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Abstract
We present a new version of the Secure Hash Algorithm-2 (SHA-2) formed on artificial
sequences of deoxyribonucleic acid (DNA). This article is the first attempt to present
the implementation of SHA-2 using DNA data processing. We called the new version
DNSHA-2. We present new operations on an artificial DNA sequence, such as (1) R̄k(α)

and L̄k(α) to mimic the right and left shift by k bits, respectively; (2) S̄k(α) to mimic the
right rotation by k bits; and (3) DNA-nucleotide addition (mod 264) to mimic word-wise
addition (mod 264). We also show, in particular, how to carry out the different steps of
SHA-512 on an artificial DNA sequence. At the same time, the proposed nucleotide
operations can be used to mimic any hash algorithm of its bitwise operations similar to
bitwise operations specified in SHA-2. The proposed hash has the following features:
(1) it can be applied to all data, such as text, video, and image; (2) it has the same
security level of SHA-2; and (3) it can be performed in a biological environment or on
DNA computers.
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Introduction
A hash function is a function that maps a binary data of arbitrary size to a fixed-size
string. For input data (often called message), the output of the hash function is called
the hash value or digest of the message. Several applications use hash functions in hash
tables to reduce the time cost for finding a data record given its search key. Typically, the
domain size of a hash function is greater than its range. Therefore, there must be different
massages (inputs) producing the same digest (output), and this is called a collision case.
A hash function adapted to cryptographic applications has certain properties, including
its resistance to collision, pre-image and second pre-image attacks [1–4], and to be a one-
way function (infeasible to reverse). In this case, the hash function is called a secure hash
function and it is used for providing message authentication, data integrity, password
verification, and many other information security applications [5].
Secure Hash Algorithm-2 (SHA-2) is a set of secure hash functions standardized by

NIST as part of the Secure Hash Standard in FIPS 180-4 [6]. Although there is a new
version of the standard called SHA-3 [7], NIST does not currently intend to remove SHA-
2 from the revised Secure Hash Standard as no significant attack on SHA-2 has been
demonstrated. Rather, SHA-3 can be used in the information security applications that
need to improve the robustness of NIST’s overall hash algorithm toolkit. There are six
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hash functions belonging to SHA-2, and these hash functions have names corresponding
to their digest length: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-
512/256.
These hash functions have very similar structures unlike only in the number of rounds,

additive constants, shift amounts, and digest size.
The aim of this paper is to introduce a new version of SHA-2 in DNA model consider-

ing the security properties of SHA-2. To the best of our knowledge, there is no article that
discusses the implementation of SHA-2 using DNA data processing. We are therefore
interested in studying how to implement SHA-2 on the DNA environment. Since the hash
functions belonging to SHA-2 have almost the same basic processes, we focus on the con-
struction of SHA-512 to be processed in a DNA environment (DNSHA-512) and the other
hash functions are similar. The construction of DNSHA-512 contains new imitation of the
operations:

1. Right (and left) shift by k bits
2. Right rotation by k bits
3. Addition modulo 264

In Table 1, we give the list of abbreviations used in this paper.
The paper is organized as follows. In the “DNA” section, we present some basic back-

ground of DNA required in this paper. A brief explanation of SHA-512 is given in the
SHA-512” section. In the “DNSHA-2” section, we give the nucleotide operations that
mimic the bitwise operations used in SHA-2 and the algorithm of DNSHA-512 of the pro-
posed implementation of SHA-512 on an artificial DNA sequence. The “Implementation”
section contains the implementation of DNSHA-512. In the “Conclusion” section, we
include the conclusion.

Table 1 List of abbreviations

SHA-2 Secure Hash Algorithm-2

DNA Deoxyribonucleic acid

A The nitrogenous base (adenine)

C The nitrogenous base (cytosine)

G The nitrogenous base (guanine)

T The nitrogenous base (thymine)

(en−1 . . . e1e0)2 A binary string

⊕ Bitwise XOR

¬ Bitwise negation

∧ Bitwise AND

∨ Bitwise OR

+ Addition (mod 264)

