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Introduction

A surface T = f(u,v) in Euclidean 3-space E? is said to be a (x, y)-Weingarten surface if
for a pair (x,%), x # y of the K Gaussian curvature, H mean curvature, and Kj; second
Gaussian curvature of a surface Y satisfies ¥ (x,y) = 0, where ¢ is the Jacobi function
defined by ¥ = xy — yx.

Also T is said to be a (x,y)-linear Weingarten surface if for a pair (x,y), x # y of
the curvatures K, H, and Ky of a surface T satisfies ax + by = ¢, where a,b,c € R
and (a,b,¢) # (0,0,0) (for more details see [1-7]). In 1863, Julius Weingarten was able
to make a major step forward in the topic when he gave a class of surfaces isometric
to a given surface of revolution. Surface for which there is a definite functional relation
between the principal curvatures (which called curvature diagram) and also between the
Gaussian and the mean curvatures is called Weingarten surface. The knowledge of the
first fundamental form I and second fundamental form II of a surface facilitates the anal-
ysis and the classification of surface shape. Especially in recent years, the geometry of
the second fundamental form II has become an important issue in terms of investigating
intrinsic and extrinsic geometric properties of the surfaces. Very recent results concern-
ing the curvature properties associated with II and other variational aspects can be found
in [7-10].

One may associate to such a surface M geometrical objects measured by means of its
second fundamental form, as second Gaussian curvature KII, respectively.

We are able to calculate KII of a surface by exchanging the components of the first
fundamental form E, F, G by the components of the second fundamental form e, f,
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g severally in Brioschi formula that is given by Francesco Brioschi within the years
of 1800s.

Identification of the curvatures associated with the second elementary variety of
a surface opened a door to the analysis of the new categories of Weingarten sur-
faces. Since the center of the last century, many geometers have studied Weingarten
surfaces and linear Weingarten surfaces and obtained several attention-grabbing and
valuable results [11-13].

The (x, y)-Weingarten and (x,y)-linear Weingarten canal surfaces are a classical topic
in differential geometry, as introduced by [14, 15].

The surface theory has been a preferred topic for several researchers in many aspects.
Besides using curves and surfaces, canal surfaces are the foremost well-liked in pc-aided
geometric style such as planning models of internal and external organs, getting ready
of terrain infrastructures, constructing of mixing surfaces, reconstructing of shape, and
robotic path designing [16, 17].

In this work, we study the (x, y)-Weingarten and (x, y)-linear Weingarten canal surfaces
reference to Bishop frame in Euclidian 3-space that satisfy all the surfaces under consid-
eration are assumed to be smooth, regular, and topologically connected unless generally
expressed. In the “Geometric preliminaries” section, we clarify the basic conception of
the Frenet frame and Bishop frame in the Euclidean 3-space E?; also we give the paramet-
ric equation of the canal surface that will be used during this work. The “Canal surface
according to Bishop frame in E3” section is precise to prepare some fundamental facts
about the first, second, and third fundamental forms, the Gaussian curvature, the mean
curvature, and the second Gaussian curvature, in the “(x, y)-Weingarten canal surface
according to Bishop frame in £2” and “(x, y)-linear Weingarten canal surface according
to Bishop frame in E3” sections, the (x,y)-Weingarten and (x, y)-linear Weingarten canal
surfaces are discussed.

Geometric preliminaries

Let » : I — E3 be a unit speed curve parameterized by arc length u, denote
{T (u), N(u), B()} the moving Frenet frame along the curve A(«). Then, with the first and
second curvatures, k and 7 respectively, the Frenet formulas are given by [18, 19]

T (1) 0 «x@w O T ()
Nw |=| —«w 0 tw Nw) |, 1)
B'(u) 0 twm O B(u)

where (T'(u), T(w)) = (Nu),N@m) = (Bw),Bw)) = 1 and (T(u),Nw)) =

(T(u), Bw)) = (N(u), B(u)) = 0.

The Bishop frame or parallel transport frame is an alternative approach to defining a
moving frame that is well defined even when the curve has vanishing second derivative
[20, 21].

Let us consider the Bishop frame {T'(u), P(u), M(u)} of the curve A(u) in the Euclidean
3-space E3. In the residue, T(x) is the unit tangent, P(u) is the unit normal, and M (u) is



Soliman et al. Journal of the Egyptian Mathematical Society (2019) 27:26

the unit binormal vector respectively. The Bishop frame {7 (1), P(x1), M(u)} is expressed

as [21, 22].
T'(u) 0 ki(w) ka(u) T(u)
Pw |=| k@ 0 0 P(u) |, 2)
M (u) —ko(u) O 0 M(u)

where (T(w), T(w)) = (Pw),P(w)) = (M@w),Mm) = 1 and (T(n),P(u)) =
(T(u), M(n)) = (P(u),M(u)) = 0. Here, we shall call kj(u) and ky(u) as Bishop
curvatures. The relation matrix may be expressed as

