Ali et al. Journal of the Egyptian Mathematical Society (2019) 27:40 i
https://doi.org/10.1186/542787-019-0046-5 J ourna l Of th e Egyptla n
Mathematical Society

Generalized mixed equilibrium ®

Check for
bl d i~ toticall R
Bashir Ali"" T ®, Lawal Umar?*" and M. H. Harbau3"
*Correspondence:
bashiralik@yahoo.com Abstract
"All authors contributed equally to In this paper, we introduce two iterative algorithms for finding a common element of
FB;&?{#M of Mathematical the set of fixed points of a quasi-¢-asymptotically nonexpansive multivalued mapping
Sciences, Bayero University, Kano, and the sets of solutions of generalized mixed equilibrium problem in Banach space.
Nigeria ) o Then, we prove strong and weak convergence of the sequences to element in the
Full list of author information is . . .
available at the end of the article mentioned set. Our results generalize and improve recent results announced by many
authors.
Keywords: Fixed point, Generalized mixed equilibrium problem, Quasi-®
-asymptotically nonexpansive multivalued mappings, Banach space
Introduction
Let E be a real Banach space with norm | . |, E* be the dual space of E, and C be a

nonempty closed convex subset of E. Let f be a bifunction from C x C to R, where R is
the set of real numbers. The equilibrium problem is to find # € C such that

f@&7y) >0,VyeC. (1)

This problem was first studied by Blum and Oettli [1]. The set of solutions of equilib-
rium problem (1.1) is denoted by EP(f) that is EP(f) = {x € C : f(x,y) > 0,Vy € C}. Let
A : C —> E* be a nonlinear mapping. The variational inequality problem with respect
to A and C is to find u € C such that (Au,v — u) > 0 for all v € C. The set of solutions
of variational inequality problem with respect to C and A is denoted by VI(C, A). Setting
fx,y) = (Ax,y — x) for all v,y € C, then ¥ € EP(f) if and only if (Ax,y — %) > 0, for
all y € C, ie, & is a solution of the variational inequality with respect to A and C. Let
¢ : C —> RU{oo} be proper, convex, and lower semi-continuous, then the minimization
problem of ¢ is to find x € C such that ¢(x) < ¢(y) Vy € C.

The generalized equilibrium problem is to find ¥ € C such that

f@y) + (Ax,y — %) = 0, ¥y € C. 2)
The set of solutions of (2) is denoted by
GEP(f,A) = {2 € C: f(&,y) + (A%, y —X) > 0, ¥y € C}.
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In this paper, we are interested in solving equilibrium problem with respect to f given
by

k
f@y =) fitxy),¥xyeC, 3)
i=1

where f; : Cx C —> Rare bifunctions for i =1, 2, 3, ...k, satisfying the following conditions
(A1)—(A4) below;
(A7) fi(x,x) =0, forallx € C, fori =1,2,3..k
(Az) f; is monotone, i.e., f;(x,y) + fi(y,x) <0, foreachi € {1,2,3,..,k} andx,y € C
(A3) for all x, ¥,z € C, we have lim supfi(tz + (1 — £)x,5) < fi(x,y)

t—00
(A4) for allx € C, fi(x,.) is convex and lower semi-continuous Vi € {1,2, 3, ..., k}.

The mixed equilibrium problem is to find x € C such that

k
> fil@y) +em ¢ (E) = 0.vy € C. @

i=1
The set of solution of (4) is denoted by

k
GMEP (f,p) =12 C: ) fi(%y) +90) —¢(}) =0,¥yeC
i=1

The generalized mixed equilibrium problem is to find x € C such that

k

Y fi@y) + (Aky — &) +9(0) — &) = 0,¥y € C. (5)
i=1

The set of solution of (5) is denoted by

k

GMEP(f,A,9) =32 € C: Y fik ) + (AZ,y —2) + 9(y) — ¢(&) = 0,Vy e C

i=1

The generalized mixed equilibrium problems are problems that arises in various appli-
cations such as in economics, mathematical physics, engineering, and other fields.
Moreover, equilibrium problems are closely related with other general problems in non-
linear analysis such as fixed point, game theory, variational inequality, and optimization
problems. Some methods have been proposed to solve the equilibrium problem in Hilbert
spaces, see for example [2—4] and references contained therein.

