Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 i
https://doi.org/10.1186/542787-019-0037-6 J ourna l Of th e Egyptla n
Mathematical Society

Secure Hash Algorithm-2 formed on ®

Check for
DNA o
Dieaa I. Nassr
Correspondence:
dieaa.nassr@sci.asu.edu.eg; Abstract
diaarsa@gmailcom We present a new version of the Secure Hash Algorithm-2 (SHA-2) formed on artificial
computer Science Division, sequences of deoxyribonucleic acid (DNA). This article is the first attempt to present
Department of Mathematics, : K K . .
Faculty of Science, Ain Shams the implementation of SHA-2 using DNA data processing. We called the new version
University, Cairo, Egypt DNSHA-2. We present new operations on an artificial DNA sequence, such as (1) Rk(a)

and ¥ () to mimic the right and left shift by k bits, respectively; (2) SK(@) to mimic the
right rotation by k bits; and (3) DNA-nucleotide addition (mod 264) to mimic word-wise
addition (mod 264). We also show, in particular, how to carry out the different steps of
SHA-512 on an artificial DNA sequence. At the same time, the proposed nucleotide
operations can be used to mimic any hash algorithm of its bitwise operations similar to
bitwise operations specified in SHA-2. The proposed hash has the following features:
(1) it can be applied to all data, such as text, video, and image; (2) it has the same
security level of SHA-2; and (3) it can be performed in a biological environment or on
DNA computers.

Keywords: Secure hash function, SHA-2, DNA
Mathematics Subject Classification (2000): 68P25, 94A60, 92D20

Introduction

A hash function is a function that maps a binary data of arbitrary size to a fixed-size
string. For input data (often called message), the output of the hash function is called
the hash value or digest of the message. Several applications use hash functions in hash
tables to reduce the time cost for finding a data record given its search key. Typically, the
domain size of a hash function is greater than its range. Therefore, there must be different
massages (inputs) producing the same digest (output), and this is called a collision case.
A hash function adapted to cryptographic applications has certain properties, including
its resistance to collision, pre-image and second pre-image attacks [1-4], and to be a one-
way function (infeasible to reverse). In this case, the hash function is called a secure hash
function and it is used for providing message authentication, data integrity, password
verification, and many other information security applications [5].

Secure Hash Algorithm-2 (SHA-2) is a set of secure hash functions standardized by
NIST as part of the Secure Hash Standard in FIPS 180-4 [6]. Although there is a new
version of the standard called SHA-3 [7], NIST does not currently intend to remove SHA-
2 from the revised Secure Hash Standard as no significant attack on SHA-2 has been
demonstrated. Rather, SHA-3 can be used in the information security applications that
need to improve the robustness of NIST’s overall hash algorithm toolkit. There are six

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

@ Springer Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
— reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-019-0037-6&domain=pdf
http://orcid.org/0000-0002-5550-3372
mailto: dieaa.nassr@sci.asu.edu.eg
mailto: diaa.rsa@gmail.com
http://creativecommons.org/licenses/by/4.0/

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 2 of 20

hash functions belonging to SHA-2, and these hash functions have names corresponding
to their digest length: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-
512/256.

These hash functions have very similar structures unlike only in the number of rounds,
additive constants, shift amounts, and digest size.

The aim of this paper is to introduce a new version of SHA-2 in DNA model consider-
ing the security properties of SHA-2. To the best of our knowledge, there is no article that
discusses the implementation of SHA-2 using DNA data processing. We are therefore
interested in studying how to implement SHA-2 on the DNA environment. Since the hash
functions belonging to SHA-2 have almost the same basic processes, we focus on the con-
struction of SHA-512 to be processed in a DNA environment (DNSHA-512) and the other
hash functions are similar. The construction of DNSHA-512 contains new imitation of the
operations:

1. Right (and left) shift by k bits
2. Right rotation by k bits
3. Addition modulo 264

In Table 1, we give the list of abbreviations used in this paper.

The paper is organized as follows. In the “DNA” section, we present some basic back-
ground of DNA required in this paper. A brief explanation of SHA-512 is given in the
SHA-512” section. In the “DNSHA-2” section, we give the nucleotide operations that
mimic the bitwise operations used in SHA-2 and the algorithm of DNSHA-512 of the pro-
posed implementation of SHA-512 on an artificial DNA sequence. The “Implementation”
section contains the implementation of DNSHA-512. In the “Conclusion” section, we

include the conclusion.

Table 1 List of abbreviations

SHA-2 Secure Hash Algorithm-2

DNA Deoxyribonucleic acid

A The nitrogenous base (adenine)
C The nitrogenous base (cytosine)
G The nitrogenous base (guanine)
T The nitrogenous base (thymine)
(én—1...€1€0)2 A binary string

&) Bitwise XOR

- Bitwise negation

A Bitwise AND

\Y Bitwise OR

+ Addition (mod 2%%)