T (u) 1 0 0 T (1)
P(u) | =| 0 cosv(u) —sinv(u) Nu) |, (3)
M(u) 0 sinv(u) cosv(u) B(u)
where
ky
v(#) = arctan ();h #0,
k1
T(u) = — d;iu),
K () =\ K3 (u) + k3 (w),
and

k1(u) = x (1) cos v(u),

ko (1) = k(u) sinv(u).
The envelope of a 1-parameter family u — S2(u) of spheres in E? is called a canal
surface. The curve a(u) formed by the centers of the spheres is called the center or spine

curve of the canal surface. The radius of the canal surface is the function r such that r(z)
is the radial of the sphere S?(u). Then, the canal surface Y can be formed as follows:

v (u) 1— (" (w)?
7 ()| I @)l

fu,v) = a(u) + r(n) (—r/(u) ( — cos (V)N (u) + sin (v)B(u))) . (4)

Suppose the center curve of the canal surface Y is a unit speed curve « : (a,b) — E>
with non-zero curvature. Then, the canal surface can be parametrized by the mapping

fu,v) =a(u) + r(u) (—r’(u) T(u)++/1— (r’(u))Z( — cos (V)N (u) + sin (v)B(u))) .

(5)

Canal surface according to Bishop frame in E3
Consider a canal surface v according to Bishop frame in E? taking the following form

f,v) =am) + r(u) (—r’(u) Tu)+41— (r’(u))2( — cos (v)P(u) + sin (v)M(u))) .

(6)

Page 3 of 17
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where the center curve of a canal surface is a unit speed curve o : (a,b) — E>. For
subsequent use, we give some basic conclusions by direct calculations. By using Egs. (2)
and (6), and we may assume that «’(#) = T'(4) and r'(#) = — cos@ for some smooth
function 6 = 6(u), then we have

Su,v) = £ (u,v) T(w) + £2(w,v) P(w) + f2 (u, v) M(u), )

where

ful(u, V) = sin@( sin@ + r(ky cosv — ky sinv — 9’)),
fu,v) = cosf(cosvsin® + r(ky — 6’ cosv)),
v = cosf(sinvsing — r(ky + 6 sinv)).

Then
Folw,v) = £}, v) T) + f2 (,v) P(w) + £ (u, v) M(u), ®)
where fvl(u, v) = 0, fVZ(u, V) = rsinvsinf and fv?’(u, v) = r cosvsin@. Then, the

quantities of the first fundamental form are given by

E = sin? 9(sin9 + r(ky cosv — ky sinv — 9/))2 + cos? G(Cos v sin @
+r(k;y — 6’ cos v))2 + cos? O(Sin vsind — r(ky + 0’ sin v))z,
F = r?sin6 cos @ (ky sinv + ky cos v),
G = r’sin? 0. 9)
Equation (9) leads to EG — F2 = y%sin? G(Sine + r(ky cosv — kysinv — 9’))2. From

Egs. (2) and (8), the unit normal vector field to T according to Bishop frame in E3 is given
by

n= fu(u’ V) va(”r V)
Vfoe Gt v) X fo (V)|

where
fu(u,v) x f,(u,v) = rsin6 cos@(sin@ ~+ r(ky cosv — kyp sinv — 9’)) T (u)
—rcos v sin? Q(Siné ~+ r(ky cosv — kyp sinv — 9’))P(u)
+rsin v sin? 9(sin9 + r(k1 cosv — ky sinv — 9/))M(u),
[fou (1t v) X fy (s, v)|| = rsin6(sin® + r(ky cosv — kp sinv — 6)).
Then

n=cosO T(u) —cosvsinf P(u) + sinv sin 0 M (u).
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Moreover, we have

n, = sin@(/q cosv — kysiny — 9/) T (u) + cos@(kl — 6’ cos v)P(u)
+ cos 6 (ky + 6’ sinv)M(u),

n, = sinvsin® P(u) + cos v sin 6 M(u).

Then, the quantities of the second fundamental form are obtained by

L= —sin29(sin9 + r(ky cosv — ky sinv — 9’))(/(1 cosv — kysinv — 9/)
— cos? 9(k1 — 6’ cos v)(cos vsinf + r(k; — 6’ cos v))
— cos? 9(/(2 + 60’ sin v)( —sinvsind + r(ky + 0’ sin v)),
M = —rsin6 cos 6 (ky sinv + ky cos v),

N = —rsin? 0. (10

The quantities of the third fundamental form are given by

e =sin?60( — ki cosv + ky sinv + 6') + cos®  (k; — 6’ cos v)2 + cos® 6 (ky + 6 sin v)z,
f =sin6 cos@(kl sinv + k5 cos v),
g =sin? 6. (11)

From Egs. (9), (10) and (11), we have the following lemma.