Rk Right shift by k bits

Sk Right rotation by k bits

¬̄ The nucleotide operation to imitate the bitwise NOT

∧̄ The nucleotide operation to imitate the bitwise AND

∨̄ The nucleotide operation to imitate the bitwise OR

⊕̄ The nucleotide operation to imitate the bitwise XOR

R̄k The nucleotide operation to imitate the right shift by k bits

S̄k The nucleotide operation to imitate the right rotation by k bits
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DNA
Deoxyribonucleic acid (DNA) is a huge molecule; most of them exist in the nucleus
of the cells of the organism and in many viruses and contain a genetic code used
during the reproduction and the evolution of these organisms. Most of the DNA
molecules consist of two chains of biological polymers wrapped around a double
strand. Each strand of DNA is made up of a long sequence of nucleotides. These
nucleotides are for storing genetic information. They get the information needed to
build proteins, DNA, or RNA. There are four types of nucleotides: adenine A, cytosine
C, guanine G, or thymine T. Their names are usually abbreviated with the first letter
only. A long chain (sequence) of nucleotides is written as a sequence of letters A,C,
G, and T . This sequence (of nucleotides) forms the genetic code of cells. A sequence
of nucleotides is connected together using a vertebra composed of phosphate and
a sugar (deoxyribose). Nucleotides are sometimes called bases. Some results [8, 9]
pointed out that it is possible to build and generate a chain of artificial nucleotides
(DNA sequences) and create complex molecular machines. Because of the progress
in the discovery of many properties of DNA [10, 11], there is a new data storage
technique that depends on the DNA molecule. Several methods have been given in
[12–19] for storing data in DNA sequences in which 1 g of DNA can be used to store
about 106 TB of data; thus, a small number of grams of DNA is enough to store all the
data of our world for hundreds of years. Many results [20–24] have developed a new
data processing in DNA environment known as DNA computing. Adelman [20] has
shown that by biochemical DNA operations, molecules could be used to carry out the
computation. This author exploited the biochemical operations of DNA to obtain a
solution for the Hamiltonian path problem. Computations are carried out in efficient
parallel operations. Additionally, Lipton [24] has offered an encoding schema, exploiting
operations of DNA molecules, to obtain a solution for the satisfiability problem with a
small number of variables. A generalization of Lipton’s schema has been given in [22].
Boneh et. al. [25] has shown that the data encryption standard (DES) could be broken
by using the concept of DNA computation. He has presented a molecular program to
break DES. Now, the study of the features of DNA has several objectives not only in the
gene sequences but also in carrying out computations and in the field of data protection,
where a private data can be written in a secret location in a DNAmolecule to protect this
data for a long time from unauthorized persons [26–30].
In the literatures [12–17], encoding data in DNA sequence has been classified by two

ways [18, 19]:

1. The binary data is transformed to a DNA sequence. For example [31–33], the
binary digits “00,” “01,” “10,” and “11” are transformed into the nucleotides A,C,G,
and T, respectively.

2. Each specified number of bits, e.g., byte, is converted into a fixed number of
nucleotides using a given encoding table, see [34].

SHA-512
This section gives a brief description of the hash algorithm SHA-512 [6]. It is an iterated
hash function that pads and parses the input message into n 1024-bit message blocks
M(j) and gets the output hash value of size 512 bits. The 512-bit hash value is generally
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computed, using a compression function f :

H(0) = IV , IV is an initial hash value (512-bit block)

H(j) = f (H(j−1),M(j)) for 1 ≤ j ≤ n.

The final 512-bit block Hn is the hash value.
The hash function SHA-512 is described in Algorithm 1.We use the notation in Table 1,

where all operators perform on 64-bit words.
The initial hash value H(0) is given in Table 2. We parse H(0) into eight 64-bit blocks

H(0)
1 ,H(0)

2 , . . .H(0)
8 . The first 64 bits ofH(0) are denotedH(0)

1 , the next 64 bits areH(0)
2 , and

so on up to H(0)
8 .

Suppose that the input message is ofm bits. The input message is prepared as follows:

1. The input message M is padded in the usual method: add the bit “1” to the end of
M, and after that add k zero bits, where k is the minimal solution (non-negative) to
the equationm + 1 + k ≡ 896 (mod 1024). Next, to this addition, append 128-bit
block that represents the number m written in binary. For example, the binary data
of the message “BOB” are “01000010 01001111 01000010.” This data has 24 bits. By
joining the bit “1” to the end of this message, we get “01000010 01001111 01000010
1.” Solving the equation 24 + 1 + k ≡ 896 (mod 1024), we have k = 871.
Therefore, preparing the message, we get:

010000100100111101000010 1 00 . . . 0
︸ ︷︷ ︸

871 zeros

000 . . . 11000
︸ ︷︷ ︸

24 is written in binary (128-bit)

.

2. The number of bits of the padded message becomes a multiple of 1024. Therefore,
the padded message is parsed into n 1024-bit blocks’M(1),M(2), . . . ,M(n). The
block i is parsed into 16 words, where each word has 64 bits. The words of block i
are given byM(i)

0 ,M(i)
1 , . . .M(i)

15 . Note that the first 64 bits of block i is stored in the
wordM(i)

0 , where the leftmost bit is stored in the most significant bit position. By
the same way, the wordM(i)

1 is the second 64 bits, and so on up toM(i)
15 . For

example, the message “BOB” after padding is one 1024-bit block, and the words
M(1)

j , j = 0, 1, . . . , 15 are given as:

Table 2 The initial hash H(0)

H(0)
1 6a09e667f3bcc908

H(0)
2 bb67ae8584caa73b

H(0)
3 3c6ef372fe94f82b

H(0)
4 a54ff53a5f1d36f1

H(0)
5 510e527fade682d1

H(0)
6 9b05688c2b3e6c1f

H(0)
7 1f83d9abfb41bd6b

H(0)
8 5be0cd19137e2179
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Algorithm 1 SHA-512
Input: n 1024-bit blocks’M = M(1),M(2), . . . ,M(n).
Output: H = H(n)

1 ,H(n)
2 , . . . ,H(n)

8 is the hash ofM.
Begin
1: for i=1 to n do � n= number of 1024-bit blocks in the padded message
2: r1 = H(i−1)

1
3: r2 = H(i−1)

2
4: r3 = H(i−1)

3
5: r4 = H(i−1)

4
6: r5 = H(i−1)

5
7: r6 = H(i−1)

6
8: r7 = H(i−1)

7
9: r8 = H(i−1)

8
10: for j=0 to 79 do � the SHA-512 compression function
11: C = CH(r5, r6, r7) � Eq. 1
12: U = MAJ(r1, r2, r3) � Eq. 2
13: S0 = �0(r1) � Eq. 3
14: S1 = �1(r5) � Eq. 4
15: use Algorithm 2 to computeWj
16: T1 = h + S1 + C + Kj + Wj

� K0,K1, . . . ,K79 are constant
� words used in SHA-512 [6].

