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Abstract

In this paper, we present a numerical method based on cubic B-spline function for
studying the effects of thermal radiation and mass transfer on free convection flow
over a moving vertical porous plate. Similarity transformations reduced the
governing partial differential equations of the fluid flow to a system of nonlinear
ordinary differential equations which are solved numerically using a cubic B-spline
collocation method. The effects of various physical parameters on the velocity,
temperature, and concentration distributions are shown graphically, and the
numerical values of physical quantities like skin friction, Nusselt number, and
Sherwood number for various parameters are presented in tabular form and
discussed.
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Introduction
Free convection flow is important in many practical applications including cooling of

electronic components, designs related to thermal insulation, material processing, and

geothermal systems. The flow through porous media is important in many applications

in science and engineering. Mixed convective flow past a semi-infinite vertical plate

embedded in a porous medium incorporating the variable permeability in Darcy’s

model studied by Mohammadein and El-Shaer [1]. Zhang et al. [2] presented transient

and steady natural convection from a heat source embedded in a saturated porous

layer. The effects of Dufour and Soret numbers on steady combined free-forced con-

vective and mass transfer flow past a semi-infinite vertical flat plate in the presence of

a uniform transverse magnetic field studied by Alam et al. [3]. Brewster studied the

properties of thermal radiative transfer [4]. Bestman examined the natural convection

boundary layer with suction and mass transfer in a porous medium [5]. Singh and

Soundalgekar investigated the transient free convection in cold water past an infinite

porous plate [6]. Hossain studied the effect of transpiration on combined heat and

mass transfer in mixed convection along a vertical plate [7]. Makinde studied free
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convection flow with thermal radiation and mass transfer past a moving vertical porous

plate [8]. Reddy et al. studied radiation and chemical reaction effects on MHD flow

along a moving vertical porous plate [9]. Reddy et al. [10] studied the mass transfer ef-

fects on unsteady hydromagnetic free convective memory flow of incompressible and

electrically conducting fluid flow past an infinite vertical plate through a porous

medium. Heat transfer by natural convection from a vertical flat plate embedded in

electrically conducting micropolar fluid-saturated porous medium using the Darcy-

Brinkman-Forchheimer Boussinesq model in the presence of uniform magnetic field

and thermal radiation was studied by Pal and Chatterjee [11]. Sharma et al. studied

buoyancy effects on MHD unsteady convection of a radiating chemically reacting fluid

past a moving porous vertical plate in a binary mixture [12]. Makinde et al. presented

unsteady convection with chemical reaction and radiative heat transfer past a flat por-

ous plate moving through a binary mixture [13]. Sajid et al. studied Darcy-Forchheimer

flow of Maxwell nanofluid flow with nonlinear thermal radiation and activation energy

[14]. Makinde and Olanrewaju presented unsteady mixed convection with Soret and

Dufour effects past a porous plate moving through a binary mixture of chemically

reacting fluid [15]. Makinde and Ogulu studied the effect of thermal radiation on the

heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate per-

meated by a transverse magnetic field [16]. Ogulu and Makinde presented unsteady

hydromagnetic free convection flow of a dissipative and radiating fluid past a vertical

plate with constant heat flux [17]. Caglar used the cubic B-spline for solving linear sys-

tem of second-order boundary value problems [18]. This paper is organized as follows:

In the section 2, we analyze the mathematical problem. In the section 3, we apply the

cubic B-spline method. In the section 4, we investigate the numerical results and dis-

cussion. Finally, the conclusion of this study is given in the section 5.

Mathematical analysis
Consider unsteady flow and free convection heat and mass transfer of incompressible

viscous fluid past a moving vertical porous plate. Let u and v be the velocity compo-

nents along the x and the y directions, respectively. We choose the x axis that runs

along the plate in the vertically upward direction and the y axis be taken perpendicular

to it as shown in Fig. 1. The physical variables are functions of y and t only.

