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Abstract

In this paper, a new class of life distribution is proposed, named renewal new better
than used in Laplace transform order (RNBUL). The test statistic for testing
exponentiality versus (RNBUL) based on U-statistic is proposed. Pitman’s asymptotic
efficiencies of the test and Pitman’s asymptotic relative efficiencies (PARE) are
calculated. The percentiles of this test statistic are tabulated, and the powers of this
test are estimated for some famous alternatives distributions in reliability such as
Weibull, linear failure rate (LFR), and Gamma distributions. The problem regarding the
right-censored data is also handled. Finally, some applications to elucidate the
usefulness of the proposed test in reliability analysis are discussed.
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Introduction and motivation
It is known that the theory of reliability is a branch of statistical technology that deals

with general regularities. The importance of reliability appears in its dealing with the

length of human beings, organisms’ structures, materials, etc. This theory is widely

used in biological, engineering and medicine sciences. The reliability of effective origins

has been considered by the works that participated in the reliability theory by [1, 2].

The statisticians and reliability analysts have used classifications of life distributions—

based on some aspects of aging—to model survival data. The aging concepts function

is to describe how a population of units or systems improves or deteriorates with age.

Aging properties is the means to define the life distribution classes. The exponential

distribution is one of the most important aspects of such classifications, and it is al-

ways a member of each class. The notion of aging has great importance in many reli-

ability analyses. On the other hand, many statistics have been developed for testing

exponentiality against different aging alternatives.

The main classes of life distributional are based on new better than used NBU, new

better than used failure rate NBUFR, new better than average failure rate NBAFR, new

better than used renewal failure rate NBURFR, new better than renewal used NBRU,

and exponentially better than used in Laplace transform order EBUL. Many
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researchers have introduced testing exponentiality against some classes of life distribu-

tions. For testing exponentiality versus NBU class, see [3]. A new class of life distribu-

tions named NBUCL has introduced by [4]. The classes NBAFR, NBARFR, NBURFR,

and RNBRUE have proposed by [5–8], respectively.

Renewal classes

Consider a device (system or component) with lifetime T and continuous life distribu-

tion F(t), is put on the operation. When the failure occurs, the device will be replaced

by a sequence of mutually independent devices. The spare devices are independent of

the first device and identically distributed with the same life distributions F(t). In the

long run, the remaining life distribution of the system under operation at time t is given

by stationary renewal distribution as follows:

W F tð Þ ¼ μF
−1
Zt
0

F uð Þdu; 0≤ t < ∞;

where μF ¼ μ ¼ R∞
0 FðuÞdu.The corresponding renewal survival function is

W F tð Þ ¼ μF
−1
Z∞
t

F uð Þdu; 0≤ t < ∞;

For details, see [5, 9].

The NRBU, RNBU, NRBUE, and HNRBUE classes of life distributions have intro-

duced by [10], and the relation between them has been studied. Testing exponentiality

versus NRBU based on TTT-transform has been investigated by [11]. A new test statis-

tic for testing exponentiality against RNBU class of life distribution based on U-statistic

is studied by [12].

Definition 1

If X is a random variable with survival function FðxÞ , then X is said to have renewal

new better (worth) than used property, denoted by RNBU (RNWU), if

W F xþ tð Þ≤ ≥ð ÞW F xð ÞW F tð Þx≥0; t≥0: ð1:1Þ

Now, a new class of life distributions called renewal new better than used in Laplace

transform order has been defined by [13].

Definition 2

X is said to be renewal new better than used in Laplace transform order (RNBUL) if:

Z∞
0

e−sxW F xþ tð Þdx≤W F tð Þ
Z∞
0

e−sxW F tð Þdx; x≥0; t≥0: ð1:2Þ

Testing exponentiality against RNBUL

In this section, we test the null hypotheses H0 : F is exponential with mean μ against

H1 : F belongs to RNBUL and not exponential.