Lemma 1 The first, the second, and the third fundamental forms of canal surfaces

according to Bishop frame in E? satisfy

E— F G L— M N
= p;Mzi;Nzixez qyf=7,g=7, (12)

—r —r —-r —-r —r —r

L

and

p= sin9(sin9 + r(ky cosv — ky sinv — 9/)) = sin?6 — rq,
q:sin@(—klcosv—f—kzsinv—f—e’). (13)

From Eq. (12), we see that p # 0 everywhere. From Lemma 1, the Gaussian curvature K
and the mean curvature H of canal surface Y according to Bishop frame in E2 are given by

IN - M2 —
" (14)
EG-F2 rp

_EN-2FM+GL _ (2p —sin*6)

- 15
2(EG — F2) 212 p2 (15)

The definition of the second Gaussian curvature is as follows: see [9].

_%va +Muv %Lu Mu - %Lv 0 %Lv %Nu

— 1 1
K = IN — M) M,— 35N, L M -3k, L M
INN M N iNe M N
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From Eq. (12), the second Gaussian curvature Kj; of Y can be written as

-1 6
Kij=———s in (& cos (iv +j8) + iy sin (iv +6)). 16
i 2048029777 iz(;_(ssm &;jcos (iv + jO) + n;; sin (iv + )) (16)

As we will see, it is not necessary to give the (long) expression of Ky but only the
coefficients of higher order for the trigonometric functions.
Also, from Eq. (13), we have
2
r2p2q2 = r?sin* G(Sine + r(lq cosv — kysiny — 9’)) . (17)

From Egs. (15), (16), and (17), we have the following theorem

Theorem 1 The mean curvature H and the second Gaussian curvature Ky of non-
developable canal surface X = f (u,v) according to Bishop frame in E® satisfy

B

Kp=H+ o555 18
1 + DYopp (18)

where
-— H;6 sin 6 (s cos (iv -+ J6) + iy sin (iv +9)) (19)

with coefficients y;; and §;; are given.
As the same scheme of the above Lemma, we will write only the coefficients of higher order
for the trigonometric functions in the expression of B.

Next, we can compute the partial derivatives of the Gaussian curvature K, the mean cur-
vature H, and the second Gaussian curvature Kj; of canal surface Y = f(u, v) according to
Bishop frame in E3 for later use in the following section. From Egs. (14) and (15), we have

K, = # sin? 0( — 2r’k% cos®v — 2rr’k% sin2 v + 0’ sin6 + r0'% cos @ — 2r’0"?
~+ks sin v(r@’ cosf + r'(sinf — 4r9’)) + k1 cos v( — 70" cos® —r'sinf
+4rr' (ky sinv + 6”)) + k| cos vsin® — rk} sinvsin® — r6” sin 9),

K, = r_’% sin® 0 (lq sinv + ko cos v). (20)

H, = # sin2«9<(kl cosv — ky sinv — 6')(sin6 + 2r(k; cosv — ky sinv — 9’)))
—# sin® 9<(k1 cosv — kysinv — 9’)(sin9 + 2r(ky cosv — ky sinv — 9’)))

X sin39(r’(k1 cosv — kysinv —0’) + 6’ cos 6 + r(kj cosv — kj sinv — 6”))

4 sin49(k1cosv—kzsinv—9’)(2r’(l<1cosv—kgsinv—H’)—i—Q’cose

2r2p?

+2r(ky cosv — kj sinv — 9”)) + 2r21p2 sin® 6 ( sin@(kl sin v 4 ky cos v) ( sin 6
+2r(ki cosv — ky sinv — 9’))),

H, = ﬁ sin49((k1 sinv + ky cos v)(sin 6 + 3r(ky cosv — ky sinv — 9’))). (21)

Page 6 of 17
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2,2 2
(K = Hy + 5rkics {(,zpzqz) Ba(rpq)},

ou
1 2.2 2 2(rPr*e)
Kiy = Hy + 50 1 (PPP0%) 55 —B=—— | - (22)

B -1 6 <(j(9’8i,j + ¥i) sinf +0'y;; cos 9) cos (iv + jo)
u 2088 L ((76'vsj + 817 sin € + 6'5; cos6 ) sin iv -+ j6)
0B =1
P = 3048 Z ((16,',,- sin 9) cos (iv + jO) — (Lyi,j sm@) sin (iv +}9)>. (23)

i=0,j=—6

2.2 .2

a(r;uq ) = rsin® 6 (sin 6 + r(k; cosv — ky sinv — 0")) (ky cos v — ky sinv

—0')(— 6" + 18’ cos 26 — 30" 5in 20 + 4’6" sin @ + 4r20"> cos 0
+4rkf cosv(r' sin@ + r6’ cos ) + 4rk§ sinZ v(# sin @ + r6’ cos ) — ro”
+70” cos 20 + 4r20'0" sin 6 + 2k cos v(r’ sinf(sin® — 4r(0’ + ks sin 9))
—r( — 6 cosO(3sinO — 4rky sin v) + 4r0’% cos O + 2r0” sin 9))
~+kjy sin v) (27 sin @ (sin® — 4r0’ + r(—36’' sin 20
+8r0'? cos 6 + 416" sin 6))),

a(rzpzqz)