According to Boussinesq’s approximation, the governing equations that describe the

physical situation can be written as:

∂v
∂y

¼ 0; ð1Þ

∂u
∂t

þ v
∂u
∂y

¼ υ
∂2u
∂y2

þ gβ T−T∞ð Þ þ gλ C−C∞ð Þ; ð2Þ

∂T
∂t

þ v
∂T
∂y

¼ α
∂2T
∂y2

−
α
k
∂qr
∂y

; ð3Þ

∂C
∂t

þ v
∂C
∂y

¼ D
∂2C
∂y2

; ð4Þ

with boundary conditions



Fig. 1 The graphical abstract of the problem
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u ¼ U ;T ¼ Tw;C ¼ Cw at y ¼ 0; ð5Þ
u→0;T→T∞;C ¼ C∞ as y→∞for t > 0; ð6Þ

where υ is the kinematic viscosity, g the acceleration due to gravity, T the

temperature, C the concentration, D the coefficient of mass diffusivity, α the thermal

diffusivity, k the thermal conductivity, qr the local radiative heat flux, β volumetric ex-

pansion coefficient due to temperature, λ volumetric expansion coefficient due to con-

centration, Tw, Cw are the uniform temperature and concentration of the fluid at the

plate, respectively, T∞, C∞ are the temperature and concentration of the fluid far away

from the plate, respectively, and U is the plate characteristic velocity. Using the Rosse-

land approximation [9], the radiative heat flux term is

qr ¼ −
4σ
3δ

∂T4

∂y
; ð7Þ

where σ is the Stefan-Boltzmann constant and δ the mean absorption coefficient.
We introduce similarity variables and the dimensionless quantities,

η ¼ y

2
ffiffiffiffi
υt

p ; u ¼ U f ηð Þ; θ ¼ T−T∞

Tw−T∞
;Ra ¼ 16σ Tw−T∞ð Þ3

3δk
;

Sc ¼ υ
D
;Φ ¼ C−C∞

Cw−C∞
; Pr ¼ υ

α
;Gr ¼ 4gβt Tw−T∞ð Þ

U
;

Gc ¼ 4gλt Cw−C∞ð Þ
U

;N ¼ T∞

Tw−T∞

ð8Þ

From Eq. (1), v is either constant or a function of time. From [3], we choose



ffiffiffir
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v ¼ −c
υ
t
; ð9Þ

where c > 0 is the suction parameter. Then, from Eqs. (8) and (9) in Eqs. (2), (3), and
(4), we obtain system of ordinary differential equations as follows:

f 00 þ 2 ηþ cð Þ f 0 ¼ −Grθ−GcΦ; ð10Þ

θ00 þ 2 ηþ cð Þ Prθ0 ¼ −Ra 3 N þ θð Þ2θ02 þ N þ θð Þ3θ00
� �

; ð11Þ

Φ00 þ 2 ηþ cð ÞScΦ0 ¼ 0; ð12Þ

with the boundary conditions
f 0ð Þ ¼ θ 0ð Þ ¼ Φ 0ð Þ ¼ 1;
f ∞ð Þ ¼ θ ∞ð Þ ¼ Φ ∞ð Þ ¼ 0;

ð13Þ

where Gr and Gc are the local free convection parameter, Pr is the Prandtl number,
Ra is the radiation parameter, N is the temperature difference parameter, and Sc is the

Schmidt number.

Cubic B-spline collocation method [12]
The cubic B-splines Bi(η) are given by

Bi ηð Þ ¼ 1

h3

η−ηi−2
� �3

; η∈ ηi−2; ηi−1
� �

;

h3 þ 3h2 η−ηi−1
� �þ 3h η−ηi−1

� �2
−3 η−ηi−1

� �3
; η∈ ηi−1; ηi

� �
;

h3 þ 3h2 ηiþ1−η
� �þ 3h ηiþ1−η

� �2
−3 ηiþ1−η

� �3
; η∈ ηi; ηiþ1

� �
;

ηiþ2−η
� �3

η∈ ηiþ1; ηiþ2

� �
;

0; otherwise;