In 2007, Tada and Takahashi [5, 6] and Takahashi and Takahashi [7] proved weak and
strong convergence theorems for finding a common element of the set of an equilibrium
problem and the set of fixed points of a nonexpansive mapping in a Hilbert space. In 2009,
Takahashi and Zembayashi [8] introduced two iterative sequences for finding a common
element of the set of fixed points of a relatively nonexpansive mapping and the set of
solutions of an equilibrium problem in Banach space as follows :

xg=x€C

Yn =T (@ufxn + (1 — 0,)]Sxn,

uy € C such that f(u,,y) + ri (y — Uy, Juy —]y,,) >0,VyeC
Hy=(z€ C: 6z tn) < (@)

Wy={zeC:{xy —2Jx— Jxy) >0}

X1 = Hp,nw,x,n > 0,

(6)
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%, € C such that f(x,,y) + %(y — X, Jon — Jun) = 0,¥y € C @)
Up+1 = ]_1 (@nJxn + (1 — ay)JSxy, ¥Yn >0,

where / is the normalized duality mapping on E, {«,,} C[0, 1] satisfies lirg infor,, (1 — o) >
0 and {r,} C[a, oo] for some a > 0. They proved strong convergence O}E thoeo scheme (6) to
a common element of the set of fixed points of relatively nonexpansive mapping and the
set of solution of an equilibrium problem in a Banach space. Moreover, they proved weak
convergence using scheme (7). In 2012, Chang et al. [9] considered the class of uniformly
quasi-¢-asymptotically nonexpansive nonself mappings and studied in a uniformly con-
vex and uniformly smooth real Banach space. In 2014, Deng et al. [10] proved strong
convergence theorems of the hybrid algorithm for common fixed point problem of finite
family of asymptotically nonexpansive mappings and the set of solution of mixed equilib-
rium problem in uniformly smooth and uniformly convex Banach spaces. In 2016, Ezeora
[11] proved strong convergence theorems for a common element of the set of solution
of generalized mixed equilibrium problem and the set of common fixed points of a finite
family of multivalued strictly pseudocontractive mappings in real Hilbert spaces.

In this paper, motivated and inspired by the results mentioned above, we prove strong
and weak convergence theorems for finding a common element of the set of fixed point
of a quasi-¢-asymptotically nonexpansive multivalued mapping and the sets of solutions
of generalized mixed equilibrium problem in Banach space. Our results generalized and
improve recent results announced by many authors.

Preliminaries

Throughout this paper, we denoted by N and R the sets of positive integer and real num-
bers, respectively. Let E be a Banach space and E* be the dual of E; we denote the strong
convergence and the weak convergence of a sequence {x,} to x in E by x, — x and
xn — x respectively. We also denote the weak™ convergence of a sequence {x};} to x* in E*
by x} — x*; for all x € E and x* € E*, we denote the value of x* at x by (x,x*), which is
called duality pairing. The normalized duality mapping J on E is defined by

J) = [a* € B o) = Il = |7}
R o . e+l
or every x € E. A Banach space E is said to be strictly convex if ——— < 1 for all

x,y € Ewith ||x]| = |lyll = 1 and x # y. The space E is also said to be uniformly convex

lx+yl _
2

if for each ¢ € (0, 2], there exists § > 0 such that <1-—34forallxy € E with

lxl = |y| = 1and ||lx — yll > &. A Banach space is said to have Kadec-Klee property,
if for x, — x and ||x,|| —> ||| imply x, —> x. Every Hilbert space and uniformly

convex Banach space has Kadec-Klee property. The space E is said to be smooth if the
lim Xt ol =N«
im

n—0 t

be uniformly smooth if the limit exists uniformly in %,y € S(E). It is known that if E is

exists for all x,y € S(E) = {z € E : ||z|| = 1}. It is also said to

smooth, strictly convex, and reflexive, then the duality mapping / is single-valued, one-
to-one, and onto. The duality mapping J is said to be weakly sequentially continuous if for
any sequence {x,} in E, x, — x implies Jx,, — Jx, see [12].

