms or t-conorms, quantales, frames, semi-frames) playing a
major role in fuzzy set theory and fuzzy logics [11, 12]. Now, we list only some of their
definitions that will be needed in the following text.

Definition 1 A semi-quantale L = (L,≤,⊗) is called:

(1) A unital semi-quantale [2] if the groupoid (L,⊗) has an identity element e ∈ L called
the unit. If the unit e coincides with the top element �L of L, then a unital
semi-quantale is called a strictly two-sided semi-quantale.

(2) A commutative semi-quantate [2] if ⊗ is commutative, i.e., a ⊗ b = b ⊗ a for every
a, b ∈ L.

(3) A quantale [13] if the binary operation ⊗ is associative and satisfies

a⊗ (
∨

i∈I
bi) =

∨

i∈I
(a⊗ bi) and (

∨

i∈I
bi) ⊗ a =

∨

i∈I
(bi ⊗ a) for all a ∈ L, {b}i∈I ⊆ L.

(4) A coquantale [14] if the multiplication ⊗ is associative and satisfies

a⊗ (
∧

i∈I
bi) =

∧

i∈I
(a⊗ bi) and (

∧

i∈I
bi) ⊗ a =

∧

i∈I
(bi ⊗ a) for all a ∈ L, {b}i∈I ⊆ L.

A semi-quantale morphism [2] h from a semi-quantale L = (L,≤,⊗) to an other semi-
quantale M = (M,≤,
) is a map h : L −→ M preserving the tensor product and the
arbitrary joins. If a semi-quantale morphism h : L −→ M additionally preserves the
top (resp., unit) element, i.e., h(�L) = �M (resp., h(eL) = eM), then it is said to be
strong (resp., unital). The category SQuant comprises all semi-quantales together with
semi-quantale morphisms. The non-full subcategory UnSQuant of SQuant comprises
all unital semi-quantales and all unital semi-quantale morphisms [2]. Quant is the full
subcategory of SQuant, which has as objects all quantales.
CoQuant is the full subcategory of SQuant, which has as objects all coquantales and as

morphisms, all maps that preserve the tensor product and arbitrary meets.
Let X be a non-empty set and L ∈ |SQuant|. An L-fuzzy subset (or L-subset) of X is

a mapping A : X −→ L. The family of all L-fuzzy subsets on X will be denoted by LX .
The smallest element and the largest element in LX are denoted by ⊥ and �, respectively.
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The algebraic and lattice-theoretic structures can be extended from the semi-quantale
(L,≤,

∨
,⊗) to LX pointwisely:

• A ≤ B ⇔ A(x) ≤ B(x),
• (A ⊗ B)(x) = A(x) ⊗ B(x),

for all x ∈ X.
Obviously, (L,≤,⊗) is again a semi-quantale with respect to the multiplication ⊗ and

the joins of a subset {Ai : i ∈ I} of LX is given by
(
∨

i∈I
Ai)(x) = ∨

i∈I
Ai(x) ∀ x ∈ X.

In the case where L is unital with unit e, then LX becomes a unital semi-quantale with
the unit e. For an ordinary mapping f : X −→ Y , one can define the mappings f→

L :
LX −→ LY and f←

L : LY −→ LX by f→
L (A)(y) = ∨{A(x) : x ∈ X, f (x) = y} for every

A ∈ LX and every y ∈ Y , f←
L (B) = B ◦ f for every B ∈ LY , respectively. For more details,

we refer to [2, 15].
Every quantale L has two residuals, which are induced by its binary operation ⊗ and

which are defined by a ↘ b = ∨{c : a ⊗ c ≤ b} and b ↙ a = ∨{c : c ⊗ a ≤ b}, respec-
tively, providing a single residuum → in case of a commutative multiplication (resulting
complete residuated lattices of Denniston et al. [16]). These operations have the standard
properties of poset adjunctions [17] or (order preserving) Galois connections [18], for
example,

a⊗b ≤ c ⇔ a ≤ b ↘ c ⇔ b ≤ c ↙ a. (1)

For the convenience of the reader, the following proposition recalls some of their other
properties, which will be heavily used throughout this paper.

Proposition 1 [13, 19] For L ∈ |Quant|with a, b, c ∈ L and B ⊆ L, we have the following
properties:

(1) a ⊗ (a ↘ b) ≤ b and (b ↙ a) ⊗ a ≤ b,
(2) b ↘ (a ↘ c) = (a ⊗ b) ↘ c and (c ↙ b) ↙ a = c ↙ (a ⊗ b),
(3) a ↘ (c ↙ b) = (a ↘ c) ↙ b.
(4) a ≤ b implies c ↘ a ≤ c ↘ b and b ↘ c ≤ a ↘ c.

Before going toomuch further, we recall that if L = (L,≤) is a poset, an order preserving
function g : L → L is called a closure (resp., coclosure) operator on the poset L = (L,≤)

[13, 17] iff it satisfies the following conditions:

(1) a ≤ g(a) (resp., g(a) ≤ a), for all a ∈ L,
(2) g(g(a)) = g(a), for all a ∈ L.

Definition 2 [4, 13] Let (L,≤,⊗) ∈ |SQuant|. A quantic nucleus (resp., conucleus) on L
is a closure (resp., coclosure) operator g : L −→ L such that g(a) ⊗ g(b) ≤ g(a⊗ b)) for all
a, b ∈ L.

Definition 3 [20] Let L be a quantale. A non-empty subset I ⊆ L is called a left (resp.,
right) ideal of L if it satisfies the following three conditions:
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(1) a ∨ b ∈ I for all a, b ∈ I,
(2) For all a, b ∈ L, if a ∈ I and b ≤ a, then b ∈ I;
(3) For all a ∈ L and x ∈ I, a ⊗ x ∈ I (resp., x ⊗ a ∈ I).

A subset I is an ideal if it is both a left ideal and a right ideal.

Definition 4 [7] Let (L,≤,⊗), (M,≤,
) ∈ |SQuant|.
(i) An M-fuzzy semi-quantale on L is a map μ : L −→ M satisfying the following

conditions: For all a, b ∈ L and {aj|j ∈ J} ⊆ L,

(FSQ1) μ(a) 
 μ(b) ≤ μ(a ⊗ b),
(FSQ2)

∧
j∈J μ(aj) ≤ μ

(∨
j∈J aj

)
.