8>>>>><
>>>>>:

i ¼ −1; 0; 1;⋯; nþ 1ð Þ;
ð14Þ

where h = ηi + 1 − ηi, i = 0, 1, …, n the values of the cubic B-spline Bi(η) and all its first
and second derivatives vanish outside the interval (ηi − 2, ηi + 2) We establish the values

of Bi(η) and its derivatives at the knots ηi − 2, ηi − 1, …, ηi + 2 in Table 1 as:

We consider the cubic B-spline function to the solutions of the problems (10)–(12)

as follows:
Table 1 The values of BiðηÞ; B0
iðηÞ; and B″i ðηÞ

ηi − 2 ηi − 1 ηi ηi + 1 ηi + 2

Bi(η) 0 1 4 1 0

B
0
i ðηÞ 0 –3/h 0 3/h 0

B
00
i ðηÞ 0 6/h2 –12/h2 6/h2 0
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f ηð Þ ¼
Xnþ1

i¼−1

di ηð ÞBi ηð Þ;

θ ηð Þ ¼
Xnþ1

i¼−1

qi ηð ÞBi ηð Þ;

Φ ηð Þ ¼
Xnþ1

i¼−1

si ηð ÞBi ηð Þ;

9>>>>>>>>>=
>>>>>>>>>;

ð15Þ

where constants di(η), qi(η), and si(η)’s are to be determined from the collocation

points ηi, i = 0, 1, …, n and the boundary conditions.

Using Eq. (15) and the cubic B-spline Bi(η) given by Eq. (14) and its principle twice

derivatives B
0
iðηÞ and B″

i ðηÞ at the knots and their values are summarized in Table 1,

the values of fi, θi, Φi and their derivatives up to second order at the knots are

f i ¼ di−1 þ 4di þ diþ1

f i
0 ¼ −

3
h
di−1 þ 3

h
diþ1

f i
″ ¼ 6

h2
di−1−

12

h2
di þ 6

h2
diþ1

9>>>=
>>>;
; i ¼ 0; 1;…; n: ð16Þ

θi ¼ qi−1 þ 4qi þ qiþ1

θ
0
i ¼ −

3
h
qi−1 þ

3
h
qiþ1

θ″i ¼ 6

h2
qi−1−

12

h2
qi þ

6

h2
qiþ1

9>>>=
>>>;
; i ¼ 0; 1;…; n: ð17Þ

Φi ¼ si−1 þ 4si þ siþ1

Φ
0
i ¼ −

3
h
si−1 þ 3

h
siþ1

Φ″
i ¼ 6

h2
si−1−

12

h2
si þ 6

h2
siþ1

9>>>=
>>>;
; i ¼ 0; 1;…; n: ð18Þ

Substituting from Eqs. (16)–(18) in Eqs. (10)–(12), we find
6

h2
di−1−

12

h2
di þ 6

h2
di−1 þ 2 ihþ cð Þ −

3
h
di−1 þ 3

h
diþ1

	 


¼ −Gr qi−1 þ 4qi þ qiþ1

� �
−Gc si−1 þ 4si þ siþ1ð Þ;

ð19Þ

6

h2
qi−1−

12

h2
qi þ

6

h2
qiþ1 þ 2 ihþ cð Þ Pr −

3
h
qi−1 þ

3
h
qiþ1

	 


¼ −Ra
3 N þ qi−1 þ 4qi þ qiþ1

� �2
−
3
h
qi−1 þ

3
h
qiþ1

	 
2

þ N þ qi−1 þ 4qi þ qiþ1

� �3 6

h2
qi−1−

12

h2
qi þ

6

h2
qiþ1

	 

0
BB@

1
CCA;

ð20Þ

6

h2
si−1−

12

h2
si þ 6

h2
siþ1 þ 2 ihþ cð ÞSc −

3
h
si−1 þ 3

h
siþ1

	 

¼ 0; ð21Þ

with the boundary conditions

d−1 þ 4d0 þ d1 ¼ q−1 þ 4q0 þ q1 ¼ s−1 þ 4s0 þ s1 ¼ 1;
dn−1 þ 4dn þ dnþ1 ¼ qn−1 þ 4qn þ qnþ1 ¼ sn−1 þ 4sn þ snþ1 ¼ 0;

ð22Þ

Solving the system of nonlinear Eqs. (19)–(22), we have the values of di, qi, and Si for
−1 ≤ i ≤ n + 1, and substituting in Eqs. (16)–(18), we find the velocity distributions (f),

the temperature distributions (θ), and the concentration distributions (Φ).