RK Right shift by k bits

Sk Right rotation by k bits

The nucleotide operation to imitate the bitwise NOT

The nucleotide operation to imitate the bitwise AND

The nucleotide operation to imitate the bitwise OR

The nucleotide operation to imitate the bitwise XOR

The nucleotide operation to imitate the right shift by k bits

QI <>

The nucleotide operation to imitate the right rotation by k bits

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 3 of 20

DNA
Deoxyribonucleic acid (DNA) is a huge molecule; most of them exist in the nucleus
of the cells of the organism and in many viruses and contain a genetic code used
during the reproduction and the evolution of these organisms. Most of the DNA
molecules consist of two chains of biological polymers wrapped around a double
strand. Each strand of DNA is made up of a long sequence of nucleotides. These
nucleotides are for storing genetic information. They get the information needed to
build proteins, DNA, or RNA. There are four types of nucleotides: adenine A, cytosine
C, guanine G, or thymine 7. Their names are usually abbreviated with the first letter
only. A long chain (sequence) of nucleotides is written as a sequence of letters A, C,
G, and T. This sequence (of nucleotides) forms the genetic code of cells. A sequence
of nucleotides is connected together using a vertebra composed of phosphate and
a sugar (deoxyribose). Nucleotides are sometimes called bases. Some results [8, 9]
pointed out that it is possible to build and generate a chain of artificial nucleotides
(DNA sequences) and create complex molecular machines. Because of the progress
in the discovery of many properties of DNA [10, 11], there is a new data storage
technique that depends on the DNA molecule. Several methods have been given in
[12-19] for storing data in DNA sequences in which 1 g of DNA can be used to store
about 10° TB of data; thus, a small number of grams of DNA is enough to store all the
data of our world for hundreds of years. Many results [20-24] have developed a new
data processing in DNA environment known as DNA computing. Adelman [20] has
shown that by biochemical DNA operations, molecules could be used to carry out the
computation. This author exploited the biochemical operations of DNA to obtain a
solution for the Hamiltonian path problem. Computations are carried out in efficient
parallel operations. Additionally, Lipton [24] has offered an encoding schema, exploiting
operations of DNA molecules, to obtain a solution for the satisfiability problem with a
small number of variables. A generalization of Lipton’s schema has been given in [22].
Boneh et. al. [25] has shown that the data encryption standard (DES) could be broken
by using the concept of DNA computation. He has presented a molecular program to
break DES. Now, the study of the features of DNA has several objectives not only in the
gene sequences but also in carrying out computations and in the field of data protection,
where a private data can be written in a secret location in a DNA molecule to protect this
data for a long time from unauthorized persons [26—30].

In the literatures [12-17], encoding data in DNA sequence has been classified by two
ways [18, 19]:

1. The binary data is transformed to a DNA sequence. For example [31-33], the
binary digits “00,” “01,” “10,” and “11” are transformed into the nucleotides 4, C, G,
and T, respectively.

2. Each specified number of bits, e.g., byte, is converted into a fixed number of
nucleotides using a given encoding table, see [34].

SHA-512

This section gives a brief description of the hash algorithm SHA-512 [6]. It is an iterated
hash function that pads and parses the input message into #» 1024-bit message blocks
MY and gets the output hash value of size 512 bits. The 512-bit hash value is generally

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

computed, using a compression function f :

H©® = [V, 1V is an initial hash value (512-bit block)
HY = fHID, MD) for1 <j <n.

The final 512-bit block H” is the hash value.

The hash function SHA-512 is described in Algorithm 1. We use the notation in Table 1,
where all operators perform on 64-bit words.

The initial hash value H© is given in Table 2. We parse H® into eight 64-bit blocks
HI(O), Héo), .. .Héo). The first 64 bits of H® are denoted Hl(o), the next 64 bits are Héo), and
so on up to Héo).

Suppose that the input message is of m bits. The input message is prepared as follows:

1.

The input message M is padded in the usual method: add the bit “1” to the end of
M, and after that add k zero bits, where k is the minimal solution (non-negative) to
the equation m 4+ 1 4+ k = 896 (mod 1024). Next, to this addition, append 128-bit
block that represents the number m written in binary. For example, the binary data
of the message “BOB” are “01000010 01001111 01000010.” This data has 24 bits. By
joining the bit “1” to the end of this message, we get “01000010 01001111 01000010
1.” Solving the equation 24 + 1 + k = 896 (mod 1024), we have k = 871.
Therefore, preparing the message, we get:

0100001001001111010000101 00...0 000...11000
871 zeros 24 is written in binary (128-bit)

The number of bits of the padded message becomes a multiple of 1024. Therefore,
the padded message is parsed into n 1024-bit blocks’ MO M M The
block i is parsed into 16 words, where each word has 64 bits. The words of block i
are given by M, 0 M Y), . MYS) Note that the first 64 bits of block i is stored in the
word M(()i), where the leftmost bit is stored in the most significant bit position. By
the same way, the word M Y) is the second 64 bits, and so on up to M ?5) For
example, the message “BOB” after padding is one 1024-bit block, and the words
M;l),j =0,1,...,15 are given as:

6362 61 60 0
0 ol1lolo 0

63 62 61 60 0

MY olololo 0
: 63 62 3.2 1 0
MY [olol--—TiToloTo

Table 2 The initial hash H©

HO

6a09e667f3bcc908
bb67ae8584caa73b
3c6ef372fe94f82b
a54ff53a5f1d36f1
510e527fade682d1
9b05688c2b3e6c1f
1f83d9abfb41bd6b
5be0cd19137e2179

Page 4 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

Algorithm 1 SHA-512

Input: # 1024-bit blocks’ M = MWD, M@, ., M®.
Output: H = Hf"),HZ("), e Hé") is the hash of M.
Begin

1: for i=1tondo > n= number of 1024-bit blocks in the padded message
2: r = H{iil)
3: ry = Hg_l)
4: r3 = Héi_l)
5 rg = H‘Y—D
o r5=HOY
7 re = Hg_l)
8 r; = H;i_l)
9: rg = Héi b
10: for j=0to 79 do > the SHA-512 compression function
11: C = CH(rs,rg,17) >Eq.1
12: U = MAJ(ri,r,r3) >Eq. 2
13: S() = 20(7’1) > Eq. 3
14: S1 = 21(r5) > Eq. 4
15: use Algorithm 2 to compute W;
16: I=h+5+C+K+W,
..., K79 are constant
> words used in SHA-512 [6].
17: Ty =S+ U
18: rg =1ry
19: r; =7re
20: re =15
21: rs=ra+ 11
22: rga =13
23: r3 =ryp
24: rp=r
25: rn="T1+T
26: end for

> Compute the i intermediate hash value

7 HY =r 4+ HTY
2 HY = ry 4 HOD
29: Héi) =r3+ H?(f_l)
30: Hf) =r+ Hffl)
31: Héi) =r;+ Héi_l)
2 HO — 4 HOD
33: H;i) =r7+ H;FD
34: Héi) =rs+ Hg*l)
35: end for

se: H=H",H",.. . H{" is the hash of M
End

Page 5 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 6 of 20

The algorithm of SHA-512 is given in Algorithm 1. Now, we define the logical function
used in Algorithm 1:

CH(ry,19,73) = (r1 A12) @ (—r1 AT3) 1)
MAJ(r1,72,73) = (r1 A1) ® (11 A73) @ (12 A 73) 2)
So(r1) = SB(r) ® $*(r1) @ $¥(r1) (3
o(r1) = S*(r) ® $™8(r1) ® $* (1) (4)

The following algorithm, is to compute W;.