Let E be a smooth, strictly convex, and reflexive Banach space and C be a nonempty
closed convex subset of E. Throughout this paper, we denote by ¢ the function defined by
P, x) = ||y||2 — 2(y, Jx) + ||x||2,Vx,y € E. It is clear from the definition of the function
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¢ that for all x,5,z € E, we have (|yll — [*)> < (x5 < (lyl + *)? and ¢ (x,3) =
¢ (x,2) + ¢(z,9) + (x — z,Jz — Jy). Following Albert [13], the generalized projection I1¢
from E onto C is defined by I1¢c(x) = argmin ¢ (y,x),Vx € E and y € C. If E is a Hilbert
space H, then ¢ (y,x) = ||y — «x||? and I1¢ become the metric projection of H onto C.

The following lemmas for generalized projections are well known.

Lemma 1 (see [13]) Let C be a nonempty closed convex subset of a smooth, strictly con-
vex, and reflexive Banach space E. Then, ¢ (x,T1cy) + ¢ (Ilcy,y) < ¢(x,9),V¥x € C and
y €L

Lemma 2 (see [13, 14]) Let C be a nonempty closed convex subset of a smooth, strictly
convex, and reflexive Banach space. Let x € E and z € C. Then, z = llcx <
(y—zJx—Jy)<0,¥yeC.

A mapping T : C —> C is called nonexpansive if || Tx — Ty|| < ||x -y

,Vx,9 € C.
We denote by F(T) the set of fixed points of T see [15]. A point p € C is said to be an
asymptotic fixed point of T if there exists a sequence {x,} in C which converges weakly to
p and limy,_,  ||x, — Tx,|| = 0. We denote the set of all asymptotic fixed points of T by
F (T). Following Matsushita and Takahashi [16—18], a mapping T of C into itself is said to
be relatively nonexpansive if the following conditions are satisfied:

(i) F(T) # 0

(ii) p(p, Tx) < ¢ (p,x),Vx € C,p € F(T) and

(iii) F(T) = F(T).

Let C be a nonempty closed convex subset of a Banach space E. Let CB(C) be the families
of nonempty, closed, and bounded subsets of C

Definition 1 A multivalued mapping T : C — CB(C) is said to be relatively nonex-
pansive if
W) F(T) #9
(ii) p(p,w) < p(p,x),Vx € C,w € Tx,p € F(T) and
(iii) F(T) = E(T).

A multivalued mapping 7 : C —> CB(C) is said to be closed if for any sequence
{x,} C Cwithx, — xand w, € T(x,) with w, —> ytheny € Tx.

Definition 2 A multivalued mapping T : C —> CB(C) is said to be quasi- ¢- nonex-
pansive if
(i) F(T) # @ and
(i) p(p,w) < Pp(p,x),Vx € C,w € Tx,p € F(T).

A multivalued mapping 7 : C — CB(C) is a said be quasi-¢-asymptotically nonex-
pansive if
() F(T) #9
(ii) There exists a real sequence {k,} C[1, 0c0) with k,, — 1 such that
o (p, wy) < kyd(p,x),Vn>1l,x € C,w, € T"x,p € F(T).
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Lemma 3 (see [14]) Let E be a smooth and uniformly convex Banach space and let {x,,}
and {y,} be sequences in E such that either {x,} or {y,} is bounded. If lim ¢ (x,,y,) = 0,
n— 00

then lim || x, —y, ||=0.
n— o0

Lemma 4 (see [19]) Let E be a uniformly convex Banach space. For arbitrary r > 0,
let B,(0) := {|lx € E: ||| <r}. Then, for any given sequence {x,}-, C B,(0) and for
any given sequence {\}>, of positive numbers such that ) ", A, = 1, there exists a
continuous strictly increasing convex function

g:00,2r] — R,g(0) =0

such that for any positive integers i,j with i < j, the following inequality holds:

o0
>
n=1

2 0
<3 sl = 2ing ([l — 1]

n=1

Lemma 5 (see [20]) Let E be a smooth and uniformly convex Banach space and letr > 0.
Then, there exists a strictly increasing continuous and convex function g :[0,2r] — R
such that g(0) = 0 and g; (”x — yH) < ¢(x,y),forallx,y € B,.