Fig. 2 Fluid velocity for different values of Sc, Pr,c, Gr, and Ra
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Numerical results and discussion
The problem of an unsteady free convection fluid flow past a moving vertical porous

plate with thermal radiation and mass transfer has been computed for the velocity (f),

the temperature (θ), and the concentration (Φ) with boundary layer for different pa-

rameters as Prandtl number (Pr), Schmidt number (Sc), thermal Grashof number (Gr),

solutal Grashof number (Gc), the temperature difference parameter (N), radiation par-

ameter (Ra), and suction parameter (c) with step size Δη = 0.05. In this study, we con-

sider the following values: Pr = 0.71, …, 7.0, Sc = 0.5, …, 5.0, Gr = 5, …, 20, Gc = 5, …, 20,

N = 0.1, Ra = 0, 0.1, …, 2.0 and c = 0.25, …, 1.0. In Figs. 2, 3, and 4, we observe an en-

hancement the velocity, temperature, and concentration distributions in the fluid ac-

cording to above different values.
Fig. 3 Fluid temperature for different values of Pr, c, and Ra



Fig. 4 Fluid concentration for different values of Sc and c
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In Fig. 2, we observe the fluid velocity increased and after a very short distance from

the plate reach to its maximum value and thereafter find a gradual decrease in the fluid

velocity to zero. The fluid velocity enhances when there is a decrease in Prandtl num-

ber (Pr), Schmidt number (Sc), and suction parameter (c), although an increase in the

thermal Grashof number (Gr), solutal Grashof number (Gc), and radiation parameter

(Ra) will enhance the fluid velocity.

Figure 3 shows the fluid temperature decreased gradually to zero after some distance

away from the plate. It observes that as an increase Prandtl number (Pr) and suction

parameter (c) is a major decrease in the fluid temperature, while an increase radiation

parameter (Ra) will enhance the fluid temperature.

Figure 4 shows the fluid concentration is maximum at the plate surface and decreases

until vanishes at some distance away from the plate. It is noted that a decrease in
Fig. 5 Fluid velocity with increasing of the thermal Grashof number (Gr)



Fig. 6 Fluid velocity with increasing of the solutal Grashof number (Gc)
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Schmidt number (Sc) and suction parameter (c) will consolidate the fluid

concentration.

Also, we investigated the distributions of the fluid velocity, the fluid temperature, and

the fluid concentration for following default values: Gr = 5, Gc = 5, Pr = 0.71, Sc = 0.5,

Ra = 0.1, c = 0.25, and N = 0.1.

Figures 5 and 6 show fluid velocity distributions for different values of thermal Gra-

shof number (Gr) and solutal Grashof number (Gc). The velocity enhances (increases)

with an increase in thermal Grashof number (Gr) and solutal Grashof number (Gc). It

is shown that the peak values of the fluid velocity increase near the plate rapidly and

then decay smoothly to the initial velocity (zero). This is due to the fact that buoyancy

force enhances fluid velocity and increases the boundary layer thickness with an in-

crease in the value of Gr or Gc.
Fig. 7 Fluid velocity with increasing of the Prandtl number (Pr)



Fig. 8 Fluid temperature with increasing of the Prandtl number (Pr)
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The influence of the Prandtl number (Pr) on the fluid velocity and the fluid

temperature distributions is shown in Figs. 7 and 8 respectively. It is noted that an in-

crease in the Prandtl number (Pr) results in a decrease of the velocity and a decrease of

the temperature which using smaller values of (Pr) causes the boundary layer to be

thicker reducing the rate of heat transfer and increasing the thermal conductivity;

therefore, heat is able to diffuse away from the heated surface more rapidly than for

higher values of (Pr).