Algorithm 2 Compute W;

Input: one 1024-bit block M®.
Output: W; 64-bit block.
Begin

1: if 0 <j < 15 then
U]
x Wi=M
3: else
4 00 = SH(Wj—15) @ SB(Wj_15) ® R" (Wj_15)
5. 01 =S"(Wj) © S (Wj—2) & R*(Wj2).
6: Wi =01+ Wj—7 + 00 + Wj-16
7. end if
End

DNSHA-2

In this section, we propose modern operations on nucleotides that mimic the bitwise
operations used in SHA-2 and can therefore be used to mimic all members of SHA-
2, i.e., to give a new version of SHA-2 called DNSHA-2. This section contains seven
subsections. In the “DNA coding” section, we give how to represent data in artifi-
cial DNA sequences. In the “Basic DNA-nucleotide operations” section, we present the
nucleotide operations that mimic the bitwise operations (NOT, AND, OR, XOR). In the
“DNA right and left shift” and “DNA right rotation” sections, we show how to imple-
ment the nucleotide operations R, LX, and §¥ which mimic the bitwise operations (shown
in Table 1), R, LK, and Sk, respectively. The nucleotide operation that mimic the word-
wise addition (mod 2%%) is given in the “DNA-nucleotide addition (mod 2°4)” section.
In the “DNA initialization and preprocessing” section, we show how initialization and
preprocessing operations, especially in SHA-512, are imitated in DNA computing. In the
following, sometimes, we refer to any choice of the nucleotide bases (4, C, G, or T) by the
symbols x;, y;, and z; (or x}, ¥}, or z}).

DNA coding
In classical computing, data is stored in the binary form (sequence of bytes). There are
results [31-33] which encode the binary data in a DNA sequence, where the two binary

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 7 of 20

digits “00,” “01,” “10,” and “11” are transformed into the nucleotides 4, C, G, and T, respec-
tively. For example, the binary string “01001110” is transformed into the nucleotides
“CATG”

We conclude this by defining the transformation A :

A, ifej11e; = 00;
C, ife;y1e; = 01;
G, if ej+1€; = 10;
T, ifejr1e; = 11.

Aeiyie) =

Algorithm 3 describes the representation of a data in an artificial DNA sequence. Since
the byte (8-bit) is the commonly used data storage unit, we suppose in Algorithm 3 (also,
in this article) that the binary data is of an even number of bits.

Algorithm 3 DNA-encoding
Input: e = (e;y—16m—2 - - - €0)2 is a binary data, where m is an even number

Output: o = x;;/2—1%m/2—2 . . . %o is an artificial DNA sequence.
Begin

1: for i=0 to m/2-1 do

2 X = Mezt1€2)

3: end for

4 O = Xm/2—1Xm/2—2 - - - X0
End.

We give the following example to illustrate steps of Algorithm 3.

Example 1 Let e = (100111)y be a binary data. The DNA nucleotides of e gives the
artificial DNA sequence o = GCT since:

1. Ati=0,x =11 =T,

2. Ati=1,x =A01) =C,
3. Ati=2x = A(10) =G.

Algorithm 4 shows how to decode binary data from an artificial DNA sequence. Note

that in the following algorithm we use A~! to give the inverse transformation of A.

Algorithm 4 DNA-decoding
Input: @ = x,,_1%,,—2 . . . xo is an artificial DNA sequence.

Output: e = (ey—1€2m—2 - - - €0)2 a binary data that corresponds to «

Begin
1: for i=0to m-1 do
2 exiy1€2 = A1 (%)
3: end for

4 e = (exym—1€2m—2---€0)2
End

We give the following example to illustrate steps of Algorithm 4.

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 8 of 20

Example 2 Let « = GCT be an artificial DNA sequence. The binary data of a gives
e = (100111), since:

1. Ati=0,e1e =1~ 1T) =11,
2. Ati=1,e3e, = 171(C) =01,
3. Ati=2,eses = A71(G) = 10.

Basic DNA-nucleotide operations

In literatures [12—17], the nucleotide operations that imitate bitwise operations (NOT,
AND, OR, XOR) are defined. The symbols (=, A, v, ®) are commonly used to express
the bitwise operations (NOT, AND, OR, XOR), respectively. Throughout this paper, the
symbols (—, A, V, &) are used to give the nucleotide operations that imitate the bitwise
operations (NOT, AND, OR, XOR), respectively. Note that we are putting a bar sign over
most of the DNA operations or above the DNA terms to differ from bitwise operations.

The nucleotide operation — is defined as:
-A=T
-C=G

In literatures [12-17], the nucleotide operations between two nucleotides x and y are
defined as in Table 3

DNA right and left shift

In this subsection, we propose two new operations on DNA sequence that used to mimic
the right and left shift by k bits. Let @ = x,,,—1%,—2 . .. x0 be a DNA sequence and e =
(e2m—1€2m—2 - . . €0)2 be the binary data encoded in «. We have to mimic the operation
RK(e) (right shift by k < 2m bits) in SHA-2 to be R¥(a) in DNSHA-2. In this regard,
we take into consideration whether & is an even number or odd. In case of k is an even
number, the operation RX(e) can be imitated in « by deleting k/2 nucleotides from right
and then appending k/2 nucleotides A from left. Therefore,

pk
R¥)= AA...A xp1...5)
K nucleotides

For example, if « = TAGC, e = (11001001)5, and k = 4, then

R*(e) = 00001100 (5)
R*(a) = AATA (6)

Table 3 Nucleotide operations A, V, and &

<

oo N0 00N> > > >|X
— 4 o 400 o0 >
o000 >N >> > >|>
4 A4 44N 400>
>N > 0 4> 400 >

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 9 of 20

In case of k is an odd number, the operation R¥ () can be computed in two steps. The
first step is calculating R¥~1(«r) since k — 1 is even. The second step is calculating the
right shift by one bit in DNA sequence where we denote to this operation as RSOB(«) and
define it in Algorithm 5.

Let o = xy,,_1%,—2 . . . o be an artificial DNA sequence and Al = ezi+1€2;. Then,
RSOB(@) i$ Yu-1Ym—2 - -.y0, where 71 (7)) = eyiyaeipr for i = 0,1,...,m — 2 and
AL (¥m—1) = Oeayy—1. To illustrate how to perform this step, we give the following notes:

1. If B is a DNA sequence of m nucleotides G, then ¢ AB yields nucleotides
Zim—1Zm—2 - . . 20, where A1 (z;) = eg;y10fori = 0,1,...m — 1, i.e,, z; is either
nucleotide A or G.