The following lemma is essential for the development of our test statistic.
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Lemma 2.1.

Let X be RNBUL random variable with distribution function F, then

μ
s3
−
μ
s3
E e−sX
� �

−
μ2

s2
≤
μ2
2s2

E e−sX
� �

−
μ2
2s2

; ð2:1Þ

where

E e−sX
� � ¼ Z∞

0

e−sxdF xð Þ:

Proof.

Since F belongs to RNBUL, then from Definition 2 and Integrating both sides with

respect to t over [0, ∞), gives

Z∞
0

Z∞
0

e−sxW F xþ tð Þdxdt≤
Z∞
0

W F tð Þ
Z∞
0

e−sxW F tð Þdxdt; ð2:2Þ

setting

I ¼
Z∞
0

Z∞
0

e−sxW F xþ tð Þdxdt:

Therefore,

I ¼ 1
μ
E
ZX
0

1
s
X þ 1

s2
e−s X−tð Þ−

1
s2
−
1
s
t

� �
dt;

Then,

I ¼ μ2
2sμ

−
1
s3μ

E e−sX
� �

−
1
s2
þ 1
s3μ

: ð2:3Þ

Similarly,

II ¼
Z∞
0

W F tð Þ
Z∞
0

e−sxW F tð Þdxdt;

Then,

II ¼ μ2
2sμ

−
μ2

2s2μ2
þ μ2
2s2μ2

E e−sX
� �

: ð2:4Þ

Substituting (2.3) and (2.4) in (2.2), we get (2.1). This completes the proof.

Empirical test statistic for RNBUL

Let X1, X2, Xn be a random sample from a population with a distribution function F ∈

RNBUL class. The measure of departure from exponentiality δ(s) is determined from

the previous lemma, where

δ sð Þ ¼ μ2
2s2

E e−sX
� �

−
μ2
2s2

þ μ
s3
E e−sX
� �þ μ2

s2
−
μ
s3
: ð2:5Þ
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Note that under H0 : δ(s) = 0, and H1 : δ(s) > 0.Let δ̂ðsÞ be the empirical estimate of δ(s),

where

δ̂ sð Þ ¼ 1
n n−1ð Þ

Xn
i¼1

Xn
j¼1

Xi
2

2s2
e−sX j−

Xi
2

2s2
þ Xi

s3
e−sX j þ XiX j

s2
−
Xi

s3

� �
;

To make the test scale-invariant under H0,we use Δ̂ðsÞ ¼ δ̂ðsÞ
X

2 , where X ¼ 1
n

Pn
i¼1 Xi is

the sample mean. Then,

Δ̂ sð Þ ¼ 1

n n−1ð ÞX2

Xn
i¼1

Xn
j¼1

Xi
2

2s2
e−sX j−

Xi
2

2s2
þ Xi

s3
e−sX j þ XiX j

s2
−
Xi

s3

� �
: ð2:6Þ

Setting

ϕ X1;X2ð Þ ¼ X1
2

2s2
e−sX2−

X1
2

2s2
þ X1

s3
e−sX2 þ X1X2

s2
−
X1

s3
; ð2:7Þ

and defining the symmetric kernel

ψ X1;X2ð Þ ¼ 1
2!

X
ϕ X1;X2ð Þ;

where the summation is over all arrangements of X1, X2, Xn, then δ̂ðsÞ is equivalent to

U-statistic

Un ¼ 1
n
2

� �X
ϕ X1;X2ð Þ:

The following theorem summarizes the asymptotic properties of the test.