(ii) An M-fuzzy semi-quantale μ is called strong if μ(�L) = �M .
(iii) In case where (L,≤,⊗) is a unital semi-quantale with the unit eL, an M-fuzzy

semi-quantale μ is called unital if μ(eL) = �M .

Definition 5 [7] Let (L,≤,⊗), (M,≤,
) ∈ |SQuant| , and X be a non-empty set.

(i) A map τ : LX −→ M is called an (L,M)-quasi-fuzzy topology on X iff τ is an
M-fuzzy semi-quantale on LX , i.e., the next conditions are satisfied for all A,B ∈ LX

and {Aj|j ∈ J} ⊆ LX :

(QT1) τ (A) 
 τ(B) ≤ τ(A ⊗ B),
(QT2)

∧
j∈J τ(Aj) ≤ τ(

∨
j∈J Aj).

(ii) An (L,M)-quasi-fuzzy topology is strong iff τ(�) = �M .
(iii) Let L be a unital semi-quantale with unit e. An (L,M)-quasi-fuzzy topology is then

called an (L,M)-fuzzy topology iff τ(e) = �M .
(iv) The ordered pair (X, τ) is called an (L,M)-quasi-fuzzy (resp., strong

(L,M)-quasi-fuzzy, (L,M)-fuzzy) topological space if τ is an (L,M)-quasi-fuzzy
(resp., strong (L,M)-quasi-fuzzy, (L,M)-fuzzy) topology on X.

The (direct) product of two quantales
It is known that the (direct) product of two ordered sets (P,≤) and (Q,≤) is the ordered
set (P × Q,≤) [21], where the order relation on the product P × Q is defined as follows:

(a, b) ≤ (c, d) in P × Q ⇔ a ≤ c in P and b ≤ d in Q. (2)

Also, the (direct) product of two semigroups (G,⊗) and (H ,
) is a semigroup (G×H , ∗)

[22], where the binary operation ∗ on G × H is defined as follows:

(a, b) ∗ (c, d) = (a ⊗ c, b 
 d). (3)

Furthermore, the direct product of two complete lattices is a complete lattice [23].
So, we can conclude that the direct product of any two semi-quantales is again a
semi-quantale with the tensor product ∗ denoted by Eq. (3).

Lemma 1 The direct product of any two quantales is a quantale.

Proof Since the direct product of any two semi-quantales is a semi-quantale, then we
only prove the distributively of

∨
over the product ∗.
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Let Q = (
Q,≤,

∨
, ∗) = Q1 × Q2 where Q1 = (

Q1,≤,
∨
,⊗)

and Q2 = (
Q2,≤,

∨
,
)

are quantales.
For all a,

∨
i ai ∈ Q1, b,

∨
i bi ∈ Q2, we have

(a, b) ∗
∨

i
(ai, bi) = (a, b) ∗

(
∨

i
ai,

∨

i
bi

)

=
(

a ⊗
∨

i
ai, b 


∨

i
bi

)

,

=
(

∨

i
(a ⊗ ai) ,

∨

i
(b 
 bi)

)

,

=
∨

i
((a ⊗ ai) , (b 
 bi)) .

Similarly, we can prove that
∨

i(ai, bi) ∗ (a, b) = ∨
i((ai ⊗ a), (bi 
 b)).

Lemma 2 For (Q1,≤,
∨
,⊗), (Q2,≤,

∨
,
) ∈ |Quant|, let a1, b1 ∈ Q1 and a2, b2 ∈ Q2.

Then

(1) (a1, a2) ↘ (b1, b2) = (a1 ↘ b1, a2 ↘ b2),
(2) (b1, b2) ↙ (a1, a2) = (b1 ↙ a1, b2 ↙ a2).

Proof

(a1 ↘ b1, a2 ↘ b2) = (
∨

{c1 : a1 ⊗ c1 ≤ b1},
∨

{c2 : a2 
 c2 ≤ b2}),
=

∨
{(c1, c2) : a1 ⊗ c1 ≤ b1, a2 
 c2 ≤ b2},

=
∨

{(c1, c2) : (a1 ⊗ c1, a2 
 c2) ≤ (b1, b2)},
=

∨
{(c1, c2) : (a1, a2) ∗ (c1, c2) ≤ (b1, b2)},

= (a1, a2) ↘ (b1, b2).

The item (2) can be proved similarly.

Proposition 2 Let (Q1,≤,
∨
,⊗), (Q2,≤,

∨
,
) ∈ |Quant|, a, b, c ∈ Q1 and a1, b1, c1 ∈

Q2. Then

(1) (a, a1) ∗ ((a, a1) ↘ (b, b1)) ≤ (b, b1),
(2) ((b, b1) ↙ (a, a1)) ∗ (a, a1) ≤ (b, b1),
(3) (b, b1) ↘ ((a, a1) ↘ (c, c1)) = ((a, a1) ∗ (b, b1)) ↘ (c, c1),
(4) ((c, c1) ↙ (b, b1)) ↙ (a, a1) = (c, c1) ↙ ((a, a1) ∗ (b, b1)),
(5) (a, a1) ↘ ((c, c1) ↙ (b, b1)) = ((a, a1) ↘ (c, c1)) ↙ (b, b1).

Proof (1)

(a, a1) ∗ ((a, a1) ↘(b, b1)) = (a, a1) ∗ (a ↘ b, a1 ↘ b1)

= (a ⊗ (a ↘ b), a1 
 (a1 ↘ b1))(by Proposition 1(1))

≤ (b, b1).

(2)

((b, b1) ↙ (a, a1)) ∗ (a, a1) = (b ↙ a, b1 ↙ a1) ∗ (a, a1)

= ((b ↙ a) ⊗ a, (b1 ↙ a1) 
 a1)(by Proposition 1(1))

≤ (b, b1).
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(3)

(b, b1) ↘ ((a, a1) ↘ (c, c1)) = (b, b1) ↘ (a ↘ c, a1 ↘ c1)

= (b ↘ (a ↘ c), b1 ↘ (a1 ↘ c1))

= ((a ⊗ b) ↘ c, (a1 
 b1) ↘ c1)(by Proposition 1(2))

= (a ⊗ b, a1 
 b1) ↘ (c, c1)(by Lemma 2)

= ((a, a1) ∗ (b, b1)) ↘ (c, c1).