17: T2 = S0 + U
18: r8 = r7
19: r7 = r6
20: r6 = r5
21: r5 = r4 + T1
22: r4 = r3
23: r3 = r2
24: r2 = r1
25: r1 = T1 + T2
26: end for

� Compute the ith intermediate hash value
27: H(i)

1 = r1 + H(i−1)
1

28: H(i)
2 = r2 + H(i−1)

2
29: H(i)

3 = r3 + H(i−1)
3

30: H(i)
4 = r4 + H(i−1)

4
31: H(i)

5 = r5 + H(i−1)
5

32: H(i)
6 = r6 + H(i−1)

6
33: H(i)

7 = r7 + H(i−1)
7

34: H(i)
8 = r8 + H(i−1)

8
35: end for
36: H = H(n)

1 ,H(n)
2 , . . . ,H(n)

8 is the hash ofM
End
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The algorithm of SHA-512 is given in Algorithm 1. Now, we define the logical function
used in Algorithm 1:

CH(r1, r2, r3) = (r1 ∧ r2) ⊕ (¬r1 ∧ r3) (1)

MAJ(r1, r2, r3) = (r1 ∧ r2) ⊕ (r1 ∧ r3) ⊕ (r2 ∧ r3) (2)

�0(r1) = S28(r1) ⊕ S34(r1) ⊕ S39(r1) (3)

�0(r1) = S14(r1) ⊕ S18(r1) ⊕ S41(r1) (4)

The following algorithm, is to computeWj.

Algorithm 2 ComputeWj

Input: one 1024-bit blockM(i).
Output:Wj 64-bit block.
Begin
1: if 0 ≤ j ≤ 15 then
2: Wj = M(i)

j
3: else
4: σ0 = S1(Wj−15) ⊕ S8(Wj−15) ⊕ R7(Wj−15)

5: σ1 = S19(Wj−2) ⊕ S61(Wj−2) ⊕ R6(Wj−2).
6: Wj = σ1 + Wj−7 + σ0 + Wj−16
7: end if

End

DNSHA-2
In this section, we propose modern operations on nucleotides that mimic the bitwise
operations used in SHA-2 and can therefore be used to mimic all members of SHA-
2, i.e., to give a new version of SHA-2 called DNSHA-2. This section contains seven
subsections. In the “DNA coding” section, we give how to represent data in artifi-
cial DNA sequences. In the “Basic DNA-nucleotide operations” section, we present the
nucleotide operations that mimic the bitwise operations (NOT, AND, OR, XOR). In the
“DNA right and left shift” and “DNA right rotation” sections, we show how to imple-
ment the nucleotide operations R̄k , L̄k , and S̄k whichmimic the bitwise operations (shown
in Table 1), Rk , Lk , and Sk , respectively. The nucleotide operation that mimic the word-
wise addition (mod 264) is given in the “DNA-nucleotide addition (mod 264)” section.
In the “DNA initialization and preprocessing” section, we show how initialization and
preprocessing operations, especially in SHA-512, are imitated in DNA computing. In the
following, sometimes, we refer to any choice of the nucleotide bases (A,C,G, or T) by the
symbols xi, yi, and zi (or x′

i, y′
i, or z′i).

DNA coding

In classical computing, data is stored in the binary form (sequence of bytes). There are
results [31–33] which encode the binary data in a DNA sequence, where the two binary
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digits “00,” “01,” “10,” and “11” are transformed into the nucleotides A,C,G, and T, respec-
tively. For example, the binary string “01001110” is transformed into the nucleotides
“CATG.”
We conclude this by defining the transformation λ :

λ(ei+1ei) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

A, if ei+1ei = 00;
C, if ei+1ei = 01;
G, if ei+1ei = 10;
T , if ei+1ei = 11.

Algorithm 3 describes the representation of a data in an artificial DNA sequence. Since
the byte (8-bit) is the commonly used data storage unit, we suppose in Algorithm 3 (also,
in this article) that the binary data is of an even number of bits.

Algorithm 3 DNA-encoding
Input: e = (em−1em−2 . . . e0)2 is a binary data, wherem is an even number
Output: α = xm/2−1xm/2−2 . . . x0 is an artificial DNA sequence.
Begin
1: for i=0 to m/2-1 do
2: xi = λ(e2i+1e2i)
3: end for
4: α = xm/2−1xm/2−2 . . . x0

End.

We give the following example to illustrate steps of Algorithm 3.

Example 1 Let e = (100111)2 be a binary data. The DNA nucleotides of e gives the
artificial DNA sequence α = GCT since:

1. At i = 0, x0 = λ(11) = T ,
2. At i = 1, x1 = λ(01) = C,
3. At i = 2, x2 = λ(10) = G.

Algorithm 4 shows how to decode binary data from an artificial DNA sequence. Note
that in the following algorithm we use λ−1 to give the inverse transformation of λ.

