
Journal of the Egyptian
Mathematical Society

Omar Journal of the EgyptianMathematical Society           (2019) 27:29 
https://doi.org/10.1186/s42787-019-0034-9

ORIGINAL RESEARCH Open Access

On the joint distribution of order
statistics from independent non-identical
bivariate distributions
A. R. Omar

Correspondence:
azza.omar@azhar.edu.eg
Faculty of Science, Department of
Mathematics, Girls Branch, Al-Azhar
University, Cairo, Egypt

Abstract

In this note, the exact joint probability density function (jpdf ) of bivariate order
statistics from independent non-identical bivariate distributions is obtained.
Furthermore, this result is applied to derive the joint distribution of a new sample rank
obtained from the rth order statistics of the first component and the sth order statistics
of the second component.
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Introduction
Multivariate order statistics especially Bivariate order statistics have attracted the interest
of several researchers, for example, see [1]. The distribution of bivariate order statistics
can be easily obtained from the bivariate binomial distribution, which was first introduced
by [2]. Considering a bivariate sample, David et al. [3] studied the distribution of the sam-
ple rank for a concomitant of an order statistic. Bairamove and Kemalbay [4] introduced
new modifications of bivariate binomial distribution, which can be applied to derive the
distribution of bivariate order statistics if a certain number of observations are within
the given threshold set. Barakat [5] derived the exact explicit expression for the product
moments (of any order) of bivariate order statistics from any arbitrary continuous bivari-
ate distribution function (df ). Bairamove and Kemalbay [6] used the derived jpdf by [5]
to derive the joint distribution on new sample rank of bivariate order statistics. Moreover,
Barakat [7] studied the limit behavior of the extreme order statistics arising from n two-
dimensional independent and non-identically distributed random vectors. The class of
limit dfs of multivariate order statistics from independent and identical random vectors
with random sample size was fully characterized by [8].
Consider n two-dimensional independent random vectors Wj = (Xj,Yj), j = 1, 2, ..., n,

with the respective distribution function (df ) Fj(w) = Fj(x, y) = P(Xj ≤ x,Yj ≤ y), j =
1, 2, ..., n. Let X1:n ≤ X2:n ≤ ... ≤ Xn:n and Y1:n ≤ Y2:n ≤ ... ≤ Yn:n be the order statistics
of the X and Y samples, respectively. The main object of this work is to derive the jpdf
of the random vector Zk,k′:n = (Xn−k+1:n,Yn−k′+1:n), where 1 ≤ k, k′ ≤ n. Let Gj(w) =
P(Wj > w) be the survival function of Fj(w), j = 1, 2, ..., n and let F1,j(.), F2,j(.), G1,j(.) =
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1 − F1,j(.) and G2,j(.) = 1 − F2,j(.) the marginal dfs and the marginal survival functions
of �k,k′ :n = P(Zk,k′:n ≤ w), Fj(w) and Gj(w), j = 1, 2, ..., n, respectively. Furthermore,
let Fj1,. = ∂Fj(w)

∂x and Fj .,1 = ∂Fj(w)

∂y . Also, the jpdf of (Xn−k+1:n,Yn−k′+1:n) is conveniently
denoted by fk,k′:n(w). Finally, the abbreviations min(a, b) = a ∧ b, and max(a, b) = a ∨ b
will be adopted.

The jpdf of non-identical bivariate order statistics
The following theorem gives the exact formula of the jpdf of non-identical bivariate order
statistics.