Theorem 2.1

(i) As n→∞;
ffiffiffi
n

p ½Δ̂ðsÞ−δðsÞ�is asymptotically normal with mean zero and variance

σ2 sð Þ ¼ Var E e−sX
� �

−1
� � X2

2s2
−
X
s3

	 

þ e−sX−1
� � μ2

2s2
þ μ
s3

� �
þ 2Xμ

s2

� �
: ð2:8Þ

(ii) Under H0 the variance reduced to

σ02 ¼ 2

1þ sð Þ3 1þ 2sð Þ ; s≠−1;−
1
2
: ð2:9Þ

Proof:

Using standard U-statistics theory, see [14], and by direct calculations, we can find the

mean and the variance as follows:
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σ2 ¼ Var η Xð Þf g;

Where η(X) = η1(X) + η2(X),

η1 Xð Þ ¼ E ϕ X1;X2ð Þ X1j½ �

¼ X2

2s2
E e−sX
� �

−
X2

2s2
þ X
s3
E e−sX
� �þ Xμ

s2
−
X
s3

and

η2 Xð Þ ¼ E ϕ X1;X2ð Þ X2j½ �

¼ μ2
2s2

e−sX−
μ2
2s2

þ μ
s3
e−sX þ Xμ

s2
−
μ
s3
;

Therefore,

η Xð Þ ¼ E e−sX
� �

−1
� � X2

2s2
−
X
s3

	 

þ e−sX−1
� � μ2

2s2
þ μ
s3

� �
þ 2Xμ

s2

and Eq. (2.8) is deduced.

Under H0, the mean μ0 and the variance σ0
2 are given by

μ0 ¼ E η0 Xð Þ� � ¼ 0;

σ0
2 ¼ E η0 Xð Þ� �2h i

;

Then, (2.9) is obtained.

The Pitman asymptotic efficiency
To access the quality of the test, Pitman asymptotic efficiencies (PAE’s) are computed

and compared with some other tests for the following alternative:

i. The Weibull family:

F1 xð Þ ¼ e−x
θ
; x≥0; θ≥1:

ii. The linear failure rate family:

F2 xð Þ ¼ e−x−
θ
2x

2
; x≥0; θ≥0:

iii. The Makeham family:

F3 xð Þ ¼ e −x−θ xþe−xþ1ð Þ½ �; x≥0; θ≥0:

Note that for θ = 1, F1 goes to exponential distribution and for θ = 0, F2 and F3 reduce

to the exponential distributions. The PAE is defined by

PAE Δ̂ sð Þ� � ¼ 1
σ0

d
dθ

δ sð Þ
� �

θ→θ0

;

when s = 2, this leads to

PAE Δ̂ 2ð Þ;Weibull

 � ¼ 0:618; PAE Δ̂ 2ð Þ;LFR
 � ¼ 0:915

and PAE½Δ̂ð2Þ;Makeham� ¼ 0:172; where σ0(2) = 0.121716.The Pitman asymptotic rela-



Mahmoud et al. Journal of the Egyptian Mathematical Society           (2019) 27:49 Page 6 of 11
tive efficiency (PARE) of our test Δ̂ðsÞ comparing to δ1, δ2, δ3, and δ4 which were stud-

ied by [6, 8, 15, 16], respectively, is calculated where

PARE T 1;T 2ð Þ ¼ PAE T 1ð Þ
PAE T 2ð Þ :

We can see from Table 1 that our test statistic Δ̂ðsÞ for RNBUL is more efficient than
the other four cases.

Monte Carlo null distribution critical values
In this section, we have simulated the upper percentile points for 90th, 95th, 98th, and

99th based on 5000 simulated samples of sizes n = 5(5)50,11 from the standard expo-

nential distribution by using MATHEMATICA 10.

It can be noticed from Table 2 and Fig. 1 that the critical values are increasing as

confidence levels increase and decrease as the sample size increases

Power estimates of the test Δ̂ðsÞ
The power of the statistic Δ̂ðsÞ will be carried out using significant level α = 0.05

with appropriate parameter values of θ at n = 10, 20, and 30 for 3 frequently used

distributions such as Weibull, linear failure rate, and Gamma distributions based

on 5000 simulated samples tabulated in Table 3.

From Table 3, we see that our test Δ̂ðsÞ has very good power for all alternatives.