Algorithm 4 DNA-decoding
Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence.
Output: e = (e2m−1e2m−2 . . . e0)2 a binary data that corresponds to α

Begin
1: for i=0 to m-1 do
2: e2i+1e2i = λ−1(xi)
3: end for
4: e = (e2m−1e2m−2 . . . e0)2

End

We give the following example to illustrate steps of Algorithm 4.
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Example 2 Let α = GCT be an artificial DNA sequence. The binary data of α gives
e = (100111)2 since:

1. At i = 0, e1e0 = λ−1(T) = 11,
2. At i = 1, e3e2 = λ−1(C) = 01,
3. At i = 2, e5e4 = λ−1(G) = 10.

Basic DNA-nucleotide operations

In literatures [12–17], the nucleotide operations that imitate bitwise operations (NOT,
AND, OR, XOR) are defined. The symbols (¬,∧,∨,⊕) are commonly used to express
the bitwise operations (NOT, AND, OR, XOR), respectively. Throughout this paper, the
symbols (¬̄, ∧̄, ∨̄, ⊕̄) are used to give the nucleotide operations that imitate the bitwise
operations (NOT, AND, OR, XOR), respectively. Note that we are putting a bar sign over
most of the DNA operations or above the DNA terms to differ from bitwise operations.
The nucleotide operation ¬̄ is defined as:

¬̄A = T

¬̄C = G

In literatures [12–17], the nucleotide operations between two nucleotides x and y are
defined as in Table 3

DNA right and left shift

In this subsection, we propose two new operations on DNA sequence that used to mimic
the right and left shift by k bits. Let α = xm−1xm−2 . . . x0 be a DNA sequence and e =
(e2m−1e2m−2 . . . e0)2 be the binary data encoded in α. We have to mimic the operation
Rk(e) (right shift by k < 2m bits) in SHA-2 to be R̄k(α) in DNSHA-2. In this regard,
we take into consideration whether k is an even number or odd. In case of k is an even
number, the operation Rk(e) can be imitated in α by deleting k/2 nucleotides from right
and then appending k/2 nucleotides A from left. Therefore,

R̄k(α) = AA . . .A
︸ ︷︷ ︸

k
2 nucleotides

xm−1 . . . xk/2

For example, if α = TAGC, e = (11001001)2, and k = 4, then

R4(e) = 00001100 (5)

R̄4(α) = AATA (6)

Table 3 Nucleotide operations ∧̄, ∨̄, and ⊕̄
x y ∧̄ ∨̄ ⊕̄
A A A A A

A C A C C

A G A G G

A T A T T

C C C C A

C G A T T

C T C T G

G G G G A

G T G T C

T T T T A
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In case of k is an odd number, the operation R̄k(α) can be computed in two steps. The
first step is calculating R̄k−1(α) since k − 1 is even. The second step is calculating the
right shift by one bit in DNA sequence where we denote to this operation as RSOB(α) and
define it in Algorithm 5.
Let α = xm−1xm−2 . . . x0 be an artificial DNA sequence and λ−1(xi) = e2i+1e2i. Then,

RSOB(α) is ym−1ym−2 . . . y0, where λ−1(yi) = e2i+2e2i+1 for i = 0, 1, . . . ,m − 2 and
λ−1(ym−1) = 0e2m−1. To illustrate how to perform this step, we give the following notes:

1. If β is a DNA sequence of m nucleotides G, then α∧̄β yields nucleotides
zm−1zm−2 . . . z0, where λ−1(zi) = e2i+10 for i = 0, 1, . . .m − 1, i.e., zi is either
nucleotide A or G.

2. If α′ = Axm−1xm−2 . . . x1 and β ′ is a DNA sequence of m nucleotides C, then
α′∧̄β ′ yields nucleotides Az′m−1 . . . z′1, where λ−1 (

z′i
) = 0e2i for i = 1, 2, . . .m − 1,

i.e., z′i is either nucleotide A or C.
3. Therefore, we need to define the new nucleotide operation �̄ as follows:

If λ−1(zi) = e2i+10 and λ−1(z′i+1) = 0e2i+2, then λ−1 (

zi�̄z′i+1
) = e2i+2e2i+1.We

define this nucleotide operation in Table 4.

Algorithm 5 RSOB operation
Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence.
Output: RSOB(α)

Begin
1: define β1 to be a DNA sequence ofm nucleotides C. i.e., β1 = CC . . .C
2: define β2 to be a DNA sequence ofm nucleotides G. i.e., β2 = GG . . .G
3: β3 = Axm−1xm−2 . . . x1
4: β4 = β1∧̄β3 � β4 contains only two types of nucleotides A and C
5: β5 = α∧̄β2 � β5 contains only two types of nucleotides A and G
6: return β4�̄β5

End

The following example illustrates steps of Algorithm 5.

Example 3 We use the same symbols in the algorithm. Let α = TAC be an artificial
DNA sequence encoding the binary data e = (110001)2. We have β1 = CCC, β2 = GGG,
and β3 = ATA. Then, β4 = β1∧̄β3 = ACA and β5 = α∧̄β2 = GAA. The result is given by
β4�̄β5 = CGA encoding the binary data (011000)2.