(4)

((c, c1) ↙ (b, b1)) ↙ (a, a1) = (c ↙ b, c1 ↙ b1) ↙ (a, a1)

= ((c ↙ b) ↙ a, (c1 ↙ b1) ↙ a1)

= (c ↙ (a ⊗ b), c1 ↙ (a1 
 b1))(by Proposition 1(2))

= (c, c1) ↙ (a ⊗ b, a1 
 b1)(by Lemma 2)

= (c, c1) ↙ ((a, a1) ∗ (b, b1)).

(5)

(a, a1) ↘ ((c, c1) ↙ (b, b1)) = (a, a1) ↘ (c ↙ b, c1 ↙ b1)

= (a ↘ (c ↙ b), a1 ↘ (c1 ↙ b1))

= ((a ↘ c) ↙ b, (a1 ↘ c1) ↙ b1)(by Proposition 1(3))

= (a ↘ c, a1 ↘ c1) ↙ (b, b1)(by Lemma 2)

= ((a, a1) ↘ (c, c1)) ↙ (b, b1).

M-fuzzy quantic nuclei
In this section, we will introduce the concept of an M-fuzzy quantic nuclei as a fuzzy
version of the well-known quantic nuclei. Some properties of suchM-fuzzy quantic nuclei
will be studied, and the relationship between it and the notion ofM-fuzzy semi-quantales
will be discussed.
Before we go further into this section, let us begin with introducing a fuzzy version of

the known closure operator on a partially ordered set.

Definition 6 For a complete lattice (M,≤) and an ordered set (L,≤), a mapping C : L×
M −→ L is called an M-fuzzy closure operator on L if it satisfies the following conditions:
for all a, b ∈ L and α,β ∈ M,

(C1) C(a,α) ≥ a;
(C2) C(a,α) ≤ C(b,β), if a ≤ b and α ≤ β ;
(C3) C(a,α) = C(C(a,α),α).

Proposition 3 Let (L,≤,⊗), (M,≤,
) ∈ |SQuant| and μ : L −→ M be an M-fuzzy
semi-quantale. A mapping Cμ : L × M −→ L defined by the equality.
Cμ(a,α) = ∧{x ∈ L : x ≥ a,μ(x) ≥ α}∀a ∈ L,α ∈ M,
is an M-fuzzy closure operator on L.

Proof Let μ : L −→ M be an M-fuzzy semi-quantale. To prove that the map Cμ :
L × M −→ L defined by
Cμ(a,α) = ∧{x ∈ L : x ≥ a,μ(x) ≥ α}∀a ∈ L,α ∈ M,
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is anM-fuzzy closure operator on L, we will prove that the conditions (C1 − C3) of the
above definition hold.

(C1) By definition of Cμ, we have Cμ(a,α) = ∧{x ∈ L : x ≥ a,μ(x) ≥ α} ≥ a.
So, Cμ(a,α) ≥ a.

(C2) If a ≤ b and α ≤ β , then
Cμ(b,β) = ∧{x ∈ L : x ≥ b,μ(x) ≥ β},

≥ ∧{x ∈ L : x ≥ b ≥ a,μ(x) ≥ β ≥ α},
= Cμ(a,α).

Hence, Cμ(a,α) ≤ Cμ(b,β).
(C3) Since Cμ(a,α) ∈ L and

Cμ(Cμ(a,α),α) = ∧{x ∈ L : x ≥ Cμ(a,α),μ(x) ≥ α},
we have that μ(x) ≥ μ(Cμ(a,α)) ≥ α.
Then, putting x = Cμ(a,α), we have
Cμ(Cμ(a,α),α) = ∧

Cμ(a,α) and this implies
Cμ(a,α) ≥ Cμ(Cμ(a,α),α).
Also, from (C1), we have that
Cμ(Cμ(a,α),α) ≥ Cμ(a,α).
Then, the equality holds.

Definition 7 Let (L,≤,⊗), (M,≤,
) ∈ |SQuant|. A mapping C : L×M −→ L is called
an M-fuzzy quantic nucleus operator on L if it is an M-fuzzy closure operator on L and
satisfies the following condition: for all a, b ∈ L and α,β ∈ M,

(C4) C(a,α) ⊗ C(b,β) ≤ C(a ⊗ b,α 
 β).

Proposition 4 Let (L,≤,⊗) ∈ |CoQuant|, (M,≤,
) ∈ |SQuant| and μ : L −→ M be
an M-fuzzy semi-quantale. The mapping Cμ : L × M −→ L defined by the equality.
Cμ(a,α) = ∧{u ∈ L : u ≥ a,μ(u) ≥ α}, ∀a ∈ L,α ∈ M
is an M-fuzzy quantic nucleus on L.

Proof We only prove the condition C4. For a, b ∈ L and α,β ∈ M, we have: Cμ(a,α) ⊗
Cμ(b,β) = ∧{u : u ∈ L,u ≥ a,α ≤ μ(u)} ⊗ ∧{v : v ∈ L, v ≥ b,β ≤ μ(v)},

= ∧{u ⊗ v : u, v ∈ L,u ≥ a, v ≥ b,α ≤ μ(u),β ≤ μ(v)},
= ∧{u ⊗ v : u, v ∈ L,u ≥ a, v ≥ b,α 
 β ≤ μ(u) 
 μ(v)},
≤ ∧{u ⊗ v : u, v ∈ L, a ⊗ b ≤ u ⊗ v,α 
 β ≤ μ(u ⊗ v)},
≤ ∧{w : w ∈ L,w ≥ a ⊗ b,α 
 β ≤ μ(w)} = Cμ(a ⊗ b,α 
 β).

Then Cμ(a,α) ⊗ Cμ(b,β) ≤ Cμ(a ⊗ b,α 
 β).

Proposition 5 Let (L,≤,⊗), (M,≤,
) ∈ |Quant| and C : L × M −→ L be an M-fuzzy
quantic nucleus on a quantale L, then

C(a,α) ↘ C(b,β) ≤ a ↘ C(b,β) (resp., C(b,β) ↙ C(a,α) ≤ C(b,β) ↙ a).

Proof Since C(a,α) ≥ a, then by Proposition 1 (4), we have
C(a,α) ↘ C(b,β) ≤ a ↘ C(b,β).
The argument for the residuum ↙ proceeds similarly.