2. Ifa’ = Axp—1%m—2...%1 and B’ is a DNA sequence of m nucleotides C, then

/

i1 - - -2y, Where A1 (z;) =0eyfori=1,2,..m—1,

o/ A’ yields nucleotides Az
i.e, z; is either nucleotide A or C.

3. Therefore, we need to define the new nucleotide operation X as follows:
IfA~1(z;) = epi;10 and A1 (z;41) = Oeaiy, then A1 (zl@zgﬂ) = epjrnenir1. We

define this nucleotide operation in Table 4.

Algorithm 5 RSOB operation

Input: @ = x,,_1%,,—2 . . . xo is an artificial DNA sequence.

Output: RSOB(x)

Begin
1: define B; to be a DNA sequence of m nucleotides C. ie., B = CC...C
2. define B, to be a DNA sequence of m nucleotides G. i.e., 8 = GG...G
3: ,33 = Axm_lxm_g L X

4 B = B1AB3 > B4 contains only two types of nucleotides A and C
5 Bs = anfBa > fBs contains only two types of nucleotides A and G
6: return /34@55

End

The following example illustrates steps of Algorithm 5.

Example 3 We use the same symbols in the algorithm. Let « = TAC be an artificial
DNA sequence encoding the binary data e = (110001)5. We have 1 = CCC, B2 = GGG,
and B3 = ATA. Then, By = B1ABs = ACA and Bs = aABy = GAA. The result is given by
BaBps = CGA encoding the binary data (011000),.

We give the operation R () in Algorithm 6. Similarly, we have to mimic the operation
L¥(e) (left shift by k < 2m bits) in SHA-2 to be L*(@) in DNSHA-2. In case of k is even,

Table 4 The nucleotide operation X

O > > >|x
N o0 >|<
=4 N o > X

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 10 of 20

Algorithm 6 The operation R* («)
Input: o = x,,_1%,,—2 . . . x0 is an artificial DNA sequence.

Output: RK ()
Begin
1: if k is even then
2 return AA...A Xp-1...Xk)2
%nucleptides
3: else
. r— 1 — pk—1
4 o AA A xXp—1.. X (k—1))2 >a =R ()
k—;lnucleptides
5: return RSOB(a') > Algorithm 5
6: end if
End

the operation LX(e) can be imitated in « by deleting k/2 nucleotides from left and then
appending k/2 nucleotides A from right. Therefore,

~k _
L (Ol) —xk/2,1 .o X0 AA ... A

% nucleptides
For example, if « = TAGC, e = (11001001)5, and k = 4, then

L*(e) = 10010000 (7)
L*(a) = GCAA (8)
In case of k is odd, L¥(a) can be computed in two steps. The first step is calculating

LK=1(a) since k — 1 is even. The second step is calculating the left shift by one bit in DNA
sequence where we denote this operation as LSOB(«) and define it in Algorithm 7.

Let « = xy,_1%m—2...x0 be an artificial DNA sequence and AN = esitie
Then, LSOB(«) is ¥m—1Ym—2 - - - Yo, where k‘l(yi) = eyjegi_1 fori =1,2,...,m — 1 and
A7 (y0) = e00.

Algorithm 7 LSOB operation
Input: o = x;,,_1%,,—2 . . . xp is an artificial DNA sequence.
Output: LSOB(«)

Begin
1: define B; to be a DNA sequence of m nucleotides C. i.e., By = CC...C
2. define By to be a DNA sequence of m nucleotides G. i.e., 8y = GG...G
3: ﬁg = Xm—2 - - .on
4 By = BaABs3 > B4 contains only two types of nucleotides A and G
5 Bs = aAPi > B5 contains only two types of nucleotides A and C
6: return ,34®/35

End

The following example illustrates steps of Algorithm 7.

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

Example 4 We use the same symbols in the algorithm. Let « = GTC be an artificial
DNA sequence encoding the binary data e = (101101)5. We have g1 = CCC, 8, = GGG,
and Bs = TCA. Then, By = BaABs = GAA and 5 = anf1 = ACC. The result is given by
BaBps = CGG encoding the binary data (011010),.

We give the operation L¥(«) in Algorithm 8.

Algorithm 8 The operation ¥ («)
Input: @ = x,,_1%,,—2 . . . xo is an artificial DNA sequence.

Output: Lk ()
Begin
1: if k is even then
: t 1...49 AA...A
2 return X /21 X0
% nucleptides
3: else
4: o = X(k—1)/2—1 - - - X0 AA... A >a’ =Zk71((¥)
k—;lnucleptides
5 return LSOB(a') > Algorithm 7
6: end if
End
DNA right rotation

In this subsection, we introduce a new operation on DNA sequence that used to mimic
the right rotation by k bits. In Algorithm 9, we give the operation S¥(«) on DNA sequence
o to imitate the operation S¥(e) (right rotation by k bits), where e is the binary data
encoded in a.

Leto = xp—1%m—2 . . . %o be a DNA sequence and e = (e2n—1€2m—2 - - - €0)2 be the binary
data encoded in . To compute S¥(a), we first compute R () using Algorithm 6 and
then compute [2m=k () using Algorithm 8. Therefore, SK(@) = RK(a)VL?" k(). The

Algorithm 9 The operation SK(a)
Input: @ = x,,—1%,,—2 . . . %o is an artificial DNA sequence and a positive integer k < 2m.
Output: Sk (@)
Begin
1 p1 = R(@)
2 fr =L (@)
3: return B1VB;
End

following example illustrates steps of Algorithm 9.

Example 5 We use the same symbols in the algorithm. Let « = AGT be an artificial
DNA sequence encoding the binary data e = (001011) and k = 4. We have 1 = R () =

Page 11 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 12 of 20

AAA, and By = L*(a) = GTA. The result is given by 1V py = GTA encoding the binary
data (101100);.

DNA-nucleotide addition (mod 25%)
In this subsection, we mimic word-wise addition (mod 264). We use the symbol H to
express nucleotide addition. In Table 5, the addition of two nucleotides x and y takes the

form:
(z,e) =xHy

where z is the addition of two nucleotides x and y, and ¢ is called the carry nucleotide.