We give the operation R̄k(α) in Algorithm 6. Similarly, we have to mimic the operation
Lk(e) (left shift by k < 2m bits) in SHA-2 to be L̄k(α) in DNSHA-2. In case of k is even,

Table 4 The nucleotide operation �̄
x y �̄
A A A

A C G

A G C

G C T
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Algorithm 6 The operation R̄k(α)

Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence.
Output: R̄k(α)

Begin
1: if k is even then
2: return AA . . .A

︸ ︷︷ ︸

k
2 nucleptides

xm−1 . . . xk/2

3: else
4: α′ = AA . . .A

︸ ︷︷ ︸

k−1
2 nucleptides

xm−1 . . . x(k−1)/2 � α′ = R̄k−1(α)

5: return RSOB(α′) � Algorithm 5
6: end if

End

the operation Lk(e) can be imitated in α by deleting k/2 nucleotides from left and then
appending k/2 nucleotides A from right. Therefore,

L̄k(α) = xk/2−1 . . . x0 AA . . .A
︸ ︷︷ ︸

k
2 nucleptides

For example, if α = TAGC, e = (11001001)2, and k = 4, then

L4(e) = 10010000 (7)

L̄4(α) = GCAA (8)

In case of k is odd, L̄k(α) can be computed in two steps. The first step is calculating
L̄k−1(α) since k − 1 is even. The second step is calculating the left shift by one bit in DNA
sequence where we denote this operation as LSOB(α) and define it in Algorithm 7.
Let α = xm−1xm−2 . . . x0 be an artificial DNA sequence and λ−1(xi) = e2i+1e2i.

Then, LSOB(α) is ym−1ym−2 . . . y0, where λ−1(yi) = e2ie2i−1 for i = 1, 2, . . . ,m − 1 and
λ−1(y0) = e00.

Algorithm 7 LSOB operation
Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence.
Output: LSOB(α)

Begin
1: define β1 to be a DNA sequence ofm nucleotides C. i.e., β1 = CC . . .C
2: define β2 to be a DNA sequence ofm nucleotides G. i.e., β2 = GG . . .G
3: β3 = xm−2 . . . x0A
4: β4 = β2∧̄β3 � β4 contains only two types of nucleotides A and G
5: β5 = α∧̄β1 � β5 contains only two types of nucleotides A and C
6: return β4�̄β5

End

The following example illustrates steps of Algorithm 7.
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Example 4 We use the same symbols in the algorithm. Let α = GTC be an artificial
DNA sequence encoding the binary data e = (101101)2. We have β1 = CCC, β2 = GGG,
and β3 = TCA. Then, β4 = β2∧̄β3 = GAA and β5 = α∧̄β1 = ACC. The result is given by
β4�̄β5 = CGG encoding the binary data (011010)2.

We give the operation L̄k(α) in Algorithm 8.

Algorithm 8 The operation L̄k(α)

Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence.
Output: L̄k(α)

Begin
1: if k is even then
2: return xk/2−1 . . . x0 AA . . .A

︸ ︷︷ ︸

k
2 nucleptides

3: else
4: α′ = x(k−1)/2−1 . . . x0 AA . . .A

︸ ︷︷ ︸

k−1
2 nucleptides

� α′ = L̄k−1(α)

5: return LSOB(α′) � Algorithm 7
6: end if

End

DNA right rotation

In this subsection, we introduce a new operation on DNA sequence that used to mimic
the right rotation by k bits. In Algorithm 9, we give the operation S̄k(α) on DNA sequence
α to imitate the operation Sk(e) (right rotation by k bits), where e is the binary data
encoded in α.
Let α = xm−1xm−2 . . . x0 be a DNA sequence and e = (e2m−1e2m−2 . . . e0)2 be the binary

data encoded in α. To compute S̄k(α), we first compute R̄k(α) using Algorithm 6 and
then compute L̄2m−k(α) using Algorithm 8. Therefore, S̄k(α) = R̄k(α)∨̄L̄2m−k(α). The

Algorithm 9 The operation S̄k(α)

Input: α = xm−1xm−2 . . . x0 is an artificial DNA sequence and a positive integer k < 2m.
Output: S̄k(α)

Begin
1: β1 = R̄k(α)

2: β2 = L̄2m−k(α)

3: return β1∨̄β2

End

following example illustrates steps of Algorithm 9.

Example 5 We use the same symbols in the algorithm. Let α = AGT be an artificial
DNA sequence encoding the binary data e = (001011)2 and k = 4. We have β1 = R̄4(α) =
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AAA, and β2 = L̄2(α) = GTA. The result is given by β1∨̄β2 = GTA encoding the binary
data (101100)2.

DNA-nucleotide addition (mod 264)

In this subsection, we mimic word-wise addition
(

mod 264
)

. We use the symbol � to
express nucleotide addition. In Table 5, the addition of two nucleotides x and y takes the
form:

(z, ε) = x� y

where z is the addition of two nucleotides x and y, and ε is called the carry nucleotide.
In Algorithm 10, we mimic the binary addition (mod 264). Note that the binary

sequence of 64 bits can be encoded in a DNA sequence of 32 nucleotides. Therefore, in
Algorithm 10, we have the inputs which are two DNA sequences each of 32 nucleotides.
We use the symbol � between two DNA sequences each of 32 nucleotides to express

the nucleotide addition
(

mod 264
)

given in Algorithm 10.

Algorithm 10 Nucleotides Addition (mod 264)
Input: two artificial DNA sequences x31x30 . . . x0 encoding binary data b1 and
y31y30 . . . y0 encoding binary data b2 .
Output: DNA sequence z31z30 . . . z0 encoding binary data b3 , where b3 = b1 + b2
(mod 264).
Begin
1: (z0, ε) = x0 � y0
2: for i=1 to 31 do
3: (x, εx) = xi � ε

4: (zi, εy) = x� yi
5: (ε,A) = εx � εy
6: end for
7: return z31z30 . . . z0

End

Table 5 Nucleotide operations�
�

x y z ε

A A A A

A C C A

A G G A

A T T A

C C G A

C G T A

C T A C

G G A C

G T C C

T T G C
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Let

α1 = TCTTTTCAGTACAATTTGCATAACGTGTGGAA,

α2 = TGATAGCTATTCGATTTACTAAGCATATGTGA

be inputs for Algorithm 10. The following example illustrates how to compute α1 � α2.,
i.e., steps of Algorithm 10.