Corollary 1 For (L,≤,⊗), (M,≤,
) ∈ |Quant|. If C : L × M −→ L be an M-fuzzy
quantic nucleus on a quantale L, then
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(1) C(b ↙ a,β ↙ α) ≤ C(b,β) ↙ a,
(2) C(a ↘ b,α ↘ β) ≤ a ↘ C(b,β),
(3) C(b ↙ a,β ↙ α) ≤ C(b,β) ↙ C(a,α),
(4) C(a ↘ b,α ↘ β) ≤ C(a,α) ↘ C(b,β),

for all a, b ∈ L, α,β ∈ M.

Proof (1) Since C(b ↙ a,β ↙ α)⊗C(a,α) ≤ C((b ↙ a)⊗a, (β ↙ α))
α) ≤ C(b,β)

and C : L × M −→ L is an M-fuzzy quantic nucleus on L, then from Proposition 5,
we have that
C(b ↙ a,β ↙ α) ≤ C(b,β) ↙ a.
Similarly, we can prove (2).

(3) Since C(a,α) ⊗ C(b ↙ a,β ↙ α) = C(a,α) ⊗ C[ (b,β) ↙ (a,α)]
≤ C[ (a,α) ⊗ (b,β) ↙ (a,α)]≤ C(b,β). Thus

C(b ↙ a,β ↙ α) ≤ C(b,β) ↙ C(a,α).
Similarly, we can prove (4).

Lemma3 Let L be a unital quantale. For all a, b ∈ L, α,β ∈ M, amapping C : L×M −→
L with C(a,α) ↘ C(b,β) ≤ a ↘ C(b,β) and C(b,β) ↙ C(a,α) ≤ C(b,β) ↙ a is an
M-fuzzy quantic nucleus on L.

Proof For all a, b ∈ L, α,β ∈ M, suppose that
C(a,α) ↘ C(b,β) ≤ a ↘ C(b,β) and C(b,β) ↙ C(a,α) ≤ C(b,β) ↙ a.
By the unital assumption eL, we have that:

(1) eL ⊗ C(a,α) ≤ C(a,α) ⇔ eL ≤ C(a,α) ↙ C(a,α) ≤ C(a,α) ↙ a
⇔ eL ⊗ a ≤ C(a,α)

⇔ a ≤ C(a,α).
(2) If a ≤ b and α ≤ β , then

eL ⊗ a ≤ b ≤ C(b,β) ⇔ eL ≤ C(b,β) ↙ a
⇔ eL ≤ C(b,β) ↙ C(a,α)

⇔ eL ⊗ C(a,α) ≤ C(b,β)

⇔ C(a,α) ≤ C(b,β).
(3) Since a ≤ C(a,α), from (2), we have C(a,α) ≤ C(C(a,α),α).

On the other hand, eL ⊗ C(a,α) ≤ C(a,α) ⇔ eL ≤ C(a,α) ↙ C(a,α)

⇔ eL ≤ C(a,α) ↙ C(C(a,α),α)

⇔ eL ⊗ C(C(a,α),α) ≤ C(a,α)

⇔ C(C(a,α),α) ≤ C(a,α),
⇔ C(C(a,α),α) = C(a,α).

(4) From the items (1)–(2), we have, for all a, b ∈ L,α,β ∈ M
a ⊗ b ≤ C(a ⊗ b,α 
 β) ⇔ a ≤ C(a ⊗ b,α 
 β) ↙ b

⇔ a ≤ C(a ⊗ b,α 
 β) ↙ C(b,β)

⇔ a ⊗ C(b,β) ≤ C(a ⊗ b,α 
 β)

⇔ C(b,β) ≤ a ↘ C(a ⊗ b,α 
 β)

⇔ C(b,β) ≤ C(a,α) ↘ C(a ⊗ b,α 
 β)

⇔ C(a,α) ⊗ C(b,β) ≤ C(a ⊗ b,α 
 β).
Thus, C is a an M-fuzzy quantic nucleus. The right unital case follows similarly.
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M-fuzzy quantic conuclei
In this section, we will introduce and study the concept of anM-fuzzy quantic conuclei on
a quantale L = (L,≤,⊗). A relationship betweenM-fuzzy quantic conuclei and M-fuzzy
semi-quantales will be discussed. Also, we characterize and study the notion of (L,M)-
quasi-fuzzy interior operator, as an application ofM-fuzzy quantic conuclei on quantales,
and discuss the relationship between such an (L,M)-quasi-fuzzy interior operator and an
(L,M)-quasi-fuzzy topology on a non-empty set X.

Definition 8 Let (L,≤) and (M,≤) be posets. A mapping κ : L × M −→ L is called an
M-fuzzy coclosure operator on L if, for all a, b ∈ L and α,β ∈ M, it satisfies the following
conditions:

(κ1) κ(a,α) ≤ κ(b,β) whenever a ≤ b, β ≤ α.
(κ2) κ(a,α) ≤ a.
(κ3) κ(a,α) = κ(κ(a,α),α).

Definition 9 An M-fuzzy coclosure operator κ : L × M −→ L is said to be:

(1) Strong if κ(�L,α) = �L.
(2) Unital if (L,≤,⊗) is unital and κ(eL,α) = �L.

Proposition 6 Let (L,≤,⊗), (M,≤,
) ∈ |SQuant| and μ : L −→ M be an M-fuzzy
(resp., a strong M-fuzzy) semi-quantale. The mapping κμ : L × M −→ L defined by the
equality.

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α} ∀a ∈ L and α ∈ M;
is an M-fuzzy (resp., a strong M-fuzzy) coclosure operator on L.

Proof Let μ : L −→ M be an M-fuzzy semi-quantale. To prove that the map κμ :
L × M −→ L defined by

κμ(a,α) = ∨{x ∈ L : x ≤ a, μ(x) ≥ α} ∀a ∈ L and α ∈ M
is an M-fuzzy coclosure operator on L, we will prove the conditions (κ1 − κ3) of the

above definition.

(κ1) For a, b ∈ L and α,β ∈ M with a ≤ b,β ≤ α, we have
κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α},

≤ ∨{x ∈ L : x ≤ b,μ(x) ≥ β},
= κμ(b,β).

So, κμ(a,α) ≤ κμ(b,β).
(κ2) By definition of κμ, we have

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α} ≤ a.
Then, κμ(a,α) ≤ a.