Testing for censored data
A test statistic is proposed to test H0 versus H1 in the case of randomly right-censored

(RR-C) data in many practical experiments; the censored data are the only information

available in a life-testing model or in a clinical study where patients may be lost (cen-

sored) before the completion of a study. This experimental situation can formally be

modeled as follows: suppose n units are put on test, and X1, X2, …, Xn denote their

true-lifetime which are independent, identically distributed (i.i.d.) according to continu-

ous life distribution F. Let Y1, Y2, …, Yn be (i.i.d.) according to continuous life distribu-

tion G. Xs and Ys are assumed to be independent. In the RR-C model, we observe the

pairs (Zj, δj), j = 1, 2, …, n where Zj =min(Xj, Yj) and

δ j ¼ 1 if Z j ¼ X j jth observation is uncensoredð Þ
0 if Z j ¼ Y j jth observation is censoredð Þ

�

Let Z(0) = 0 < Z(1) < Z(2) <… < Z(n) denote the ordered Zs and δ(j) is the δj corresponding to

Z(j). Using censored data (Zj, δj), j = 1, 2, …, n [17]. proposed the product-limit estimator,
Table 1 The asymptotic relative efficiencies for our test versus δi, i = 1, 2, 3, 4

Test Wiebull LFR Makeham

PARE (Δ̂ðsÞ; δ1) 4.682 2.113 1.198

PARE (Δ̂ðsÞ; δ2) 3.653 2.243 4.419

PARE (Δ̂ðsÞ; δ3) 2.771 1.71 0.937

PARE (Δ̂ðsÞ; δ4) 12.36 4.217 1.197



Table 2 The upper percentile of Δ̂ðsÞ with 5000 replications at s = 2

n 90% 95% 98% 99%

5 0.0394076 0.0449232 0.0513921 0.0567619

10 0.0310125 0.0348235 0.0397779 0.0429144

11 0.0310125 0.0348235 0.0397779 0.0429144

15 0.0272512 0.0309445 0.0347753 0.0375317

20 0.0250087 0.0282498 0.0316245 0.0340623

25 0.0233536 0.0263381 0.0293944 0.0315939

30 0.0215709 0.0244302 0.0274829 0.030076

35 0.020248 0.0231756 0.0259756 0.0282651

40 0.0193352 0.0223912 0.0250982 0.0267005

45 0.0185366 0.0209917 0.0237138 0.0255735

50 0.0178576 0.0205212 0.0232389 0.025033
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Fn Xð Þ ¼
Y

j:Z jð Þ ≤X½ �
n− jð Þ n− jþ 1ð Þf gδ jð Þ ;X∈ 0;Z jð Þ


 �
:

Now, for testing H0 : δ(s) = 0 against H1 : δ(s) > 0, using randomly right-censored data,

we propose the following test statistic

Δ̂c sð Þ ¼ 1
μ2

μ2
2s2

þ μ
s3

� �
E e−sX
� �

−
μ2
2s2

þ μ
μ
s2
−
1
s3

	 
� �
: ð6:1Þ

For computational purposes, (6.1) may be rewritten as

Δ̂c sð Þ ¼ 1

Φ2

Ω
2s2

þΦ
s3

	 

Θ−

Ω
2s2

þΦ
Φ
s2
−
1
s3

	 
� �
; ð6:2Þ

where

Ф ¼
Xn
k¼1

Yk−1
m¼1

Cδ mð Þ
m Z kð Þ−Z k−1ð Þ

� �" #
;

Ω ¼ 2
Xn
i¼1

Yi−1
v¼1

Z ið ÞCδ vð Þ
v Z ið Þ−Z i−1ð Þ

� �" #
;