Theorem 1 The jpdf of non-identical bivariate order statistics is given by

fk,k′:n(w)=
1∑

θ ,ϕ=0

r∗∗∑

r=r∗∗

∑

ρθ ,ϕ,r

�θ
j=1F

.,1
ij (w)�1

j=θ+1(f2,ij(y)−F .,1
ij (w))�

ϕ+1
j=2 F

1,.
ij (w)

×�2
j=ϕ+2(f1,ij(x) − F1,.

ij (w))�k−θ−r+1
j=3 (F1,ij(x) − Fij(w))�k−θ+1

j=k−θ−r+2Fij(w)

×�
k+k′−θ−ϕ−r
j=k−θ+2 (F2,ij(y) − Fij(w))�n

j=k+k′−θ−ϕ−r+1Gij(w) +
(k−1)∧(k′−1)∑

r=0∨(k+k′−n−1)

∑

ρr

fj(w)

�k−r
j=2 (F1,ij(x) − Fij(w)) × �k

j=k−r+1Fij(w)�k+k′−r
j=k+1 (F2,ij(y) − Fij(w))�n

j=k+k′−r+1Gij(w),

where r∗∗ = 0 ∨ (k + k′ − θ − ϕ − n), r∗∗ = (k − θ − 1) ∧ (k′ − ϕ − 1),
∑

ρ denotes
summation subject to the condition ρ, and

∑
ρθ1,θ2,ϕ1,ϕ2,ω,r

denotes the set of permutations of
i1, ..., in such that ij1 < ... < ijn .

Proof A convenient expression of fk,k′:n(w) may derived by noting that the compound
event E = {x < Xk:n < x + δx, y < Yk:n < y + δy} may be realized as fol-
lows: r;ϕ1; s1; θ1;ω; θ2; s2;ϕ2 and t observations must fall respectively in the regions
I1 = (−∞, x]∩(−∞, y] ; I2 = (x, x + δx]∩(−∞, y] ; I3 = (x + δx,∞]∩(−∞, y] ; I4 =
(−∞, x]∩(y, y + δy] ; I5 = (x, x + δx]∩(y, y + δy] ; I6 = (x + δx,∞]∩(y, y + δy] ; I7 =
(−∞, x]∩(y + δy,∞); I8 = (x, x + δx]∩(x + δx,∞); and I9 = (x + δx,∞) ∩ (y + δy,∞)

with the corresponding probability Pij = P(Wj ∈ Ii), i = 1, 2, ..., 9. Therefore, the joint
density function fk,k′:n(w) of (Xk:n,Yk′:n) is the limit of P(E)

δxδy as δx, δy → 0, where P(E) can
be derived by noting that θ1+θ2+ω = ϕ1+ϕ2+ω = 1; r+θ1+ s2 = k−1; r+ϕ1+ s1 =
k′ − 1; r, θ1, s2,ϕ1,ω, θ2, s1,ϕ2, t ≥ 0; P1j = Fj(w),P2j = F1,.

j (w)δx,P3j = F2,j(y) − Fj(x +
δx, y),P4j = F .,1

j (w)δy,P5j∼=F1,1
j (w)δxδy = fj(w)δxδy,P6j ∼= (f2,j(y)−F .,1

j (w+δw))δy, where
f2,j(y) = ∂F2,j(y)

∂y , j = 1, 2, ..., n, ∂w = (δx, δy),w + δw = (x + δx, y + δy),P7j = F1,j(x) −
Fj(x, y+ δy),P8j = (f1,j(x) − F1,.

j (w+ δw))δx,P9j = 1− F1,j(x+ δx) − F2,j(y+ δy) + Fj(w).
Thus, we get

fk,k′ :n(w)=
1∑

θ1,ϕ1,θ2,ϕ2=0

r∗∑

r=r∗

∑

ρθ1,θ2,ϕ1,ϕ2,ω,r
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θ1+ϕ1+θ2+ϕ2
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j=θ1+ϕ1+θ2+ϕ2+ω+1P7ij�

ϕ1+θ2+ϕ2+ω+k−1
j=θ2+ϕ1+ϕ2+ω+k−rP1ij�

θ2+ϕ2+ω+k+k′−r−2
j=ϕ1+θ2+ϕ2+ω+k P3ij

�n
j=θ2+ϕ2+ω+k+k′−r−1P9ij ,

(1)
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where r∗ = 0∨(k+k′+θ2+ϕ2+ω−r−1−n), r∗ = (k−θ1−1)∧(k′−ϕ1−1),
∑