(κ3) Since κμ(a,α) ∈ L and κμ(κμ(a,α),α) = ∨{x ∈ L : x ≤ κμ(a,α),μ(x) ≥ α}, we
have that μ(κμ(a,α)) ≥ μ(x) ≥ α.
Then, putting x = κμ(a,α), we have κμ(κμ(a,α),α) = ∨

κμ(a,α) and this implies
κμ(a,α) ≤ κμ(κμ(a,α),α).
Also, from (κ2), we have that
κμ(κμ(a,α),α) ≤ κμ(a,α).
Then, the equality holds.
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If μ : L −→ M be a strongM-fuzzy semi-quantale, then it is clear that
κμ(�L,α) = ∨{x ∈ L, x = �L,μ(x) ≥ α} = �L,
which means that κμ is a strongM-fuzzy coclosure operator on L.

Definition 10 Let (L,≤,⊗), (M,≤,
) ∈ |SQuant|. A mapping κ : L × M −→ L is
called an M-fuzzy quantic conucleus on L if it is an M-fuzzy coclosure operator on L and
satisfies the following conditions: for all a, b ∈ L and α,β ∈ M,

(κ4) κ(a,α) ⊗ κ(b,β) ≤ κ(a ⊗ b,α 
 β).

Proposition 7 Let (L,≤,⊗) ∈ |Quant|, (M,≤,
) ∈ |SQuant| and μ : L −→ M be an
M-fuzzy semi-quantale on L. The mapping κμ : L × M −→ L defined by the equality.

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α} ∀a ∈ L,α ∈ M,
is an M-fuzzy quantic conucleus on L.

Proof We only prove the condition κ4:
κμ(a,α) ⊗ κμ(b,β) = ∨{x : x ∈ L, x ≤ a,α ≤ μ(x)} ⊗ ∨{y : y ∈ L, y ≤ b,β ≤ μ(y)}

= ∨{x ⊗ y : x, y ∈ L, x ≤ a, y ≤ b,α ≤ μ(x),β ≤ μ(y)},
≤ ∨{z : z ∈ L, z ≤ a ⊗ b,α 
 β ≤ μ(z)} = κμ(a ⊗ b,α 
 β).

Then , κμ(a,α) ⊗ κμ(b,β) ≤ κμ(a ⊗ b,α 
 β).

Remark 1 If L ∈ |UnSQuant| and κμ(eL,α) = ∨{x ∈ L, x = eL,μ(x) ≥ α} = �L, then
κμ is a unital M-fuzzy quantic conucleus on L.

Proposition 8 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and given an M-fuzzy (resp., a strong
M-fuzzy) quantic conucleus κ : L × M −→ L, then an M-fuzzy set μκ : L −→ M, which
defined by

μκ(a) = ∨{α ∈ M : κ(a,α) ≥ a, a ∈ L},
is an M-fuzzy (resp., a strong M-fuzzy) semi-quantale on L.

Proof Let κ : L × M −→ L be an M-fuzzy quantic conucleus on L. We need to show
that μκ is anM-fuzzy semi-quantale. To this end

(1) For a family of {ai : i ∈ I} ⊆ L, we have
μκ(

∨
i ai) = ∨{α ∈ M : κ(

∨
i∈I ai,α) ≥ ∨

i∈I ai},
= ∨{α ∈ M :

∨
i∈I κ(ai,α) ≥ ∨

i∈I ai},
≥ ∧

i∈I
∨{α ∈ M : κ(ai,α) ≥ ai} = ∧

i∈I μκ(ai).
Then, μκ(

∨
i ai) ≥ ∧

i∈I μκ(ai).
(2) For a, b ∈ L and α,β ∈ M.

μκ(a) 
 μκ(b) = ∨{α ∈ M : κ(a,α) ≥ a} 
 ∨{β ∈ M : κ(b,β) ≥ b},
= ∨{α 
 β : κ(a,α) ≥ a, κ(b,β) ≥ b},
= ∨{α 
 β : κ(a,α) ⊗ κ(b,β) ≥ a ⊗ b},
= ∨{α 
 β : κ(a ⊗ b,α 
 β) ≥ κ(a,α) ⊗ κ(b,β) ≥ a ⊗ b},
≤ ∨{γ : κ(a ⊗ b, γ ) ≥ a ⊗ b},
= μκ(a ⊗ b).

Then, μκ(a) 
 μκ(b) ≤ μκ(a ⊗ b).

In the case of a strong M-fuzzy quantic conucleus, i.e., κ(�L,α) = �L, we have that
μκ(�L) = �M and this completes the proof.
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The following proposition lists some of the basic properties of the residuals ↘ and ↙
on anM-fuzzy quantic conucleus κ : L × M −→ L.

Proposition 9 For (L,≤,⊗), (M,≤,
) ∈ |Quant|, let κ : L × M −→ L be an M-fuzzy
quantic conucleus on L. Then for all a, b, c ∈ L,α,β ∈ M, the following hold:

(i) κ(a,α) ⊗ κ(a ↘ b,α ↘ β) ≤ κ(b,β),
(ii) κ(b ↙ a,β ↙ α) ⊗ κ(a,α) ≤ κ(b,β).

Proof (1) By Proposition 1 (1), we have
κ(a,α) ⊗ κ(a ↘ b,α ↘ β) = κ(a,α) ⊗ κ[ (a,α) ↘ (b,β)]

≤ κ[ (a,α) ⊗ (a,α) ↘ (b,β)] (by Proposition 2(1))
≤ κ(b,β).

(2) By Proposition 1 (1), we have
κ(b ↙ a,β ↙ α) ⊗ κ(a,α) = κ[ (b,β) ↙ (a,α)]⊗κ(a,α)

≤ κ[ (b,β) ↙ (a,α) ⊗ (a,α)] (by Proposition 2(2));
≤ κ(b,β).

We conclude this section by given the notion of (L,M)-quasi-fuzzy interior operator
as an example of an M-fuzzy quantic conucleus on the power set quantale LX and as a
generalized form of an L-interior operator of [9]. Also, we study the relationship between
(L,M)-quasi-fuzzy interior operator and (L,M)-quasi-fuzzy topology on a non-empty set X.