Fig 1 Relation between critical values, sample size and confidence levels



Table 3. Power estimates of the statistic Δ̂ðsÞ
Distribution Parameter

θ
Sample size

n = 10 n = 20 n = 30

LFR 2 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

Weibull 2 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

Gamma 2 0.9858 0.9938 0.9999

3 0.9986 0.9998 1.0000

4 0.9998 1.0000 1.0000
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Θ ¼
Xn
j¼1

e−sZ jð Þ
Yj−2
p¼1

Cδ pð Þ
p −

Yj−1
p¼1

Cδ pð Þ
p

" #
;

and

dx ¼ Z jð Þ−Z j−1ð Þ
� �

;Ck ¼ n−k½ � n−k þ 1½ �−1:

Table 4 below gives the critical values percentiles of Δ̂cðsÞ test for sample size n =

5(5)30(10), 81, 86.

It can be noticed from Table 4 and Fig. 2 that the critical values are increasing as

confidence levels increase and decrease as the sample size increases

Power estimates of the test Δ̂cðsÞ
The power of the statistic Δ̂cðsÞ is considered at the significant level α = 0.05 with suit-

able parameter values of θ at n = 10, 20, and 30 for some of the most commonly used

distributions such as Weibull and linear failure rate distributions based on 5000 simu-

lated samples tabulated in Table 5.

From Table 5, we see that our test Δ̂cðsÞ has good power for all alternatives.
Table 4. The upper percentile of Δ̂cðsÞ with 5000 replications at s = 2

n 90% 95% 98% 99%

5 0.0476514 0.0575673 0.0686764 0.0780609

10 0.0286204 0.0415836 0.0552211 0.0655845

15 0.023596 0.0349254 0.046839 0.0555851

20 0.0190485 0.0300757 0.0419818 0.0477634

25 0.018172 0.0277966 0.0388292 0.0445861

30 0.0175909 0.0268114 0.0363807 0.0421265

40 0.0143751 0.0225325 0.0319051 0.037132

50 0.0129596 0.0208445 0.0293955 0.0348187

60 0.0112546 0.0188828 0.0274677 0.0314528

70 0.0107728 0.016817 0.0235266 0.029162

81 0.00952946 0.0150434 0.0217278 0.0249294

86 0.00860122 0.0142955 0.0206852 0.0246744



Fig 2 Relation between critical values, sample size and confidence levels
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Some applications
In this section, we apply the test on some datasets to elucidate the applications of the

RNBUL in both non-censored data and censored data at 95% confidence level.
Complete data

Dataset #1

Consider the dataset given in [18] and have been used in [19]. This dataset gives the

times between arrivals of 25 customers at a facility. In this case, we get Δ̂ðsÞ ¼ 0:08892

4 greater than the critical value of Table 2. Hence, we reject the null hypothesis H0 and

accept H1 which states that the data have RNBUL property.
Dataset #2

Consider the data-set given in [20] which represents failure times in hours, for a spe-

cific type of electrical insulation in an experiment in which the insulation was subjected

to a continuously increasing voltage stress, then we get Δ̂ðsÞ ¼ 0:0242465 which is less

than the critical value of Table 2. Hence, we accept the null hypothesis H0.
Censored data

Dataset #3

Consider the dataset in [21]. These data represent 81 survival times of patients of melan-

oma. Out of these, 46 represents the whole times (non-censored data). We get Δ̂cðsÞ ¼ −1:1
Table 5 Power estimates of the statistic Δ̂cðsÞ
Distribution Parameter θ Sample size

n = 10 n = 20 n = 30

LFR 2 1.0000 1.0000 1.0000

3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000

Weibull 2 0.9992 0.9998 1.0000

3 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000
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7837� 1087 which is less than the critical value of Table 4 at 95% upper percentile. Hence,

we accept the null hypothesis H0.

Dataset #4

Consider the dataset given in [22] for lung cancer patients. These data consist of 86

survival times (in months) with 22 right-censored. In this case, we get Δ̂cðsÞ ¼ −4:1890

7� 1085 which is less than the critical value of Table 4 at 95% upper percentile. Hence,

we accept the null hypothesis H0.
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