The influence of the Schmidt number (Sc) on the fluid velocity and the fluid concen-

tration distributions is shown in Figs. 9 and 10 respectively. It is observed that an in-

crease in the Schmidt number (Sc) results in a decrease of the velocity and a decrease

of the concentration. Physically, the increase of (Sc) means a decrease of molecular dif-

fusion (D), which results in a decrease in the concentration boundary layer.
Fig. 9 Fluid velocity with increasing of the Schmidt number (Sc)



Fig. 10 Fluid concentration with increasing of the Schmidt number (Sc)
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At different values of the suction parameter (c), it is illustrated that a decrease in the

fluid velocity, the fluid temperature, and the fluid concentration occurs when there is

an increase in the suction parameter (c) as shown in Figs. 11, 12, and 13. This is due to

that the suction parameter retards the velocity of the flow field.

Figures 14 and 15 show the influence of the thermal radiation parameter (Ra) on the

fluid velocity and the fluid temperature, which an increase of the thermal radiation par-

ameter (Ra) results in an increase of the velocity and temperature within the boundary

layer. This is due to the fact that an increase in the value of (Ra) implies increasing of

thermal radiation in the thermal boundary layer which results in an increase in the

value of the temperature profile in the thermal boundary layer.

Now, it is necessary to interest some physical quantities, which are important charac-

teristics of fluid flow, rate of heat transfer, and rate of mass transfer:

(i) The local shear wall Stress τw is given by
Fig. 11 Fluid velocity with increasing of the suction parameter (c)



Fig. 12 Fluid temperature with increasing of the suction parameter (c)
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τw ¼ ρυ
∂u
∂y

	 

y¼0

; ð23Þ

and the dimensionless of local shear wall stress (the local skin friction H)
H ¼ 2tτw
ρU

ffiffiffiffi
υt

p ¼ f
0
0ð Þ; ð24Þ

Substituting Eq. (16) in Eq. (24), we obtain
H ¼ d−1 þ 4d0 þ d1 ð25Þ
(ii) The local surface heat flux qw is given by
Fig. 13 Fluid concentration with increasing of the suction parameter (c)



Fig. 14 Fluid velocity with increasing of the radiation parameter (Ra)
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qw ¼ −k
∂T
∂y

	 

y¼0

−
4σ
3δ

∂T 4

∂y

	 

y¼0

; ð26Þ

and the dimensionless of the local surface heat flux (the local Nusselt number Nu)

Nu ¼ 2qw
ffiffiffiffi
υt

p
k Tw−T∞ð Þ ¼ −θ

0
0ð Þ 1þ Ra θ 0ð Þ þ Nð Þ3� �

; ð27Þ

Substituting Eq. (17) in Eq. (27), we obtain
Nu ¼ 3
h

q−1−q1ð Þ 1þ Ra q−1 þ 4q0 þ q1 þ Nð Þ3� � ð28Þ
Fig. 15 Fluid temperature with increasing of the radiation parameter (Ra)



Table 2 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of Gr
Gr H Nu Mu

1 1.2463919077267462 1.2231565308893466 0.9936352340378196

2 1.6660933568936933 1.2231565308893466 0.9936352340378196

3 2.0857948060606404 1.2231565308893466 0.9936352340378196

4 2.505496255227584 1.2231565308893466 0.9936352340378196

5 2.9251977043945327 1.2231565308893466 0.9936352340378196

10 5.0237049502292574 1.2231565308893466 0.9936352340378196

15 7.122212196063995 1.2231565308893466 0.9936352340378196

20 9.220719441898726 1.2231565308893466 0.9936352340378196
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(iii)The local surface mass flux Sw is given by

Sw ¼ −D
∂C
∂y

	 

y¼0

; ð29Þ

and the dimensionless of the local surface mass flux (the local Sherwood number

Mu)

Mu ¼ 2Sw
ffiffiffiffi
υt

p
D Cw−C∞ð Þ ¼ −Φ

0
0ð Þ; ð30Þ

Substituting Eq. (18) in Eq. (30), we obtain
Mu ¼ − s−1 þ 4s0 þ s1ð Þ ð31Þ

So, we calculate the physical quantities, the local shear wall stress, the local surface
heat flux, and the local surface mass flux for the following default values:

Gr ¼ 5;Gc ¼ 5; Pr ¼ 0:71; Sc ¼ 0:5;Ra ¼ 0:1; c ¼ 0:25 and N ¼ 0:1

Tables 2 and 3 show an increase in skin friction (H); meanwhile, Nusselt number
(Nu) and Sherwood number (Mu) are not influenced with an increase in thermal Gra-

shof number (Gr) and solutal Grashof number (Gc) due to buoyancy effects.
Table 3 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of Gc
Gc H Nu Mu

1 1.090082737814507 1.2231565308893466 0.9936352340378196

2 1.5488614794595108 1.2231565308893466 0.9936352340378196

3 2.00764022110452 1.2231565308893466 0.9936352340378196

4 2.466418962749522 1.2231565308893466 0.9936352340378196

5 2.9251977043945327 1.2231565308893466 0.9936352340378196

10 5.219091412619557 1.2231565308893466 0.9936352340378196

15 7.512985120844588 1.2231565308893466 0.9936352340378196

20 9.806878829069618 1.2231565308893466 0.9936352340378196



Table 4 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of Pr

Pr H Nu Mu

0.5 3.1748494490032115 1.0152949217878635 0.9936352340378196

0.6 3.048801108244991 1.1152909590540125 0.9936352340378196

0.7 2.9358207733605752 1.2134534685328224 0.9936352340378196

0.8 2.8347301277348027 1.3095074845586798 0.9936352340378196

0.9 2.7442306329099466 1.403355089091998 0.9936352340378196

1.0 2.6630371830784103 1.495014187831923 0.9936352340378196

5.0 1.6438175915395838 4.341215116765501 0.9936352340378196

7.0 1.4967848342088548 5.546218261092864 0.9936352340378196
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Table 4 shows that an increase in Prandtl number (Pr) results in a decrease in skin

friction (H) and an increase in Nusselt number (Nu), while Sherwood number (Mu) is

not influenced. The reason for this is that smaller values of (Pr) are equivalent to in-

creasing thermal conductivities, and therefore, heat is able to diffuse away from the

heated plate more rapidly than for higher values of (Pr).

Also, Table 5 evidences that an increase in Schmidt number (Sc) results in a decrease

in skin friction (H) and an increase in Sherwood number (Mu), while Nusselt number

(Nu) is not affected, because the velocity and species concentration and the boundary

layer thickness decrease.

An increase in thermal radiation parameter (Ra) results in an enhancement in skin

friction (H) and Nusselt number (Nu) and is not affected in Sherwood number (Mu) as

shown in Table 6. Higher values of radiation parameter (Ra) imply higher values of wall

temperature.

At various values of the suction parameter (c), we obtain an increase in Nusselt num-

ber (Nu) and Sherwood number (Mu) and a decrease in skin friction (H) due to an in-

crease in the suction parameter (c) which leads to a decrease in the velocity field as

shown in Table 7.

Tables 8 and 9 show values of skin friction (H), Nusselt number (Nu), and Sherwood

number (Mu) for different values of radiation parameter (Ra), suction parameter (c),

and step size Δη = 0.08, which we compare our method with Makinde [8].
Table 5 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of Sc

Sc H Nu Mu

0.5 2.9251977043945327 1.2231565308893466 0.9936352340378196

0.6 2.8007296377108073 1.2231565308893466 1.0924002447788919

0.7 2.6894329744287013 1.2231565308893466 1.1893023675501322

0.8 2.5900241032965514 1.2231565308893466 1.2841027147279753

0.9 2.501146004684635 1.2231565308893466 1.376726015953622

1.0 2.4214847149694236 1.2231565308893466 1.467203249665232

5.0 1.4247245244892035 1.2231565308893466 4.296088707510315

10.0 1.1514325570406 1.2231565308893466 7.245271189173215



Table 6 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of Ra

Ra H Nu Mu

0.0 2.874365896653261 1.1988792951798555 0.9936352340378196

0.1 2.9251977043945327 1.2231565308893466 0.9936352340378196

0.2 2.97389549938379 1.247030707762581 0.9936352340378196

0.3 3.020655195438234 1.2704065679717307 0.9936352340378196

0.4 3.0656367834279035 1.2932793420917474 0.9936352340378196

0.5 3.108975622965138 1.3156728360303704 0.9936352340378196

1.0 3.304672971623882 1.4215252909945666 0.9936352340378196
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Conclusion
In this paper, we presented a numerical study using cubic B-spline method which