Definition 11 For (L,≤,⊗), (M,≤,
) ∈ |SQuant| and a non-empty set X, the mapping
I : LX × M −→ LX is called:

(i) An (L,M)-quasi-fuzzy interior operator on X iff I satisfies the following conditions:
For all A,B ∈ LX ,α,β ∈ M;

(I1) I(A,α) ≤ I(B,β) whenever A ≤ B, β ≤ α.
(I2) I(A,α) ≤ A.
(I3) I(A,α) ≤ I(I(A,α),α).
(I4) I(A,α) ⊗ I(B,β) ≤ I(A ⊗ B,α 
 β).

(ii) A strong (L,M)-quasi-fuzzy interior operator if it satisfies the following condition:

(I5) I(�,α) = �.

(iii) An (L,M)-fuzzy interior operator if L ∈ |UnSQuant| with unit e and the following
condition is satisfied:

(I6) I(e,α) = �.

Proposition 10 For (L,≤,⊗), (M,≤,
) ∈ |Quant|, a non-empty set X, and an (L,M)-
quasi-fuzzy topology τ : LX −→ M, the mapping Iτ : LX × M −→ LX defined by the
equality.
Iτ (A,α) = ∨{u ∈ LX : u ≤ A, τ(u) ≥ α}, ∀A ∈ LX ,α ∈ M,
is an (L,M)-quasi-fuzzy interior operator on X.

Proof Let τ : LX −→ M be an (L,M)-quasi-fuzzy topology on X. To prove that the map
Iτ : LX × M −→ LX defined by
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Iτ (A,α) = ∨{u ∈ LX : u ≤ A, τ(u) ≥ α}, ∀A ∈ LX ,α ∈ M,
is an (L,M)-quasi-fuzzy interior operator on X, we will prove that the conditions (I1 −

I4) of the above definition hold.

(1) For A,B ∈ LX and α,β ∈ M with A ≤ B,β ≤ α, we have
Iτ (A,α) = ∨{u ∈ LX : u ≤ A, τ(u) ≥ α},

≤ ∨{u ∈ LX : u ≤ B, τ(u) ≥ β},
= Iτ (B,β).

(2) By definition of Iτ , we have Iτ (A,α) = ∨{u ∈ LX : u ≤ A, τ(u) ≥ α} ≤ A.
(3) Since Iτ (A,α) ∈ LX and Iτ (Iτ (A,α),α) = ∨{u ∈ LX : u ≤ Iτ (A,α), τ(u) ≥ α},

then we have that τ(Iτ (A,α)) ≥ τ(u) ≥ α.
Putting u = Iτ (A,α), we have Iτ (Iτ (A,α),α) = ∨

Iτ (A,α) and this implies
Iτ (A,α) ≤ Iτ (Iτ (A,α),α).
Also, from (2), we have that
Iτ (Iτ (A,α),α) ≤ Iτ (A,α).
Then, the equality holds.

(4) Iτ (A,α) ⊗ Iτ (B,β) = ∨{u : u ∈ LX ,u ≤ A,α ≤ τ(u)} ⊗ ∨{v : v ∈ LX , v ≤ B,β ≤
τ(v)},

= ∨{u ⊗ v : u, v ∈ LX ,u ≤ A, v ≤ B,α ≤ τ(u),β ≤ τ(v)}
≤ ∨{w : w ∈ LX ,w ≤ A⊗B,α
β ≤ τ(w)} = Iτ (A⊗B,α
β).

That is, Iτ (A,α) ⊗ Iτ (B,β) ≤ Iτ (A ⊗ B,α 
 β).

As consequences of the above proposition, we have the following result:

Corollary 2 Let (L,≤,⊗), (M,≤,
) ∈ |Quant| and X be a non-empty set.

(1) For a strong (L,M)-quasi-fuzzy topology τ : LX −→ M, the mapping
Iτ : LX × M −→ LX is a strong (L,M)-quasi-fuzzy interior operator on X.

(2) For L ∈ |UnQuant| and an (L,M)-fuzzy topology τ : LX −→ M, the mapping
Iτ : LX × M −→ LX is an (L,M)-fuzzy interior operator on X.

Proposition 11 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and an (L,M)-quasi-fuzzy (resp.,
strong (L,M)-quasi-fuzzy, (L,M)-fuzzy) interior operator I : LX×M −→ LX, the mapping
τI : LX −→ M defined by

τI (A) = ∨{α ∈ M : I(A,α) ≥ A}, A ∈ LX ,
is an (L,M)-quasi-fuzzy (resp., strong (L,M)-quasi-fuzzy, (L,M)-fuzzy) topology on X.

Proof We prove only the case of (L,M)-quasi-fuzzy interior operator, and the other
cases can be proved similarly. Let I : LX × M −→ LX be an (L,M)-quasi-fuzzy interior
operator on X. Define the mapping τI : LX −→ M by

τI (A) = ∨{α ∈ M : I(A,α) ≥ A}, A ∈ LX .
We need to show that τI is an (L,M)-quasi-fuzzy topology on X. To this end

(1) For a family of {Ai : i ∈ I} ⊆ LX , we have
τI (

∨
i Ai) = ∨{α ∈ M : I(

∨
i∈I Ai,α) ≥ ∨

i∈I Ai},
= ∨{α ∈ M :

∨
i∈I I(Ai,α) ≥ ∨

i∈I Ai},
≥ ∧

i∈I
∨{α ∈ M : I(Ai,α) ≥ Ai} = ∧

i∈I τI (Ai).
Then, τI (

∨
i Ai) ≥ ∧

i∈I τI (Ai).
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(2) For A,B ∈ LX and α,β ∈ M,
τI (A) 
 τI (B) = ∨{α ∈ M : I(A,α) ≥ A} 
 ∨{β ∈ M : I(B,β) ≥ B},

= ∨{α 
 β : I(A,α) ≥ A, I(B,β) ≥ B},
= ∨{α 
 β : I(A ⊗ B,α 
 β) ≥ A ⊗ B},
≤ ∨{γ : I(A ⊗ B, γ ) ≥ A ⊗ B},
= τI (A ⊗ B).

Then, τI (A) 
 τI (B) ≤ τI (A ⊗ B).

Remark 2 The correspondences τ �−→ Iτ and I �−→ τI obtained in Propositions 10
and 11 are the generalizations of the correspondences between L-fuzzy interior operators
and L-fuzzy topological spaces in [9].