ρ denotes
summation subject to the condition ρ, and

∑
ρθ1,θ2,ϕ1,ϕ2,ω,r

denotes the set of permutations

of i1, ..., in such that ij1 < ... < ijn for each product of the type �
j2
j=j1 . Moreover, if j1 > j2,

then �
j2
j=j1 = 1. But (1) can be written in the following simpler form

P(E) =
1∑

θ ,ϕ=0

r∗∗∑

r=r∗∗

∑

ρθ ,ϕ,r
�θ
j=1P4ij�

1
j=θ+1P6ij�

ϕ+1
j=2 P2ij�

2
j=ϕ+2P8ij�

k−θ−r+1
j=3 P7ij�

k−θ+1
j=k−θ−r+2P1ij

�
k+k′−θ−ϕ−r
j=k−θ+2 P3ij�

n
j=k+k′−θ−ϕ−r+1P9ij +

(k−1)∧(k′−1)∑

r=0∨(k+k′−n−1)

∑
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P5i3�k−r

j=2 P7ij�
k
j=k−r+1P1ij�

k+k′−r
j=k+1 P3ij�

n
j=k+k′−rP9ij ,

where r∗∗ = 0 ∨ (k + k′ − θ − ϕ − n), r∗∗ = (k − θ − 1) ∧ (k′ − ϕ − 1). Therefore,

fk,k′:n(w) =
1∑

θ ,ϕ=0

r∗∗∑

r=r∗∗

∑

ρθ ,ϕ,r

�θ
j=1P4ij�

1
j=θ+1P6ij�

ϕ+1
j=2 P2ij�

2
j=ϕ+2P8ij�

k−θ−r+1
j=3 P7ij

�k−θ+1
j=k−θ−r+2P1ij�

k+k′−θ−ϕ−r
j=k−θ+2 P3ij�n

j=k+k′−θ−ϕ−r+1P9ij +
(k−1)∧(k′−1)∑

r=0∨(k+k′−n−1)

∑

ρr

P5i3�
k−r
j=2P7ij

�k
j=k−r+1P1ij�

k+k′−r
j=k+1 P3ij�n

j=k+k′−rP9ij .
(2)

Thus, we get

fk,k′ :n(w) =
1∑

θ ,ϕ=0

r∗∗∑

r=r∗∗

∑

ρθ ,ϕ,r

�θ
j=1F

.,1
ij (w)�1

j=θ+1(f2,ij (y) − F .,1ij (w))�
ϕ+1
j=2 F1,.ij (w)

�2
j=ϕ+2(f1,ij (x) − F1,.ij (w))�k−θ−r+1

j=3 (F2,ij (x) − Fij (w))�k−θ+1
j=k−θ−r+2Fij (w)�

k+k′−θ−ϕ−r
j=k−θ+2 (F2,ij (y) − Fij (w))

�n
j=k+k′−θ−ϕ−r+1Gij (w) +

(k−1)∧(k′−1)∑

r=0∨(k+k′−n−1)

∑

ρr
fi3 (w)�k−r

j=2 (F1ij (x) − Fij (w))

�k
j=k−r+1Fij (w)�k+k′−r

j=k+1 (F2,ij (y) − Fij (w))�n
j=k+k′−r+1Gij (w).

(3)

Hence, the proof.
Relation (3) may be written in term of permanents (c.f [9]) as follows:

fk,k′ :n(w) =
1∑

θ ,ϕ=0

r∗∗∑

r=r∗∗
1

(k − θ − r − 1)! r! (k′ − ϕ − r − 1)! (n − k − k′ + ϕ + θ + r − 1)!

Per[U .,1
1,1 (U1

.,1−U .,1
1,1) U1,.

1,1
(
U1
1,.−U1,.