Example 6 We use the same symbols in the algorithm. We have x0 = A, y0 = A, z0 = A,
and ε = A. Also, we have the following:

1. At i = 1, x1 = A, x = A, εx = A, y1 = G, z1 = G, εy = A, ε = A.
2. At i = 2, x2 = G, x = G, εx = A, y2 = T , z2 = C, εy = C, ε = C.
3. At i = 3, x3 = G, x = T , εx = A, y3 = G, z3 = C, εy = C, ε = C.
4. At i = 4, x4 = T , x = A, εx = C, y4 = T , z4 = T , εy = A, ε = C.
5. At i = 5, x5 = G, x = T , εx = A, y5 = A, z5 = T , εy = A, ε = A.
6. At i = 6, x6 = T , x = T , εx = A, y5 = T , z5 = G, εy = C, ε = C.
7. At i = 7, x7 = G, x = T , εx = A, y7 = A, z7 = T , εy = A, ε = A.
8. At i = 8, x8 = C, x = C, εx = A, y8 = C, z8 = G, εy = A, ε = A.
9. At i = 9, x9 = A, x = A, εx = A, y9 = G, z9 = G, εy = A, ε = A.
10. At i = 10, x10 = A, x = A, εx = A, y10 = A, z10 = A, εy = A, ε = A.
11. At i = 11, x11 = T , x = T , εx = A, y11 = A, z11 = T , εy = A, ε = A.
12. At i = 12, x12 = A, x = A, εx = A, y12 = T , z12 = T , εy = A, ε = A.
13. At i = 13, x13 = C, x = C, εx = A, y13 = C, z13 = G, εy = A, ε = A.
14. At i = 14, x14 = G, x = G, εx = A, y14 = A, z14 = G, εy = A, ε = A.
15. At i = 15, x15 = T , x = T , εx = A, y15 = T , z15 = G, εy = C, ε = C.
16. At i = 16, x16 = T , x = A, εx = C, y16 = T , z16 = T , εy = A, ε = C.
17. At i = 17, x17 = T , x = A, εx = C, y17 = T , z17 = T , εy = A, ε = C.
18. At i = 18, x18 = A, x = C, εx = A, y18 = A, z18 = C, εy = A, ε = A.
19. At i = 19, x19 = A, x = A, εx = A, y19 = G, z19 = G, εy = A, ε = A.
20. At i = 20, x20 = C, x = C, εx = A, y20 = C, z20 = G, εy = A, ε = A.
21. At i = 21, x21 = A, x = A, εx = A, y21 = T , z21 = T , εy = A, ε = A.
22. At i = 22, x22 = T , x = T , εx = A, y22 = T , z22 = G, εy = C, ε = C.
23. At i = 23, x23 = G, x = T , εx = A, y23 = A, z23 = T , εy = A, ε = A.
24. At i = 24, x24 = A, x = A, εx = A, y24 = T , z24 = T , εy = A, ε = A.
25. At i = 25, x25 = C, x = C, εx = A, y25 = C, z25 = G, εy = A, ε = A.
26. At i = 26, x26 = T , x = T , εx = A, y26 = G, z26 = C, εy = C, ε = C.
27. At i = 27, x27 = T , x = A, εx = C, y27 = A, z27 = A, εy = A, ε = C.
28. At i = 28, x28 = T , x = A, εx = C, y28 = T , z28 = T , εy = A, ε = C.
29. At i = 29, x29 = T , x = A, εx = C, y29 = A, z29 = A, εy = A, ε = C.
30. At i = 30, x30 = C, x = G, εx = A, y30 = G, z30 = A, εy = C, ε = C.
31. At i = 31, x31 = T , x = A, εx = C, y31 = T , z30 = T , εy = A, ε = C.

Thus, the result is the DNA sequence:

TAATACGTTGTGGCTTGGGTTAGGTGTTCCGA.
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DNA initialization and preprocessing

Since the initialization and preprocessing operations in the hash functions belonging to
SHA-2 are almost similar, but differ only in initial values, we will focus on these operations
for SHA-512 to be imitated in DNA computing. We give DNSHA-512 as the member of
DNSHA-2 that mimics SHA-512 formed on an artificial DNA sequence.
The initial hash value H(0) is encoded in the DNA sequence H̄(0) as in Table 6.
In this paper, we suppose that a binary data encoded in a DNA sequence is of an even

number of bits. This is because, in the usual way, binary data are stored in some number
of bytes (8-bit unit). In the following, we need to mimic the beginning computation in
SHA-512 to be done similarly in DNSHA-512:

1. Pad the DNA sequence (supposed to be hashed) as follows: Suppose the length of
the DNA sequence is m nucleotides. We append the nucleotide G to the end of the
sequence, and after that k nucleotides of type A, where k is the minimal solution
(non-negative) to the relationm + 2 + k ≡ 448 (mod 512). Next, to this append,
we add a DNA sequence of 64 nucleotides encoded the binary data of the value of
2m.We have the length of the padded DNA sequence which is a multiple of 512
nucleotides.