In Algorithm 10, we mimic the binary addition (mod 2%%). Note that the binary
sequence of 64 bits can be encoded in a DNA sequence of 32 nucleotides. Therefore, in
Algorithm 10, we have the inputs which are two DNA sequences each of 32 nucleotides.

We use the symbol H between two DNA sequences each of 32 nucleotides to express
the nucleotide addition (mod 2%) given in Algorithm 10.

Algorithm 10 Nucleotides Addition (mod 264)
Input: two artificial DNA sequences x3;x30...x9 encoding binary data b; and

¥31¥30 - - - Yo encoding binary data by .
Output: DNA sequence 231230 . .. 2o encoding binary data b3 , where b3 = by + b
(mod 26%).
Begin

L (z0,€) = x0 Hyo

2: for i=1to 31 do

3: (x,ey) =x; He

4 (zirey) =x @ y;

5: (6,A) =¢,He,

6: end for

7: return z31z3¢p . . - 20
End

Table 5 Nucleotide operations H

&8
X y z €
A A A A
A C C A
A G G A
A T T A
C C G A
C G T A
C T A C
G G A C
G T C C
T T G C

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

Let

o

o

be inputs for Algorithm 10. The following example illustrates how to compute o1 H asy.,

1 =TCTTTTCAGTACAATTTGCATAACGTGTGGAA,
2 = TGATAGCTATTCGATTTACTAAGCATATGTGA

i.e., steps of Algorithm 10.

Example 6 We use the same symbols in the algorithm. We have xo = A, yo = A, z0 = A,

and € = A. Also, we have the following:

O 2 NSk N =

QW N NN NN NN NN DN R M MR MR R M HoRR o
ST TSN - S T N S I N R S R N N R T SIS

31.

Ati=1l,xm=Ax=Ae&=A,1=Gz21=G, ¢ =A,e =A.
Ati=2,%=Gx=G & =A,2=T,20=C, ¢, =C,e =C.
Ati=3,x3=Gx=T,e,=A,y3=G,z3=C, ¢, =C,e =C.
Ati=4dxy =T, x=A,6,=Cyy=T,z4 =T, ¢, =A,e =C.
Ati=5,x5=Gux=T,ex=A,y5=A,zs =T, ¢y = A, e = A.
Ati=6,x%=T,x=T,6x,=A,y5=T,25 =G, ¢, =C,e = C.
Ati=7,x=Gux=T,ex=A,y7=A,z7=T,¢y = A, e = A
Ati=8,x3=C,a=C,e,=A,y8=C,2z3 =G, ¢, = A, e = A.
Ati=9,x90=A,x=A, 6x=A,y9=G, 20 =G, ¢, = A, e = A.
Ati=10,x90=A,x=A,ex=A,y10=A,z10 =A, ¢y = A, e = A.

Ati=11Lx11 =T, x =T, €4 =A,y11 =A,z11 = T,Ey =A, e =A.

Ati=12,xp =A,x=A,ex=A,ypn=T,zn=T,ey=A, e = A

Ati=13,x13=C,x=C,ex =A4,913=C,z13=G, ¢, = A, e = A.
Ati=14,x14=Gx=G e, =A,y1u=A,z214a =G, ¢, = A, e = A.
Ati=15x15=T,x =T, €, =A,y15=T,Zl5=G,€y=C,E=C.
Ati=16,x16 =T, x =A, e,=C,y16=T,z16 = T, ¢y = A, e = C.
Ati=17,x17=T,x=A, ex=Cy17=T,z17=T,¢y = A, e = C.

Ati=18,xg=A,x=C, e, =A,y18 =A,z18 =C, 6, = A, e = A.
Ati=19,x19 =A,x = A, & =A,y19=G,219=G,Ey =A, e =A.

Ati=20,%0=C,x=C,ex =A,y20=C, 200 = G, 6, = A, e = A.

Ati=2l,x0 =A,x=A,ex=A,yn=T,za1=T,¢y = A, e = A

Ati=22,x0p =T, x=T,ex=A,y0n=T,200 =G, ¢, =C,e =C.
Ati=23,x03 =G, x =T, €, =A,y23 =A,z93 = T,Ey =A,e=A.

Ati=24,x0y =A,x=A,ex=A,yuu =T, za=T, ey = A, e = A

Ati=25x5=C,x=C,ex=A4,y55=C, 205 =G, ¢, = A, e = A.
Ati=26,x06 =T, x =T, €4 =A,y26=G,Z26=C,6y=C,6=C.

Ati=27,x07 =T, x =A, 6, =C,y27 =A,z07 =A, ¢y = A, e = C.

Ati=28,x3 =T, x =A, 6, =C,y28=T,z8 =T, ¢y = A, e = C.

Ati=29,x09=T,x =A, 6, =C,y29 =A, 209 =A, ¢y = A, e = C.

Ati=30,x30=C,sz’eszrnyO:G;z?)O=A,6y=C’6=C-
Ati=3lx51 =T, x=A,6,=C,y51=T,z30=T,¢6y = A, e = C.

Thus, the result is the DNA sequence:

TAATACGTTGTGGCTTGGGTTAGGTGTTCCGA.

Page 13 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 14 of 20

DNA initialization and preprocessing

Since the initialization and preprocessing operations in the hash functions belonging to
SHA-2 are almost similar, but differ only in initial values, we will focus on these operations
for SHA-512 to be imitated in DNA computing. We give DNSHA-512 as the member of
DNSHA-2 that mimics SHA-512 formed on an artificial DNA sequence.

The initial hash value H® is encoded in the DNA sequence H® as in Table 6.

In this paper, we suppose that a binary data encoded in a DNA sequence is of an even
number of bits. This is because, in the usual way, binary data are stored in some number
of bytes (8-bit unit). In the following, we need to mimic the beginning computation in
SHA-512 to be done similarly in DNSHA-512:

1. Pad the DNA sequence (supposed to be hashed) as follows: Suppose the length of
the DNA sequence is m nucleotides. We append the nucleotide G to the end of the
sequence, and after that k nucleotides of type A, where k is the minimal solution
(non-negative) to the relation m + 2 + k = 448 (mod 512). Next, to this append,
we add a DNA sequence of 64 nucleotides encoded the binary data of the value of
2m. We have the length of the padded DNA sequence which is a multiple of 512
nucleotides.