transforms the equations governing the fluid flow to system of nonlinear algebraic

equations. We investigated the effects of thermal radiation and mass transfer on an un-

steady free convection flow over a moving vertical porous plate. However, from compu-

tational results, an increase in the thermal radiation results in an increase in the fluid

velocity and temperature profiles. The rate of mass transfer is not affected which in-

creases most parameters except at an increase Schmidt number and suction parameter

the rate of mass transfer is enhanced. Numerical results show that the proposed

method demonstrates efficient solutions of the considered problem and similar to

Makinde [9] as in Tables 8 and 9.

Nomenclature

u The velocity component along the x direction

v The velocity component along the y direction

υ The kinematic viscosity

g The acceleration due to gravity

T The temperature

C The concentration

D The coefficient of mass diffusivity

α The thermal diffusivity
Table 7 Values of skin friction (H), Nusselt number (Nu), and Sherwood number (Mu) for different
values of c

c H Nu Mu

0.15 3.1180597384267905 1.1285940213795056 0.9288763615384958

0.25 2.9251977043945327 1.2231565308893466 0.9936352340378196

0.35 2.7184241349431986 1.3210207458453906 1.0604439679556066

0.45 2.49970119301641 1.4219720321982816 1.1292086423019558

0.50 2.3864398144757857 1.4735387634381403 1.164294550801099

0.75 1.789495603232492 1.7412527134729352 1.34627768447708

1.00 1.1575700732394765 2.023232554446144 1.5380962600003407

1.25 0.5075519675894924 2.316808917611598 1.7383411900501997



Table 8 Comparison of our method and Makinde [8] using different values of Ra and step size
Δη = 0.08

Ra Our method Ref. [8]

H Nu Mu H Nu Mu

0.1 3.0956482 1.2106281 0.96378847 3.0377686 1.1188872 0.9635597

0.3 3.1946891 1.2570321 0.96378847 3.1898811 1.2583769 0.9635597

0.5 3.2867125 1.3013334 0.96378847 3.2823720 1.3020452 0.9635597

1.0 3.4926218 1.4037436 0.96378847 3.4892859 1.4037339 0.9635597

Ta
Δ
c

0.1

0.3

0.7

1.2
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k The thermal conductivity

qr The local radiative heat flux

β The volumetric expansion coefficient due to temperature

λ The volumetric expansion coefficient due to concentration

Tw The uniform temperature of the fluid at the plate

Cw The uniform concentration of the fluid at the plate

T∞ The temperature of the fluid far away from the plate

C∞ The concentration of the fluid far away from the plate

U The plate characteristic velocity

σ The Stefan-Boltzmann constant

δ The mean absorption coefficient

η The dimensionless similarity variable

Gr and Gc The local free convection parameters

Pr The Prandtl number

Ra The radiation parameter

N The temperature difference parameter

Sc The Schmidt number

f The velocity distributions

θ The temperature distributions

Φ The concentration distributions

τw The local shear wall stress

H The local skin friction

qw The local surface heat flux

NuThe local Nusselt number

Sw The local surface mass flux

Mu The local Sherwood number
ble 9 Comparison of our method and Makinde [8] using different values of c and step size
η = 0.08

Our method Ref. [8]

H Nu Mu H Nu Mu

5 3.3111497 1.1142168 0.8961870 3.3082627 1.1160080 0.8957656

5 2.8683900 1.3101159 1.0333192 2.8608264 1.3123583 1.0332379

5 1.8784393 1.7347141 1.3285810 1.8613571 1.7382843 1.3287779

5 0.5562163 2.3119201 1.7290747 0.5299713 2.3180810 1.7288166
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