2. We parse the DNA sequence into n 512-nucleotide blocks’ M̄(1), M̄(2), . . . , M̄(n).
The first 32 nucleotides of nucleotide block i are denoted M̄(i)

0 , the next 32
nucleotides are M̄(i)

1 , and so on up to M̄(i)
15 . The nucleotide block i M̄(i) (of 512

nucleotides) in DNSHA-512 has to imitate the 1024-bit blockM(i) in SHA-512.
Therefore, the 32 nucleotides of M̄(i)

j have to be the DNA sequence that encodes
M(i)

j .

To show how to prepare the DNA sequence to be hashed, we give Example 7.

Example 7 The binary data of the message “BOB” are “01000010 01001111 01000010.”
This binary data is encoded in the DNA sequence “CAAGCATTCAAG” with m = 12.
By appending the nucleotide G to the end of this sequence, we get “CAAGCATTCAAG G.”
Solving the equation 12+ 2+ k ≡ 448 (mod 512), we have k = 434. Therefore, preparing
the DNA sequence, we get:

CAAGCATTCAAG G AA . . .A
︸ ︷︷ ︸

434 nucleotides

AAAAAAAAAAAAAAAAAAAAAAAAAAAAACGA
︸ ︷︷ ︸

64 nucleotides encode the binary of 24

The 32 nucleotides of M̄(1)
j , j = 0, 1, . . . , 15 are given as:

Table 6 The DNA sequence H̄(0)

H̄(0)
1 = CGGGAAGCTGCGCGCTTTATGTTATAGCAAGA

H̄(0)
2 = GTGTCGCTGGTGGACCGACATAGGGGCTATGT

H̄(0)
3 = ATTACGTGTTATCTAGTTTGGCCATTGAAGGT

H̄(0)
4 = GGCCCATTTTCCATGGCCTTACTCATCGTTAC

H̄(0)
5 = CCACAATGCCAGCTTTGGTCTGCGGAAGTCAC

H̄(0)
6 = GCGTAACCCGGAGATAAGGTATTGCGTAACTT

H̄(0)
7 = ACTTGAATTCGCGGGTTTGTCAACGTTCCGGT

H̄(0)
8 = CCGTTGAATATCACGCACATCTTGAGACCTGC
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DNSHA-512

We give Algorithm 11 for DNSHA-512 that mimics Algorithm 1.
Now, we define functions used in Algorithm 11 (DNA functions):

DNACH(r1, r2, r3) = (r1∧̄r2)⊕̄(¬̄r1∧̄r3) (9)

DNAMAJ(r1, r2, r3) = (r1∧̄r2)⊕̄(r1∧̄r3)⊕̄(r2∧̄r3) (10)

�̄0(α) = S̄28(α)⊕̄S̄34(α)⊕̄S̄39(α) (11)

�̄1(α) = S̄14(α)⊕̄S̄18(α)⊕̄S̄41(α) (12)

Now, we give the algorithm needed to compute W̄j.

Implementation
This section, presents an implementation of DNSHA-512. Typically, all members of SHA-
2 can similarly be implemented on an artificial DNA sequence. In Table 7, we consider
some metrics to evaluate DNSHA-512 compared to SHA-512.
Wemade a computer program that simulates each step of DNSHA-512. Then, we apply

the program to hash two types of data: text and image.
The text used for the hash is “BOB.” As previously stated in Example 7, the binary data

for this message is encoded in the DNA sequence “CAAGCATTCAAG.” After padding
the DNA sequence, we get:

CAAGCATTCAAG G AA . . .A
︸ ︷︷ ︸

434 nucleotides

AAAAAAAAAAAAAAAAAAAAAAAAAAAAACGA
︸ ︷︷ ︸

64 nucleotides encode the binary of 24

The hash of this message using DNSHA-512 is given by the 32 nucleotides of
H̄(1)
1 , H̄(1)

2 , . . . , H̄(1)
8 as follows:

Table 7 Evaluation metrics for DNSHA-512 and SHA-512

Metrics SHA-512 DNSHA-512

Storage unit Bit DNA nucleotide

The input size in every iteration 1024 bits 512 nucleotides

The output size in every iteration 512 bits 256 nucleotides

Implementation on DNA computers Not configured Configured
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Algorithm 11 DNSHA-512
Input: n 512-nucleotide blocks’ M̄ = M̄(1), M̄(2), . . . , M̄(n).
Output: H̄ = H̄(n)

1 , H̄(n)
2 , . . . , H̄(n)

8 is the hash of M̄.
Begin
1: for i=1 to n do � n= number of 512-nucleotide blocks’ in the padded DNA sequence
2: r1 = H̄(i−1)

1
3: r2 = H̄(i−1)

2
4: r3 = H̄(i−1)

3
5: r4 = H̄(i−1)

4
6: r5 = H̄(i−1)

5
7: r6 = H̄(i−1)

6
8: r7 = H̄(i−1)

7
9: r8 = H̄(i−1)

8
10: for j=0 to 79 do � Mimic the SHA-512 compression function
11: C = DNACH(r5, r6, r7) � Eq. 9
12: U = DNAMAJ(r1, r2, r3) � Eq. 10
13: S0 = �̄0(r1) � Eq. 11
14: S1 = �̄1(r5) � Eq. 12
15: use Algorithm 1 to compute W̄j
16: T1 = r8 � S1 � C � Kj � W̄j

� K0,K1, . . . ,K79 are constant words used in SHA-512 [6]
� These constant words considered here to be encoded in

� constant DNA sequences
17: T2 = S0 � U
18: r8 = r7
19: r7 = r6
20: r6 = r5
21: r5 = r4 � T1
22: r4 = r3
23: r3 = r2
24: r2 = r1
25: r1 = T1 � T2
26: end for