2. We parse the DNA sequence into n 512-nucleotide blocks’ M, M®, ..., M™,
The first 32 nucleotides of nucleotide block i are denoted]_/Ig), the next 32
nucleotides are M Y), and so on up to M Yg The nucleotide block i M® (of 512
nucleotides) in DNSHA-512 has to imitate the 1024-bit block M® in SHA-512.
Therefore, the 32 nucleotides of]_/I;i) have to be the DNA sequence that encodes

()
Mj .

To show how to prepare the DNA sequence to be hashed, we give Example 7.

Example 7 The binary data of the message “BOB” are “01000010 01001111 01000010”
This binary data is encoded in the DNA sequence “CAAGCATTCAAG” with m = 12.
By appending the nucleotide G to the end of this sequence, we get “CAAGCATTCAAG G”
Solving the equation 12+ 2 + k = 448 (mod 512), we have k = 434. Therefore, preparing
the DNA sequence, we get:

CAAGCATTCAAG G AA...A AAAAAAAAAAAAAAAAAAAAAAAAAAAAACGA
434 nucleotides 64 nucleotides encode the binary of 24

The 32 nucleotides of}_/I;l),j =0,1,...,15 are given as:

Table 6 The DNA sequence H©®

A = CGGGAAGCTGCGCGCTTTATGTTATAGCAAGA
A = GTGTCGCTGGTGGACCGACATAGGGGCTATGT
AL = ATTACGTGTTATCTAGTTTGGCCATTGAAGGT
A = GGCCCATTTTCCATGGCCTTACTCATCGTTAC
HO = CCACAATGCCAGCTTTGGTCTGCGGAAGTCAC
HY = GCGTAACCCGGAGATAAGGTATTGCGTAACTT
HO = ACTTGAATTCGCGGGTTTGTCAACGTTCCGGT
AL = CCGTTGAATATCACGCACATCTTGAGACCTGC

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 15 of 20

o 130 29 28 0

Mo AlALG A

31 30 29 28 0

M [ATATATAT - A

: 31 30 3.2 1 0

M [aTal-—Talclala
DNSHA-512

We give Algorithm 11 for DNSHA-512 that mimics Algorithm 1.
Now, we define functions used in Algorithm 11 (DNA functions):

DNACH (r1,72,73) = (ri Ar)®(—r1Ars))
DNAMAJ (r1,72,73) = (r1Ar2)®(r1 Ars)®(raArs) (10)
Zo(a) = S¥(@)@S* (@)®5* (@) (11)
21 (@) = " ()5S ()5 () (12)

Now, we give the algorithm needed to compute W;.

Implementation
This section, presents an implementation of DNSHA-512. Typically, all members of SHA-
2 can similarly be implemented on an artificial DNA sequence. In Table 7, we consider
some metrics to evaluate DNSHA-512 compared to SHA-512.

We made a computer program that simulates each step of DNSHA-512. Then, we apply
the program to hash two types of data: text and image.

The text used for the hash is “BOB” As previously stated in Example 7, the binary data
for this message is encoded in the DNA sequence “CAAGCATTCAAG. After padding
the DNA sequence, we get:

CAAGCATTCAAG G AA...A AAAAAAAAAAAAAAAAAAAAAAAAAAAAACGA

434 nucleotides 64 nucleotides encode the binary of 24

The hash of this message using DNSHA-512 is given by the 32 nucleotides of
]:Ifl), Izlél), . ,I_{él) as follows:

Table 7 Evaluation metrics for DNSHA-512 and SHA-512

Metrics SHA-512 DNSHA-512

Storage unit Bit DNA nucleotide
The input size in every iteration 1024 bits 512 nucleotides
The output size in every iteration 512 bits 256 nucleotides

Implementation on DNA computers Not configured Configured

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

Algorithm 11 DNSHA-512

Input: # 512-nucleotide blocks’ M = MWD, M@, ., M™,
Output: H = I:I{"),I:ng), ... ,Hg") is the hash of M.

Begin
1: for i=1to n do > n= number of 512-nucleotide blocks’ in the padded DNA sequence
2 r = H{i_l)
3 ro =]:[él D
w = FOY
5: rqy =]:Iiiil)
6 rs = Hél b
n re= HOY
s r = HOY
o rg= HUD
10: for j=0to 79 do > Mimic the SHA-512 compression function
11: C = DNACH((rs,rg,17) >Eq.9
12: U = DNAMAJ(r1,ra,13) > Eq. 10
13: So = Zo(r1) >Eq. 11
14: S1 = Z1(rs) > Eq. 12
15: use Algorithm 1 to compute W
16: lerSEHSlﬁﬂCEEKjBHW/j
> Ko, K1, . . ., K79 are constant words used in SHA-512 [6]
> These constant words considered here to be encoded in
> constant DNA sequences
17: T, =SoBU
18: rg =1ry
19: r7; =Te
20: e =15
21: Y5 = 14 H T1
22: vy =713
23: r3 =1y
24: ro =11
25: ry = T1 H T2
26: end for
> Compute the i intermediate hash value
Y =
28:]:[éi) =ry H]:Iz(i_l)
29: Izlg) =r;H Héi_l)
s A = @D
N ey
32: I:[éi) = r¢ B Héi_l)
S Ly
S iy
35: end for

36 H = I:IYI),I:[;"), . ’[:[én) is the hash of M

End

Page 16 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34

Algorithm 12 Compute V_V,

Input: one 512-nucleotide block M®.
Output: V_V] DNA sequence of 32 nucleotides.
Begin
1: if 0 <j < 15 then
v W= i
3: else
4 00 = SY(Wj_15) @58 (Wj—_15)BR” (Wj_15)
5. 01 = SP(Wj_2)BSOH(Wj_2) BRE(Wj_o)
6: V_Vj:UIEHV_Vj—7EHUOEE|V_Vj—16
7. end if
End

w
'S
w
()
-
(=]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 109 8 7 6

AHY TTTCAGGAATACCAAAACACGCGACGGTTCTCA
A’ GATGGTTCGTCTC CAAACCCAGACTGCCCCCAG
AY GCTAGTTCATCTGGACAGTCCGCTC CTCTCAGG
A" GGTGGCCACGGTCCCGACCCATAGATGACAG GG
AY GCTACATTACCGTC CATCTCGGTTC CCGTTTCTCA
AY” ACGACCAGAGTTGAAGGTATCATTTACTC CCTC
AY TTGACGCTCCTAGATGACTTTGACTGCACGCT
A ACTTTAGAAAAGT CTATTGAAGACTC CGTATGHZC