M-fuzzy ideal conuclei on quantales
In this section, we define M-fuzzy left (resp., right) ideals of quantales and discuss some
of their properties. Also, the concept of an M-fuzzy left (resp., right) ideal conucleus is
introduced and the relationship with the concept ofM-fuzzy left (resp., right) ideals on a
quantale is introduced.

Definition 12 Let (L,≤,⊗), (M,≤,
) ∈ |SQuant|. An M-fuzzy left (resp, right) ideal
on a quantale L is a map μ : L −→ M satisfying the following conditions: for all a, b ∈ X

(I1) If a ≤ b, then μ(a) ≥ μ(b).
(I2) μ(a ∨ b) ≥ μ(a) ∧ μ(b).
(I3) μ(a ⊗ b) ≥ μ(b)(resp.,μ(a)).

A map μ : L −→ M, which is both M-fuzzy left and right ideal, is called an M-fuzzy ideal.

Example 1 Let L = {⊥, a, b, c, d,�} be a set ordered by⊥ ≤ c ≤ b ≤ �,⊥ ≤ d ≤ a ≤ �,
and d ≤ b and equipped with associative binary operations:

⊗ ⊥ a b c d �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a d ⊥ d a
b ⊥ d c c ⊥ b
c ⊥ ⊥ c c ⊥ c
d ⊥ d ⊥ ⊥ ⊥ d
� ⊥ a b c d �

Then, we can easily see that (L,≤,⊗) is a quantale. A mapping μ : L −→ {0, 1}
defined by

μ(x) =
{

1 x ≤ b
0 otherwise

is an M- fuzzy left(resp., right) ideal of the quantale (L,≤,⊗).

Proposition 12 Let {μj}j∈J be a family of M-fuzzy left (resp., right) ideals of a quantale
L. Then,

∧
j∈J μj is also an M-fuzzy left (resp., right) ideal of L.
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Proof Suppose that {μj}j∈J be a family ofM-fuzzy left (resp., right) ideals of L. Statement
(I1) is clear. To prove (I2) notice that since every μj is an M-fuzzy left (resp., right) ideal
of L, we have

(
∧

j∈J μj)(a ∨ b) = ∧
j∈J μj(a ∨ b),

≥ ∧
j∈J (μj(a) ∧ μj(b)),

≥ ∧
j∈J (μj(a)) ∧ ∧

j∈J (μj(b)),
= (

∧
j∈J μj)(a) ∧ (

∧
j∈J μj)(b).

We prove property (I3) as follows:
(
∧

j∈J μj)(a ⊗ b) = ∧
j∈J μj(a ⊗ b)

≥ ∧
j∈J (μj(b))(resp.,

∧
j∈J (μj(a)))

≥ (
∧

j∈J μj)(b)(resp., (
∧

j∈J μj)(a)).
Therefore,

∧
j∈J μj is anM-fuzzy left (resp., right) ideal of L.

Proposition 13 An onto quantale homomorphic preimage of an M-fuzzy left (resp.,
right) ideal is an M-fuzzy left (resp., right) ideal.

Proof Let f : L1 −→ L2 be an onto homomorphism. Let ρ be anM-fuzzy left ideal and
letμ be the preimage of ρ under f, i.e., μ = f←

M (ρ). Property (I1) is clear. For any a, b ∈ L1,
μ(a ∨ b) = ρ(f (a ∨ b)),

= ρ(f (a) ∨ f (b)),
≥ ρ(f (a)) ∧ ρ(f (b)),
= μ(a) ∧ μ(b).

and μ(a ⊗ b) = ρ(f (a ⊗ b)),
= ρ(f (a) ⊗ f (b)),
≥ ρ(f (b)) = μ(b).

This shows that μ is anM-fuzzy left ideal of L1. The other case is similar.

Now, we are in a position to introduce and study the notion ofM-fuzzy left (resp., right)
ideal conucleus on quantales, and study the relationship with M-fuzzy left (resp., right)
ideals.

Definition 13 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and all a, b ∈ L,α,β ∈ M, an M-
fuzzy coclosure operator κ : L × M −→ L is said to be :

(Lκ4) An M-fuzzy left ideal conucleus if a ⊗ κ(b,β) ≤ κ(a ⊗ b,β),
(Rκ4) An M-fuzzy right ideal conucleus if κ(a,α) ⊗ b ≤ κ(a ⊗ b,α).

Proposition 14 Let (L,≤,⊗), (M,≤,
) ∈ |Quant|. If μ : L −→ M is an M-fuzzy left
(resp., right) ideal on L, the mapping κμ : L × M −→ L defined by the equality

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α},∀a ∈ L,α ∈ M,
is an M-fuzzy left (resp., right) ideal conucleus on L.

Proof Let μ : L −→ M be an M-fuzzy left ideal of L and let κμ : L × M −→ L be a
mapping defined by

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α} ∀a ∈ L,α ∈ M.
We need to show that the operator κμ is anM-fuzzy left conucleus.
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By Proposition 6, we have that the mapping κμ : L × M −→ L is anM-fuzzy coclosure
on L. Now, we prove only the condition (Lκ4). To this end, for a, b ∈ L, β ∈ M and since
μ ∈ ML is anM-fuzzy left ideal, then μ(a ⊗ x) ≥ μ(x), and therefore,

a ⊗ κμ(b,β) = a ⊗ ∨{x ∈ L : x ≤ b,μ(x) ≥ β},
= ∨{a ⊗ x ∈ L : a ≤ b, x ≤ b,μ(x) ≥ β},
= ∨{a ⊗ x ∈ L : a ⊗ x ≤ a ⊗ b,μ(a ⊗ x) ≥ β},
≤ ∨{y ∈ L : y ≤ a ⊗ b,μ(y) ≥ β},
= κμ(a ⊗ b,β).

Then, a ⊗ κμ(b,β) ≤ κμ(a ⊗ b,β). The right case follows similarly.

Corollary 3 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and an M-fuzzy ideal μ ∈ ML on L, the
mapping κμ : L × M −→ L defined by the equality,

κμ(a,α) = ∨{x ∈ L : x ≤ a,μ(x) ≥ α} ∀a ∈ L,α ∈ M,
is an M-fuzzy ideal conucleus on L.