55—~ = r?sin* 6 (ki sinv + ky cosv) ( —

ki cosv + ky sinv + 6')(2sin? 6

+6rsin@(ky cosv — ky sinv — @) + 4r2(—ky cos v + ko sinv + 0’)2). (24)

(x, y)-Weingarten canal surface according to Bishop frame in E3
In this section, we study the (x, y)-Weingarten canal surface.

Theorem 2 A canal surface Y = f(u,v) according to Bishop frame in E* is a (K, H)-
Weingarten canal surface if and only if it is a tube or a surface of revolution.

Proof A (K, H)-Weingarten canal surface Y satisfies Jacobi equation

H,K, = H,K,. (25)
O
From Egs. (20) and (21), we have
v’ sin? 0 (ky sin vky cos v)( — ki cos v + ka sinv + 6)
2r*(sin6 + r(k; cosv — ky sinv — 9/))4
r (1 -7 2)
T Ik, (26)
2r2p

We assume that K, # 0, K # 0. Then ' = 0; thus, the canal surface Y is a tube. On

the contrary, if Y is a surface of revolution (i.e, x = 0 = k; = ky = 0), then from
Eqgs. (13)—(15), we have
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v
K=—"
r(l—r’z—rr”)/ ’

r”(lfr’272rr”)

H=— %, 27
2r2(1—r’2—rr’/)2 @7)

Thus, the partial derivatives of K and H are given by
—r'r’ (—1+r'2+4rr”) +rr” (— 1+r’2)

K = r2 (71+r’2+rr”)2 ’

2r’r”((lfr/2)2+4rr”(f1+r’2)+6r2r”2)7rr”’(71+r/2)(71+r’2+3rr”)

u =

’

2r3(—1+r’2—|-rr”)3
K,=H,=0. (28)

From Eq. (28), the Jacobi Eq. (25) turns into an identity. On the other hand, if T is a

tube, then from Egs. (13)—(15), we have

_ —kj cos v+ky sin v
K= 75
r(1+r(k1 cos v—ky sin v))

(k1 cos v—kp sin v) (1+2r(k1 cos v—ky sin v))

H= 3 . (29)
2r2 (1+r(k1 cos v—kj sin v))
K, = k] cos v—Kkj sin v .,
r(1+r(k1 cos v—kp sin v))
I<v - _ k1 cos v+ky sinv . (30)
r(1+r(k1 cos v—k» sin v))
H. — r(ki cos v—kj sin u) (1+3k1 cos v—3ky sin v)
u— - 3
2r2 (1+r(k1 cos v—ky sin v)) ’
ki sin v+k: 143k —3kj si
H, = r( 1sinv zcosu)( 1COSV 2smv). (31)

2r2 (l+r(k1 cos v—kj sin v))3

By Egs. (30) and (31), the Jacobi Eq. (25) is satisfied everywhere.
Theorem 3 For a non-developable canal surface Y = f(u,v) according to Bishop frame

in E3, the following statements are equivalent:

i. Y islocally a tube or a surface of revolution whose spine curve has a non-zero
constant curvature
ii. Y isa (H,Kj)-Weingarten canal surface
iii. Y isa (K, Kjr)-Weingarten canal surface

Proof Suppose that T = f(u, v) is a non-developable (H, Kj;)-Weingarten canal surface.
Then, it satisfies

(K uHy = (Kip)vHy. (32)

O
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By Eq. (22), we have
2,2 2

83222_8(r2p2q2) _ 83222_3(rpq)
H, ETu(rpq) B——— = H, 5(rpq) B———1. (33)

Comparing the coefficients of the highest degree of Eq. (13) regarding cos'® v with the
help of Egs. (21)-(24), we have

6r%7 k%3 sin'® 0 = 0.

Thus, we have k; = 0or ky = 0orbothky =0andk; =0or7 =0,sinf # 0.If ¥ =0,
then r(u#) =constant. From Egs. (19), (22), (23), and (24) and comparing the coefficients
of cos 6v in both sides, we have

3/(?/(2 (/(1 ki + kzké)

= 0 ,
(k1 cosv — ky sin v)2(1 + rky cos v — rky sin v)5
then we have
3k}ka (kik| + kokh) = 0. (34)

From Eq. (34), we have both k; = 0 and k» = 0 which implies that the Gaussian cur-
vature K = 0 (ie, Y is a (K, Kj7)-Weingarten canal surface.) Conversely, if the canal
surface Y is a tube or a surface of revolution whose spine curve has a non-zero constant
curvature, then from Egs. (17) and (18) we have