The corresponding hash of this message using SHA-512 is given by 64-bit words of
H{l), Hél), ... ,Hél) as follows:

H £d28314011986bd4
H" 8ebdb74054879552
H{" 9cbd37a12d67774a
H{" ae946b561532384a
H" 9c4f16d376bd6fd4
HY 18522f82b34fc75d
HY" 8675c8elfeled67

H{" 1£c802dcf821db39

The image used for the hash is the lake image declared in Fig. 1.
This image has 4,200,848 bits. After padding, the binary data of this image has 4103

message blocks (1024-bit). The hash of this image using DNSHA-512 is given by the 32

- (4103) 7,(4103) ~(4103)
HMO FH L H

nucleotides of as follows:

Page 17 of 20

Nassr Journal of the Egyptian Mathematical Society

(2019) 27:34

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 1211109 8 7 6 5 4 3 2 1 0
H"™ A AGGTGTCCGCCCTTCTGCGGCTTTCGATGGCG
A" T CTAGTTCGTC CACCCCGGTTTATGCCACTGCT
A" GGTCTAACGCTTGCACGGAGGGCGAATCACCT
H"™ G GTTGAATCGCTGCGCTCCGATGT CACCAGGA
H"™ A CCATCAATTATAGATGTT TCCACT CCGAGG GAG
A" CATACATTCATGTC CATCATCTGCGGC CTC CATGC
H'"™ A AGGTTGCTTAGCTGAGAACAAGTTGGGATCGC
A" ATCTCGAAAAGTAGTTGCGGTTAACGATGAGT

The corresponding hash of this image using SHA-512 is given by 64-bit words of

H{4103),H§4103), ... ,HgHO?’) as follows:
H*M% 0aed657de69fd8e6
HSHOB) dcbdb455afce51e7
HM% adc19f91a2a60d17
HM% af836799d63b4528
HM% 14d0f323bd4758a2
HM 4cafded34de69d39
HM% 0af9£278810beal9
H{M 37600b219af0638b
Conclusion

We have presented the implementation of SHA-2 using DNA data processing. To the best
of our knowledge, this result is the first attempt to model a standard hash function using
DNA data processing. We have shown how to encode binary data into a DNA sequence,

Fig. 1 The image used for the hash

Page 18 of 20

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 19 of 20

and we have given nucleotide operations that mimic the bitwise operations used in SHA-
2. In particular, we have presented the DNA operations RK(a), L* (@), and S () that used
to mimic the bitwise operations RK(e), L¥ (e), and Sk (e), where e (binary data) is encoded
in the the DNA sequence «. Therefore, this work can be used to mimic any hash algorithm
of its bitwise operations limited to bitwise operations specified in SHA-2. Similarly, the
nucleotide operations proposed in this result can be exploited to lead to a preliminary
result to perform SHA-3 on DNA sequences.

Acknowledgements
We are grateful to Hatem M. Bahig for his support, valuable comments, and remarks. Furthermore, we are thankful to the
referees for their precious comments, which lead to the improvement of the paper.

Authors’ contributions
DIN is the only author of this article, and he has performed all the analysis, verifications, and completions of the results
included in this article. The author read and approved the final manuscript.

Funding
Not applicable

Availability of data and materials
Not applicable.

Competing interests
The author declares that he has no competing interests.

Received: 20 March 2019 Accepted: 23 August 2019
Published online: 18 September 2019

References

1. Aoki, K, Guo, J,, Matusiewicz, K, Sasaki, Y., Wang, L.: Preimages for step-reduced SHA-2. In: Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, December 6-10, 2009. Proceedings, Vol. 5912 of Lecture Notes in Computer Science,
pp. 578-597. Springer, (2009). https://doi.org/10.1007/978-3-642-10366-7_34

2. Indesteege, S, Mendel, F,, Preneel, B, Rechberger, C.: Collisions and other non-random properties for step-reduced
SHA-256. In: Selected Areas in Cryptography, pp. 276-293. Springer, (2009). https://doi.org/10.1007/978-3-642-
04159-4_18

3. Kelsey, J., Kohno, T.: Herding hash functions and the nostradamus attack. In: Advances in Cryptology - EUROCRYPT
2006, pp. 183-200. Springer, (2006). https://doi.org/10.1007/11761679_12

4. Sanadhya, S., Sarkar, P.: New collision attacks against up to 24-step SHA-2. In: Progress in Cryptology-INDOCRYPT
2008, pp. 91-103. Springer, (2008). https//doi.org/10.1007/978-3-540-89754-5_8

5. Menezes, A. ., van Oorschot, P. C, Vanstone, S. A.: Handbook of Applied Cryptography, CRC Press, Inc., USA (1996)

6. NI of Standards, Technology, FIPS PUB 180-4: Secure Hash Standard, pub-NIST (2012). http://csrc.nistgov/
publications/fips/fips180-4/fips-180-4.pdf

7. Nl of Standards, Technology, SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions: FiPS PUB
202, pub-NIST (2015). https://books.google.com.eg/books?id=hCwatAEACAAJ

8. Friedman, M, Rogers, Y., Boyce-Jacino, M.: Gene pen devices for array printing, WO Patent App, No. 6235473 (2000).
http://www. freepatentsonline.com/6235473.html

9. Kimoto, M., Matsunaga, K, Hirao, I. 1. DNA aptamer generation by genetic alphabet expansion SELEX (EXSELEX) using
an unnatural base pair system. Springer, New York (2016)

10. Calladine, C., Drew, H,, Luisi, B, Travers, A.: Understanding DNA: The Molecule and How itWorks. 3rd ed. Academic
Press, Cambridge (2004)

11. Watson, J.. Molecular biology of the gene, Benjamin/Cummings (1987). https://books.google.com.eg/books?id=
cMOfAQAAIAAJ