1,1
) (

U1,.−U1,1
)

U1,1 (U .,1−U1,1)

θ 1 − θ ϕ 1 − ϕ k − θ − r − 1 r k′ − ϕ − r − 1

(1 − U1,. − U1,. + U1,1)]

n − k − k′ + θ + ϕ + r − 1

+
r∗∑

r=r∗
1

(k − r)! r! (k′ − r)! (n − k − k′ + r)!
Per[U1,1

1,1 (U1,. − U1,1) U1,1 (U .,1 − U1,1) (1 − U1,. − U1,. + U1,1)]
1 k − r r k′ − r n − k − k′ + r − 1

,

(4)

where U1,. = (F11(x1) F12(x1) ... F1n(x1))′, U .,1 = (F2,1(x2) F2,2(x2) ... F2,n(x2))′, U1,1 =
(F1(x) F2(x) ... Fn(x))′ and 1 is the n× 1 column vector of ones. Moreover, if a1, a2, ... are
column vectors, then
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Per[ a1 a2 ...]
i1 i2 ...

will denote the matrix obtained by taking i1 copies of a1, i2 copies of a2, and so on.
Finally, when k = k′ = 1, in (3), we get

f1,1:n(w) =
∑

ρθ ,ϕ,r

(f2,i1(y) − F .,1
i1 (w))(f1,i2(x) − F1,.

i2 (w))�n
j=3Gij(w) +

∑

ρr

fi3(w)

(F2,i2(y) − Fi2(w))�n
j=3Gi3(w).

Also, for k = k′ = n, we get

fn,n:n(w) =
∑

ρθ ,ϕ,r

F .,1
i1 (w)F1,.

i2 (w)�n
j=3Fij(w) +

∑

ρr

fi3(w)�n
j=2Fij(w))(F2,in+1(y) − Fin+1(w)).

Joint distribution of the new sample rank of Xr:n and Ys:n
Consider n two-dimensional independent vectors Wj = (Xj,Yj), j = 1, ..., n, with the
respective df Fj(W ) and the jpdf fj(W ). Further assume that (Xn+1,Yn+1), (Xn+2,Yn+2),
..., (Xn+m,Yn+m), (m ≥ 1) is another random sample with absolutely continu-
ous df G∗

j (x, y), j = 1, ...,m and jpdf gj(x, y). We assume that the two samples
(Xn+1,Yn+1), (Xn+2,Yn+2), ..., (Xn+m, Yn+m), (m ≥ 1) and (X1,Y1), (X2,Y2), ..., (Xn,Yn)
are independent.
For 1 ≤ r, s ≤ n,m ≥ 1, we define the random variables η1 and η2 as follows:

η1 =
m∑

i=1
I(Xr:n−Xn+i)

and

η2 =
m∑

i=1
I(Ys:n−Yn+i),

where I(x) = 1 if x > 0 and I(x) = 0 if x ≤ 0 is an indicator function. The random vari-
ables η1 and η2 are referred to as exceedance statistics. Clearly η1 shows the total number
of new X observations Xn+1,Xn+2, ..., Xn+m which does not exceed a random thresh-
old based on the rth order statistic Xr:n. Similarly, η2 is the number of new observations
Yn+1,Yn+2, ...,Yn+m which does not exceed Ys:n.
The random variable ζ1 = η1 + 1 indicates the rank of Xr:n in the new sample

Xn+1, Xn+2, ..., Xn+m, and the random variable ζ2 = η2+1 indicates the rank of Ys:n in the
new sample Yn+1,Yn+2, ...,Yn+m. We are interested in the joint probability mass function
of random variables ζ1 and ζ2.Wewill need the following representation of the compound
event P(ζ1 = p, ζ2 = q) = P(η1 = p − 1, η2 = q − 1).

Definition 1 Denote A = {Xn+i ≤ Xr:n},Ac = {Xn+i > Xr:n}, B = {Yn+i ≤ Ys:n} and
Bc = {Yn+i > Ys:n}.Assume that in a fourfold sampling scheme, the outcome of the random
experiment is one of the events A or Ac, and simultaneously one of B or Bc, where Ac is the
complement of A.