2
(r2p2q2) — 202 (1 _ 2 rr//) )

1
B= 5( — (14 21" gfmj)(— r + (=1 + r)r") + PO — ) + r’z(r” +5r"

+(2 — 6r2)r"® — rr”z) + r’4( — 72+ 3r") + 27/’2) — ' r® pop3® rr’sr(g)),

_r/Zr//( 1+ r/2)2 +r(—1+ r/2)
Ky = H— ( 1 ) +6r2 (<14 %) + 4t — 2
4r2r? (= 1+r% + rr”)2 (=1 + 72420y + 1/ (=1 + 1?2

(r/r//z + r(3))

(35)

B 1
37 25 (31”/3}"”2(—1 + r/2) + 8}"/}"”4 _ }"/3}"//2(—1 + r/2)2 +6(—1+ r/Z)r//Zr(S)
u

—16r37%® — 672/’2(4//’2 +3(—-1+ r’z)r(3)) +r(— YOy 4 ®

(=54 16)”//2) _ r//2(r//2)/ _ 161”//)”(3)) + r/4(2(r//2)/ _ 11r//r(3))

3

727" =2 Wy o312 A Dy e+ r(4))),

dB 3(r’p*q?
=0, w = 21"1"//(—1 + r/2 + rr//)(r/r//(—l + r/2 + 47'7'//)

v ou
a(rzpzqz)
av

+r(—=1+ 7+ 2rr”)rm), =0, Ky)y =0,

Page9of 17
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-1
Kiu =
! 4r2r”3(—1—|—r/2+rr”)2

o (=2 4+ 1) + 37272 (1 — 3y 1 rzr’sr’/2(—1 + 217" r®
P22 (=1 4 1) (=1 + 27" ® + 27272 (=3 — 297 (=5 + 17"))r®
r’7(6r”2 — 2" 4 2 223 2 r®) + !

43 (=1 + 1)L + 1" (=1 + 2r7")) + 2r(—1 + 2;";’”);’(3)2 +r" (1 — " yr®
r/3(2r”2(1 + 4" (=1 4+ ") (=1 + 2rr")) + 2723 — él-rr”)r(g)2 + rzr”)
(=3 4 21 )yr@® — /5 (3rr”3 — 1572 + 6r37"° + 6r2r(3)2)
—rzr”(4rr(3)2 +3r@ 4 726 + r3r@®))

By using Eq. (28) and the above equations, the Jacobi Eq. (25) converts to an identity.
In case that the canal surface Y is a tube whose spine curve has a non-zero constant
curvature, it satisfies the Jacobi Eq. (25). Using a similar substantiation advanced above,
we have the same results for the cases of (K, Kj7)-Weingarten canal surfaces and (K, Ky;)

Weingarten canal surfaces according to Bishop frame in E3. This completes the proof.

(x, y)-linear Weingarten canal surface according to Bishop frame in E3
First, we study some special (x, y)-linear Weingarten canal surface with Bishop frame in
E? including developable canal surfaces, minimal canal surfaces, and the canal surfaces

with vanishing second Gaussian curvature.

Remark 1 The (x, y)-linear Weingarten canal surfaces are considered as a natural gen-
eralization of canal surfaces with constant Gaussian curvature, constant mean curvature,
or constant second Gaussian curvature.

Theorem 4 A canal surface Y = f(u,v) according to Bishop frame in E? is developable
if and only if it is a circular cylinder or a circular cone.

Proof Y = f(u,v) is developable if and only if its Gaussian curvature K = 0. From
Eq. (14), we have g = 0. Also, from Eq. (13), we get

q =sin@(—ky cosv + kysinv +6’) = sin@(—ky cosv + ky sinv) + " = 0. (36)

O

From Eq. (36), we have ¥’ = 0 and k; = ko = 0 (i.e., k = 0). Therefore, r(u) = c1u + c3,
where ¢; and c¢; are constants and ¢; # +1 or (else sin 6, a contradiction). Then, Y is a
circular cylinder if ¢; = 0 or a circular cone if ¢; # O and ¢; # *1.

Theorem 5 A canal surface Y = f(u,v) according to Bishop frame in E3 is minimal if

and only if it is a catenoid.

Proof Since Y is minimal if and only if its mean curvature H = 0, then Eq. (15) implies

2p — sin%6 =0,
sin? 0 + 2rsin 0 (k; cos v — ky sinv) — 2rr” = 0. (37)
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Then, we have sin’ =27+ = 0 and 2r sin 0 (kj cos v — ky sinv). Since r # 0 and sin 6,
then kj cosv — ko sinv = 0 implies that « = 0 and Y is a surface of revolution. It is well
known that the only minimal surface of revolution is the catenoid.

It is recognized that a minimal surface satisfied that Ky = 0. However, a surface with
vanishing second Gaussian curvature is not necessary to be minimal [6].