12. Atito, A, Khalifa, A, Rida, S. Z, Khalifa, A.: DNA-based data encryption and hiding using playfair and insertion
techniques. J. Commun. Comput. Eng. 2, 44-49 (2012)

13. Guo, C, Chang, C, Wang, Z.: A new data hiding scheme based on DNA sequence. Int. Innov. J. Comput. Inf. Control.
8,1-11(2012)

14. Khalifa, A Lsbase: a key encapsulation scheme to improve hybrid crypto-systems using DNA steganography. In:
2013 8th International Conference on Computer Engineering & Systems (ICCES), pp. 105-110, (2013). https://doi.
0rg/10.1109/icces.2013.6707182

15. Khalifa, A, Atito, A: High-capacity DNA-based steganography. In: 8th International Conference on Informatics and
Systems. IEEE, (2012). BIO-76-BIO-80

16. Skariya, M., Varghese, M.: Enhanced double layer security using RSA over DNA based data encryption system. Int J
Comput Sci Eng Technol. 4, 746-750 (2013)

17. Taur, J, Lin, H, Lee, H, Tao, C.: Data hiding in DNA sequences based on table lookup substitution. Int J Innov Comput
Inf Control. 8, 6585-6598 (2012)

18. UbaidurRahmana, N. H., Balamuruganb, C., Mariappanab, R.: A novel DNA computing based encryption and
decryption algorithm. Procedia Comput. Sci. 46, 463-475 (2015)

https://doi.org/10.1007/978-3-642-10366-7_34
https://doi.org/10.1007/978-3-642-04159-4_18
https://doi.org/10.1007/978-3-642-04159-4_18
https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/978-3-540-89754-5_8
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://books.google.com.eg/books?id=hCwatAEACAAJ
https://books.google.com.eg/books?id=hCwatAEACAAJ
http://www.freepatentsonline.com/6235473.html
https://books.google.com.eg/books?id=cM0fAQAAIAAJ
https://books.google.com.eg/books?id=cM0fAQAAIAAJ
https://doi.org/10.1109/icces.2013.6707182
https://doi.org/10.1109/icces.2013.6707182

Nassr Journal of the Egyptian Mathematical Society (2019) 27:34 Page 20 of 20

19. UbaidurRahmana, N. H., Balamuruganb, C, Mariappanab, R.: A novel string matrix data structure for DNA encoding
algorithm. Procedia Comput. Sci. 46, 820-832 (2015)

20. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science. 266(11), 1021-1024 (1994)

21. Bahig, H. M., Nassr, D. .. DNA-based AES with silent mutations. Arab. J. Sci. Eng. 44, 1-15 (2018). https://doi.org/10.
1007/513369-018-3520-8

22. Boneh, D., Dunworth, C, Lipton, R,, Sgall, J: On the computational power of DNA. Discret. Appl. Math. 71(1-3), 79-94
(1996)

23. Kari, L, Seki, S., Sosik, P.: DNA Computing—Foundations and Implications. Springer, Berlin (2012)

24. Lipton, R.: Using DNA to solve np-complete problems. Science. 268, 542-545 (1995)

25. Boneh, D., Dunworth, C, Lipton, R.: Breaking DES using a molecular computer. In: DNA Based Computers,
Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, April 4, 1995, pp. 37-66, (1995). https://doi.org/10.
1090/dimacs/027/04

26. Abbasy, M., Manaf, A, Shahidan, M.: Data Hiding Method Based on DNA Basic Characteristics. Springer (2011).
https://doi.org/https://doi.org/10.1007/978-3-642-22603-8_5

27. Abbasy, M., Nikfard, P., Ordi, A, Torkaman, M. DNA base data hiding algorithm. 1, 183-193 (2012)

28. Gehani, A, LaBean, T, Reif, J.. DNA-based Cryptography. Springer, Berlin (2004)

29. Hamed, G, Marey, M., El-Sayed, S. S., Tolba, F.. DNA Based Steganography: Survey and Analysis for Parameters
Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21212-8_3

30. Tang, Q, Ma, G, Zhang, W, Yu, N.: Reversible data hiding for DNA sequences and its applications. Int. Digit. J. Crime
For.6(4), 1-13 (2014)

31. Cui, G, Qin, L, Wang, Y., Zhang, X.: An encryption scheme using DNA technology. In: Third International Conference
on Bio-Inspired Computing: Theories and Applications, pp. 37-42, (2008). https://doi.org/10.1109/bicta.2008.
4656701

32. Sabry, M, Hashem, M., Nazmy, T., Khalifa, M. E.: Design of DNA-based advanced encryption standard (AES). In: 2015
|IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 390-397,
(2015). https://doi.org/10.1109/intelcis.2015.7397250

33. Xin-she, L, Lei, Z, Yu-pu, H.: A novel generation key scheme based on DNA. In: International Conference on
Computational Intelligence and Security, pp. 264-266, (2008). https://doi.org/10.1109/cis.2008.113

34. Wang, X, Zhang, Q.: DNA computing-based cryptography. In: 2009 Fourth International on Conference on
Bio-Inspired Computing, pp. 1-3, (2009). https://doi.org/10.1109/bicta.2009.5338153

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http:https://doi.org/10.1007/s13369-018-3520-8
https://doi.org/10.1007/s13369-018-3520-8
https://doi.org/10.1007/s13369-018-3520-8
https://doi.org/10.1090/dimacs/027/04
https://doi.org/10.1090/dimacs/027/04
https://doi.org/https://doi.org/10.1007/978-3-642-22603-8_5
https://doi.org/10.1007/978-3-319-21212-8_3
https://doi.org/10.1109/bicta.2008.4656701
https://doi.org/10.1109/bicta.2008.4656701
https://doi.org/10.1109/intelcis.2015.7397250
https://doi.org/10.1109/cis.2008.113
https://doi.org/10.1109/bicta.2009.5338153

	Abstract
	Keywords
	Mathematics Subject Classification (2000)

	Introduction
	DNA
	SHA-512
	DNSHA-2
	DNA coding
	Basic DNA-nucleotide operations
	DNA right and left shift
	DNA right rotation
	DNA-nucleotide addition (mod 264)
	DNA initialization and preprocessing
	DNSHA-512

	Implementation
	Conclusion
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	References
	Publisher's Note