� Compute the ith intermediate hash value
27: H̄(i)

1 = r1 � H̄(i−1)
1

28: H̄(i)
2 = r2 � H̄(i−1)

2
29: H̄(i)

3 = r3 � H̄(i−1)
3

30: H̄(i)
4 = r4 � H̄(i−1)

4
31: H̄(i)

5 = r5 � H̄(i−1)
5

32: H̄(i)
6 = r6 � H̄(i−1)

6
33: H̄(i)

7 = r7 � H̄(i−1)
7

34: H̄(i)
8 = r8 � H̄(i−1)

8
35: end for
36: H̄ = H̄(n)

1 , H̄(n)
2 , . . . , H̄(n)

8 is the hash of M̄
End



Nassr Journal of the EgyptianMathematical Society           (2019) 27:34 Page 17 of 20

Algorithm 12 Compute W̄j

Input: one 512-nucleotide block M̄(i).
Output: W̄j DNA sequence of 32 nucleotides.
Begin
1: if 0 ≤ j ≤ 15 then
2: W̄j = M̄(i)

j
3: else
4: σ0 = S̄1(W̄j−15)⊕̄S̄8(W̄j−15)⊕̄R̄7(W̄j−15)

5: σ1 = S̄19(W̄j−2)⊕̄S̄61(W̄j−2)⊕̄R̄6(W̄j−2)

6: W̄j = σ1 � W̄j−7 � σ0 � W̄j−16
7: end if

End

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H̄(1)
1 T T T C A G G A A T A C C A A A A C A C G C G A C G G T T C C A

H̄(1)
2 G A T G G T T C G T C T C A A A C C C A G A C T G C C C C C A G

H̄(1)
3 G C T A G T T C A T C T G G A C A G T C C G C T C T C T C A G G

H̄(1)
4 G G T G G C C A C G G T C C C G A C C C A T A G A T G A C A G G

H̄(1)
5 G C T A C A T T A C C G T C A T C T C G G T T C C G T T T C C A

H̄(1)
6 A C G A C C A G A G T T G A A G G T A T C A T T T A C T C C T C

H̄(1)
7 T T G A C G C T C C T A G A T G A C T T T G A C T G C A C G C T

H̄(1)
8 A C T T T A G A A A A G T C T A T T G A A G A C T C G T A T G C

The corresponding hash of this message using SHA-512 is given by 64-bit words of
H(1)
1 ,H(1)

2 , . . . ,H(1)
8 as follows:

H(1)
1 fd28314011986bd4

H(1)
2 8ebdb74054879552

H(1)
2 9cbd37a12d67774a

H(1)
4 ae946b561532384a

H(1)
5 9c4f16d376bd6fd4

H(1)
6 18522f82b34fc75d

H(1)
7 f8675c8e1fe1e467

H(1)
8 1fc802dcf821db39

The image used for the hash is the lake image declared in Fig. 1.
This image has 4,200,848 bits. After padding, the binary data of this image has 4103

message blocks (1024-bit). The hash of this image using DNSHA-512 is given by the 32
nucleotides of H̄(4103)

1 , H̄(4103)
2 , . . . , H̄(4103)

8 as follows:
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31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

H̄(4103)
1 A A G G T G T C C G C C C T T C T G C G G C T T T C G A T G C G

H̄(4103)
2 T C T A G T T C G T C A C C C C G G T T T A T G C C A C T G C T

H̄(4103)
3 G G T C T A A C G C T T G C A C G G A G G G C G A A T C A C C T

H̄(4103)
4 G G T T G A A T C G C T G C G C T C C G A T G T C A C C A G G A

H̄(4103)
5 A C C A T C A A T T A T A G A T G T T C C A C T C C G A G G A G

H̄(4103)
6 C A T A C A T T C A T G T C A T C A T C T G C G G C T C A T G C

H̄(4103)
7 A A G G T T G C T T A G C T G A G A A C A A G T T G G G A C G C

H̄(4103)
8 A T C T C G A A A A G T A G T T G C G G T T A A C G A T G A G T

The corresponding hash of this image using SHA-512 is given by 64-bit words of
H(4103)
1 ,H(4103)

2 , . . . ,H(4103)
8 as follows:

H(4103)
1 0aed657de69fd8e6

H(4103)
2 dcbdb455afce51e7

H(4103)
2 adc19f91a2a60d17

H(4103)
4 af836799d63b4528

H(4103)
5 14d0f323bd4758a2

H(4103)
6 4c4f4ed34de69d39

H(4103)
7 0af9f278810bea19

H(4103)
8 37600b2f9af0638b

Conclusion
We have presented the implementation of SHA-2 using DNA data processing. To the best
of our knowledge, this result is the first attempt to model a standard hash function using
DNA data processing. We have shown how to encode binary data into a DNA sequence,

Fig. 1 The image used for the hash
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and we have given nucleotide operations that mimic the bitwise operations used in SHA-
2. In particular, we have presented the DNA operations R̄k(α), L̄k(α), and S̄k(α) that used
to mimic the bitwise operations Rk(e), Lk(e), and Sk(e), where e (binary data) is encoded
in the the DNA sequence α. Therefore, this work can be used tomimic any hash algorithm
of its bitwise operations limited to bitwise operations specified in SHA-2. Similarly, the
nucleotide operations proposed in this result can be exploited to lead to a preliminary
result to perform SHA-3 on DNA sequences.
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