Theorem 6 A non-developable canal surface Y = f(u,v) according to Bishop frame
in E® with vanishing second Gaussian curvature Ky = 0 is a surface of revolution which

satisfies

/2 72

(=1 + ") (=1 + 2"y + 7" — 1) + 720" + 5rr"% — 61272 — 1'%
"2y 4 (=1 4 20 — rr’S)r’” =0. (38)

—2rr

—|—r’4(—r”(2 + 3rr") + 2rr

Proof When Kj; = 0, we have from Eq. (19)

H= B = —4¢>(2p — sin?0),

__ B
22

B = 5ok 306 5in6(7ij cos (iv +j0) + 8ij sin (v +j6)).

0

All the coefficients of Eq. (19), y;;j and §; j, are vanished exept y1 ¢ and 81,0, then we have
k1 = ky = 0 which implies that k = 0. Then, the canal surface is a surface of revolution.
Furthermore, by Egs. (27) and (35), we have

%( — 27" (=1 4 1) (=1 + 277" + 70" — 1) + 72 + 5" — 6r2 — r'?)

(=" (2 + 317 + 207" ) + (=1 + 273 — rr/s)r/”> =0.

Now, we study some properties of (x;y)-linear Weingarten canal surfaces. Without

losing generality, we may assume that c = 1 in ax + by = c.

Theorem 7 A canal surface Y = f(u,v) according to Bishop frame in E3 is a (K, H)-
linear Weingarten canal surface if and only if it is one of the following surfaces:

i. Y tube with radiusr = Z,

i. Y surface of revolution such as

fu,v) = < — r(u) cosvsinf,sinvsinf, u + cos 9),
where r(u) is given by Eq. (41).
Proof A (K, H)-linear Weingarten canal surface satisfied

aK +bH =1,
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where a,b € R, and (4, b) # (0,0). From Egs. (14) and (15), we have
(=b+ ar)(sin6 (ki cosv — ky sinv))
2r(sin9(k1 cosv — ky sinv) — r”)2 + sin@(ky cos v — ks sinv)
( — 2r2(1 — 7% 4 r(sin 6 (ky cos v — ky sinv) — '’ )2 + (=b + 2ar)
(1=} (sinO (ki cos v — ky sinv) — %) — (—b + 2ar)
( 1 —rHr +2r20 -7+ rr”)z) )
—(=b —2ar) (=1 + O + 2r(=b + ar)r"? — 2/2(=1 + r'> + rr'")?

Therefore, we get

(=b+ ar)( sin 6 (k1 cos v — kj sin v))
2r( sin 6 (ky cosv — ky sinv) — r”)2 + sin @ (ky cos v — ky sin v)
( — 2r2(1 — 72 4 r(sinO(k; cos v — ky sinv) — r"? )2 +(=b+2ar) | =0, (39)

1- r’z)(sinO(kl cosv — ky sinv) — ') — (—=b + 2ar)
11— +2r2Q -7+ rr”)z)

and

—(=b = 2ar) (=1 + )" + 2r(=b + ar)r"* — 22 (=1 + 7>+ )2 = 0. (40)

O

Case 1 From Eq. (39), if ki = ko = 0, this mean that « = 0. Thus, Y is a surface of
revolution and its radial function satisfies Eq. (40)

72

—(b—2ar) (=1 + )+ 2r(=b + ar)r’* — 22 (=1 + 7> + )2 = 0.

Solving the above equation, we get

c1+rb—ar+rd
—y + : 41
H=a / \/ r(b —ar +r3) ar (1)

where ¢y and cy are constants [23]. Since k = 0, we assume that the spine curve can be
taken as the following form a(u) = (0,0,u) and T(u) = (0,0,1), P(u) = (1,0,0), and
M(u) = (0,1,0). Then, f (u, v) can be expressed by

fu,v) = < — r(u) cosvsinf,sinvsin 8, u + cos 9),

where r(u) is given by Eq. (41).

Case 2 Ifk # 0, then —b+ar = 0. Hence, r = g is a non-zero constant, f (u,v) is a tube.

Note that Y = f(u, V) is a circular cylinder ifk; = ky =k =0and —b + ar = 0.

Corollary 1 The canal surface Y = f(u,v) according to Bishop frame in E®> which has
non-zero constant Gaussian curvature is a surface of revolution such as

flu,v) = ( — r(u) cosvsin6,sinvsinf, u + cos@),

where r(u) is given by Eq. (42).
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Proof By Remark 1 and Theorem 7 with b = 0, T has non-zero constant Gaussian

curvature K = % Then, T cannot be a tube and it is a surface of revolution. Additionally,

by a similar development as was given in Theorem 7, T can be expressed by
fu,v) = < — r(u) cosvsinf,sinvsinf, u + cos 9),

in which r(u) is given by

_ 3
u=cy+ / /wdn (42)
r(—ar + r3)

where cjandc, are constants [23]. O

Corollary 2 The canal surface X = f(u,v) according to Bishop frame in E® which has
non-zero constant mean curvature is a surface of revolution such as

flu,v) = ( — r(u) cosvsinf,sinvsinf, u + cos 0),
where r(u) is given by Eq. (43).