In m independent repetitions of this experiment, if A appears together with B � times,
then A and Bc appear together p − � − 1 times. Therefore, B appears together with
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Ac q − � − 1 times and Bc m − p − q + � + 2 times. This can be described as follows:
A\B B Bc

A � p − � − 1
Ac q − � − 1 m − p − q + � + 2
Clearly, the random variables η1 and η2 are the number of occurrences of the events

A and B in m independent trials of the fourfold sampling scheme, respectively. By con-
ditioning on Xr:n = x and Ys:n = y, the joint distribution of η1 and η2 can be obtained
from bivariate binomial distribution considering the four sampling scheme with events
A = {Xn+i ≤ x}, B = {Yn+i ≤ y} , and with respective probabilities

P(AB) = P(Xn+i ≤ x,Yn+i ≤ y),

P(ABc) = P(Xn+i ≤ x,Yn+i > y),

P(AcB) = P(Xn+i > x,Yn+i ≤ y),

P(AcBc) = P(Xn+i > x,Yn+i > y).

Now, we can state the following theorem.

Theorem 2 The joint probability mass function of ζ1 and ζ2, is given by

P(ζ1 = p, ζ2 = q) = P(η1 = p − 1, η2 = q − 1) =
min(p−1,q−1)∑

�=max(0,p+q−m−2)

∫ ∞
−∞

∫ ∞
−∞

��
j=1G

∗
ij (x, y)�

p−1
j=�+1[G

∗
1,ij (x) − G∗

ij (x, y)]�
q−�−1+p
j=p

[
G∗
2,ij (y) − G∗

ij (x, y)
]
�m+2
j=q−�+pG

∗
1,ij (x)fk,k′ :n(w)dxdy,

where, p, q = 1, ...,m + 1, fk,ḱ:n(w) is defined in (3).

Proof Consider the fourfold sampling scheme described in Definition (1). By condition-
ing with respect to Xr:n = x and Ys:n = y, we obtain

P(ζ1 = p, ζ2 = q) ≡ P(η1 = p − 1, η2 = q − 1) = P
{ m∑

i=1
I(Xr:n−Xn+i) = p − 1, I(Yr:n−Yn+i) = q − 1

}

=
∫ ∞
−∞

∫ ∞
−∞

P
{ m∑

i=1
I(Xr:n−Xn+i) = p − 1, I(Ys:n−Yn+i) = q − 1|Xr:n = x,Ys:n = y

}

×P{Xr:n = x,Ys:n = y}dxdy

=
∫ ∞
−∞

∫ ∞
−∞

P
{ m∑

i=1
I(x−Xn+i) = p − 1, I(y−Yn+i) = q − 1

}
dFr,s:n(x, y).

(5)

On the other hand,

P
( m∑

i=1
I(x−Xn+i) = p − 1, I(y−Yn+i) = q − 1

)
=

min(p−1,q−1)∑

�=max(0,p+q−m−2)
��
j=1Pij (AB)�

p−1
j=�+1Pij (AB

c)

�
q−�−2+p
j=p Pij�

m
j=q−�−1+pPij .

(6)

Substituting (6) in (5), we get

P(ζ1 = p, ζ2 = q) = P(η1 = p − 1, η2 = q − 1) =
min(p−1,q−1)∑

�=max(0,p+q−m−2)

∫ ∞
−∞

∫ ∞
−∞

��
j=1G

∗
ij (x, y)

�
p−1
j=�+1[G

∗
1,ij (x) − G∗

ij (x, y)]�
q−�−1+p
j=p [G∗

2,ij (y) − G∗
ij (x, y)]�

m
j=q−�+pG

∗
1,ij (x)fk,k′:n(w)dxdy,

where p, q = 1, ...,m + 1. This completes the proof.
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