Remark 3 For a, b ∈ L and α,β ∈ M, we have a, b ≤ a ∨ b and α ∧ β ≤ α,β , so for an
M-fuzzy coclosure κ : L×M −→ L, we have that κ(a∨ b,α ∧ β) ≥ κ(a,α), κ(b,β), which
implies that κ(a ∨ b,α ∧ β) ≥ κ(a,α) ∨ κ(b,β).

Proposition 15 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and an M-fuzzy left (resp., right)
ideal conucleus κ : L × M −→ L, the mapping μκ : L −→ M defined by μκ(a) = ∨{α ∈
M, κ(a,α) ≥ a, a ∈ L} is an M-fuzzy left (resp., right) ideal of L.

Proof Let κ : L × M −→ L be an M-fuzzy left (resp., right) ideal conucleus on L. For
a, b ∈ L and α,β ∈ M with a ≤ b and α ≥ β , we have
(1) μκ(a) = ∨{α ∈ M : κ(a,α) ≥ a},

≥ ∨{β ∈ M : κ(b,β) ≥ b},
= μκ(b).

(2) μκ(a) ∧ μκ(b) = ∨{α ∈ M : κ(a,α) ≥ a} ∧ ∨{β ∈ M : κ(b,β) ≥ b},
= ∨{α ∧ β : κ(a,α) ≥ a and κ(b,β) ≥ b},
= ∨{α ∧ β : κ(a,α) ∨ κ(b,β) ≥ a ∨ b},
= ∨{α ∧ β : κ(a ∨ b,α ∧ β) ≥ κ(a,α) ∨ κ(b,β) ≥ a ∨ b},
≤ ∨{α ∧ β : κ(a ∨ b,α ∧ β) ≥ a ∨ b},
= μκ(a ∨ b).

(3) μκ(a ⊗ b) = ∨{β ∈ M : κ(a ⊗ b,β) ≥ a ⊗ b},
= ∨{β ∈ M : a ⊗ κ(b,β) ≥ a ⊗ b},
≥ ∨{β ∈ M : κ(b,β) ≥ b},
= μκ(b).

Similarly, μκ(a ⊗ b) ≥ μκ(a).

Corollary 4 For (L,≤,⊗), (M,≤,
) ∈ |Quant| and an M-fuzzy ideal conucleus κ :
L × M −→ L, the mapping μκ : L −→ M defined by

μκ(a) = ∨{α ∈ M, κ(a,α) ≥ a, a ∈ L} is an M-fuzzy ideal of L.

The following lemma provides an important description of M-fuzzy left (resp., right)
ideal conuclei for a unital quantale in terms of the residuum ↘ (resp., ↙).
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Lemma 4 Let (L,≤,⊗), (M,≤,
) ∈ |Quant| and κ : L × M −→ L be an M-fuzzy left
(resp., right) ideal conucleus on a quantale L. Then,

κ(a,α) ↘ κ(b,β) = κ(a,α) ↘ b (resp., κ(b,β) ↙ κ(a,α) = b ↙ κ(a,α)),
for all a, b ∈ L, α,β ∈ M.

Proof By (Proposition 1(4)), a ≤ b ⇒ c ↘ a ≤ c ↘ b,
⇒ b ↘ c ≤ a ↘ c.

If κ is anM-fuzzy left ideal conucleus on L, then since κ(b,β) ≤ b, we have

κ(a,α) ↘ κ(b,β) ≤ κ(a,α) ↘ b, and b ↘ κ(a,α) ≤ κ(b,β) ↘ κ(a,α).
Thus producing

κ(a,α) ↘ κ(b,β) = κ(a,α) ↘ b.

The argument for ↙ proceeds similarly.

Lemma 5 Let L be a unital quantale. A mapping κ : L × M −→ L is an M-fuzzy left
(resp., right) ideal conucleus on L if

κ(a,α) ↘ κ(b,β) = κ(a,α) ↘ b (resp., κ(b,β) ↙ κ(a,α) = b ↙ κ(a,α)),
for all a, b ∈ L, α,β ∈ M.

Proof Suppose that κ(b,β) ↙ κ(a,α) = b ↙ κ(a,α) for all a, b ∈ L, α,β ∈ M, and eL
be unit of L.

(i) eL ⊗ κ(a,α) ≤ κ(a,α) ⇒ eL ≤ κ(a,α) ↙ κ(a,α) = a ↙ κ(a,α)

⇒ eL ⊗ κ(a,α) ≤ a
⇒ κ(a,α) ≤ a.

(ii) If a ≤ b, and β ≤ α, then

eL ⊗ κ(a,α) ≤ a ≤ b ⇒ eL ≤ b ↙ κ(a,α) = κ(b,β) ↙ κ(a,α)

⇒ eL ⊗ κ(a,α) ≤ κ(b,β)

⇒ κ(a,α) ≤ κ(b,β).
That is, κ is order preserving.

(iii) Since κ(a,α) ↙ κ(a,α) ≤ κ(κ(a,α),α) ↙ κ(a,α), then
eL ⊗ κ(a,α) ≤ κ(a,α) ⇒ eL ≤ κ(κ(a,α),α) ↙ κ(a,α),

⇒ eL ⊗ κ(a,α) ≤ κ(κ(a,α),α),
⇒ κ(a,α) ≤ κ(κ(a,α),α).
⇒ κ(a,α) = κ(κ(a,α),α).

That is, κ is idempotent.

By (i), (ii), and (iii), we have that κ is an M-fuzzy coclosure, and therefore, we have

a ⊗ κ(b,β) ≤ κ(a ⊗ κ(b,β)) ⇒ a ≤ κ(a ⊗ κ(b,β)) ↙ κ(b,β)

⇒ a ≤ κ(a ⊗ b,β) ↙ κ(b,β)

⇒ a ⊗ κ(b,β) ≤ κ(a ⊗ b,β).

Thus, a ⊗ κ(b,β) ≤ κ(a ⊗ b,β). So κ is an M-fuzzy left ideal conucleus. The right
case follows similarly.

As a consequence of the above lemmas, we have the following proposition:
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Proposition 16 Let L be a unital quantale. A map κ : L×M −→ L is an M-fuzzy ideal
conucleus if and only if

κ(a,α) ↘ κ(b,β) = κ(a,α) ↘ b and κ(b,β) ↙ κ(a,α) = b ↙ κ(a,α),
for all a, b ∈ L , α,β ∈ M.
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