Proof By Remark 1 and Theorem 7 with a = 0, f(u,v) has non-zero constant mean
curvature H = %. Similarly, as Corollary 1, f (&, v) is a surface of revolution and it can be

expressed by
flu,v) = ( — r(u) cosvsinf,sinvsin 6, u + cos 9),

in which, () is given by

c1+rb+1r3)
=cy+ — 2 dr, 43
w=a / r(b +r3) " 43
where ciandc, are constants [23]. O

Theorem 8 A non-developable canal surface Y = f(u,v) according to Bishop frame in
E3 is a (H, Ky)-linear Weingarten canal surface if and only if it is an open part of a surface
of revolution satisfies

r”( —ar* (=14 27% + Y + r(=2(a + 2r) + 4(a + 2r)r"* — (a + 4r)r'*
+ar'®)r — 2(b + r2(Ba + 4r) (=1 + " — 4r(b + r*(a + r))r”g)
—arr' (=1 + ¥H%® = o, (44)

where a, b € R, and (a, b) # (0, 0).

Proof Suppose f (4, v) is a (H, Kj7)-linear Weingarten canal surface. It satisfies
aKpg +bH =1,

where a,b € R, and (a, b) # (0,0). From Egs. (15) and (16), we have
T4 6 ino(s 40 - sin iy + 70
2048(r2p%q?) > _i—0,j——6 Sin 0 &i; cos (iv +jO) + ni; sin (iv + o)

—sin?
+HICEIE D) — 1,
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Then
6
—a Y sin6 (g,-,j cos (iv + jO) + ny; sin (iv + j@))
i=0,j——6

2p—sin® 0
= 2048 (2p*q?) (1 - b1 )> :

—a Z?:O,j:76 sinf (éi,j cos (iv + jO) + n; sin (iv —|—j9)>
= —512(sin4 0 (k1 cosv — kysiny — 9’)2 ( —2r2 4+ 2r2 cos 20 — 2brkf — 2r4kf
+sin (v + 0)(—bk; — 4r3ky) + sin (v — 6) (b/q + 4r3k1) — 2brk§ — 2r4k§
+ cos (v + 0) (—bky — 4r3ks) + cos (v — 0) (bky + 4r®ka) + sin 2v(4brkiky
+4r*kiky) 4 cos 2v(—2brk} — 2r*K} + 2brk3 + 2r*k3) — 4bre’* — 4rte’?
+sin 6(2b6’ + 8r36") + cos v (8brk19’ + 8r49’k1) sinv(—8brf’ky — 8r49’k2))). (45)
By comparing the coefficient of cos 5v, sin 5v in Eq. (45), we have
asinf & =0,
asin6( — 92r2k3 + 920r2k3k3 — 460r°kik3) = 0,
asinfns =0,
asin 0 (460r2ktk, — 920r2r?kiks + 92k3) = 0.

It is follows that k&; = ky = 0, this means k = 0. Thus, the surface is a surface of

revolution. From Egs. (27) and (37), we have

(- ar’> (=1 + 22 + 7% + r(=2(a + 2r) + 4@a + 2r)7'? — (@ + 4r)r'* + ar'®)r”
—2(b+r2(Ba + 4r) (=1 + r)r"* — 4r(b + r*(a + r))r”g) —ar’ (=1 +7H%3 =0,

O
Theorem 9 A non-developable canal surface Y = f(u,v) according to Bishop frame in

E3 is a (K, Kyp)-linear Weingarten canal surface if and only if it is an open part of a surface

of revolution satisfies

2r”(a(r’ — 2 — (=147 (=2(a + 2r) + 2(a + 27)r'? + ar'tyr”
—2r(—=2b + 3ar + 4r*) (-1 + 7He? — 4r?(—b + r(a + r))r”?’)
—2ar’ (=1 4+ r*)2r® =0, (46)

where a,b € R, and (a, b) # (0,0).

Proof Suppose f(u,v) is a (K, Kjr)-linear Weingarten canal surface. It satisfies
aKpy + bK =1,
where a,b € R, and (4, b) # (0,0). From Egs. (15) and (16), we have
Wfpzqz) 21'6:0,/':—6 sin@(&i,j cos (iv + jO) + n;; sin (iv —i—j@)) +b (%;) =1
—a Y%, gsind (si,j cos (iv + j8) + ni; sin (iv + 79))

= 2048(r*p%q%) (1 —b (%f)) ’
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6
—a Y sine(g,-,,» cos (iv + ) + 1;; sin (iv + je))
i=0,j=—6
. 4 . N2 ot . (47)
= 2048<rsm 0 (ki cosv — kysinv — ") (sm9 + rky cosv — rky sin v

—r0")(rsin@ + cos v(—bk; + ki) + sinv(bky — r’ky) + bO’ — r26’)>.
By comparing the coefficient of cos 5v, sin 5v in Eq. (47), we have
asinf & =0,
a sin@( — 92r°k3 + 920r*k3ks — 460r’k ky) = 0,
asinfns =0,
a sin 0(460r*ktky — 920rkiks + 92k3) = 0.

From the above equations, we have k; = ky = 0; this means x = 0. Thus, the surface is a
surface of revolution. From Egs. (27) and (37), we have

2 (a(r' = 1) = r(=1+r*)(=2(a+ 2r) + 2(a + 2r)7"* + ar')yr”
—2r(=2b + 3ar + 4r¥) (=1 + ¥)r'"* — 4r2(—b + r(a + r))r”g)
—2arr’ (=1 +r*)2r® = 0.
O

Corollary 3 The canal surface X = f(u,v) according to Bishop frame in E* which has

non-zero second Gaussian curvature is an open part of a surface of revolution satisfies
2 (a(r' — 1) = r(=1+r*)(=2(a+2r) + 2(a + 2r)7"* + ar'yr”
—2r(—2b + 3ar + 42 (=1 + ¥Hr"* — 42 (b + r(a + r))r”s)
—2arr' (=1 +r*)2® =,

At last, we study the (x,y)-linear Weingarten canal surface f (u,v) according to Bishop
frame in E3 which satisfies Kjy = K and Kjj = H, respectively.

Theorem 10 A non-developable canal surface Y = f(u,v) according to Bishop frame in
E3 satisfying Kiy = K a surface of revolution which satisfies
Yo (=1 + "y + Y 2+ 1) + r’2r”( —14+4r(=1+""r" + 6r27”2)
+2rr"? (1-@+3nr"+2r(1+ r)r”z) + 1773 — 2135 @ 4 153 =,
where a, b € R, and (a, b) # (0, 0).
Proof When Kj = K, we have by Egs. (14) and (16)
6
—-q

3 sine(gi,j cos (iv + jO) + 0y sin (iv + j9)) =1 (48)
—0,/=—6 P

1
Comparing the coefficient of cos 5v, sin 5v in Eq. (48), we have
asinf & =0,
a sin@( — 92r°k3 + 920r*k3k3 — 460r’k ky) = 0,
asinfns =0,
a sin 0(460r*ktky — 920rkiks + 92k3) = 0.
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From the above equations, we have k; = ky = 0; this means k = 0. Then, the canal
surface Y is a surface of revolution. From Egs. (27) and (37), we have

PO =1+ ")+ Y Q4+ 1) + r’zr”( —1+4r(=14+"r" + 6r2r”2)
+2r1"? (1—@+3nr" +2r(1 + r)r”z) + 1773 — 21353 4 53 = 0,

O

Theorem 11 For a non-developable canal surface Y = f(u, v) according to Bishop frame
in E3 satisfying Kjy = H, then the canal surface is a surface of revolution which satisfies
/6;"”( —1+4r") —|—r’4r”(2 + ) + 2r”2(r +7 =3 — 2 4 2r3r’/2)
—r/2(r” +ar? 4732 - 6r2)) +r7r® — 27353 4 53 = 0,

Proof When Ky = H, from Eq. (19), we have

6
-1
B= 2018 H;6 sin@(y,',,- cos (iv +jO) + §;; sin (iv +j9)>,

V56 = V5,6 = r°ks — 10r2k3k2 + 5r2ki ks = 0,

So5=—8y5 = 8rk% + 8rkil + 2r3k§’ - Srkg + 2r3kfk% — 81”/(3L - 2r3k%k‘2L - 2r3kg =0.

Considering the coefficient of cos (5v + 60), sin (2v + 50) in B, we get k1 = ky = 0; this
means k = 0. Thus, the surface is a surface of revolution; we have from Egs. (27) and (37)

r/6r”( -1+ rr”) + r’4r”(2 + rr”) + 2r’/2(r =32 — 2 2r3r’/2)
—? (" + 4" + 732 — 6r%)) + rr'r® — 273 r® >3 =,

Conclusion

In this article, we found a particular Weingarten and linear Weingarten varieties of a canal
surface obtained by the Bishop frame in Euclidean 3-space E? and we found the neces-
sary and sufficient conditions of equations in terms of the Gaussian curvature, the mean
curvature. On the premise of those equations, we have introduced some canal surfaces.
In the future, we will try to find a comparison between the Weingarten and linear Wein-
garten varieties of canal surface in the Bishop frame and canal surface in Darboux frame
and we will try to find the geodesic and asymptotic in Bishop frame and Darboux frame.
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