Lemma 6 (see [21]) Let {ay}, {by}, and {c,} be sequences of nonnegative real numbers
satisfying ans1 < (1 + cp)an + by, foralln € N, where Y > 1 b, < coandy -, cy < 0.

Then,
(i) lim a,, exists.
n—o0
(i))if lim infa, = O, then lim a, = 0.
n—0o0 n— 00

Lemma 7 (see [22]) Let E be a smooth, strictly convex, and reflexive Banach space and C
be a nonempty closed convex subset of E. Let B : C —> E* be a continuous and monotone
mapping, ¢ : C —> R be a lower semi-continuous and convex function, and h : Cx C —
R be a bifunction satisfying the conditions (A1) — (A4). Let r > 0 be any given number and
u € E be any given point. Then, the following hold:

(1) There exists z € C such that
B V) +E0) — @) + (v —2.B2) +

~(v—zJz—Ju) > 0,Vv e C.
r

(2) If we define a mapping A, : E — C by
Ar(u)= {z e C:hz,v)+¢(v) —¢(2)+(v—12Bz) + % (v—12,Jz—Ju)>0,Yv € C},u € E,

the mapping A, has the following properties:

(a) Ay is single-valued;

(b) F(A,;) = GMEP(h, A, ¢) = F(A,)

(c) GMEP(h, A, ¢) is a closed convex subset of C;

(d) ¢(q:Aru) + ¢ (Au,u) < ¢(q,u),Vq € F(Ay),u € E.

where F(A,) denotes the set of asymptotic fixed points of A,, i.e.,

F(A,) = {x € C:3{x,} C C, s.t xy — x, |lxy — Apyl|| —> 0(n —> 00)}

Strong convergence theorem
In this section, we prove a strong convergence theorem for finding a common element of
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the set of solutions of generalized mixed equilibrium problems and the set of fixed point
of quasi-¢-asymptotically nonexpansive multivalued mapping in Banach space.

Theorem 1 Let E be a uniformly smooth and uniformly convex Banach space, and Let
C be a nonempty closed convex subset of E and CB(C) be the family of nonempty, closed,
and bounded subsets of C. Let f; : C x C — R,i = 1,2,3,...k be bi functions which
satisfy the conditions (A1) — (Aa), A : C —> E* be a nonlinear mapping, and ¢ : C —>
R U {00} be a proper, convex, and lower semi-continuous function. Let T;,i = 1,2,3,..N
be a quasi-¢-asymptotically nonexpansive multivalued mapping from C into CB(C) such
that F(T) N GMEP(f, A, ¢) # (. Let {x,} be a sequence generated by

xo=x€C

=]t (Olo,n]xn + Zfil Oli,n]Wi,n) ,

uy € C such that "X fiun,y) + o) — o(uy) + {y — un, Auy)

+% (y = tn, Juy — Jyn) = 0,Vy € C ®)
My ={z € C: ¢z un) < k¢ (z,xn)}

W,=1zeC: (x, — zJx — Jx,) > 0}

%1 = Mag,nw,x, Yn >0,

where ] is the normalized duality mapping of E, {«;,} C[0, 1] satisfies lim infeg ,0t;,, > 0,
H— 00

Zfio iy = landw;, € T/'x,,¥; = 1,2,3,..N.{r,} C[a,oc], somea > 0. Then, {x,} con-
verges strongly to T1p(TynGMEP(f,A,0)%» Where TIp(T)nGMEP(f,4,¢) 1S the generalized projection
of E onto F(T) N GMEP(f, A, ¢),

Proof Let two functions 7 : C x C —> Rand T, : E —> C be defined by

k

T(xy) = E Ji(x,y) + (Ax,y —x) + o) — ), Yx,y € C
i=1
and

1
T, (x) = {ue C:r(u,y)+f(y—u,]u—]x)20,‘v’ye C,} Vx € E
r
respectively. Now, the function 7 satisfies conditions (A1) — (A4) and T, has the properties
(a) — (d). Therefore, iterative sequence (8) can be rewritten as
xg=x€C
=] (ao,n]xn + Zﬁl Oli,n]WL',n) Wi € Tlxy,n > 1

1
uy € Csuch that v (u,,y) + — (y — Uy, Juy, —]y,,) >0,VyeC
Tn

)
M, ={z€C:¢(zu,) <kip(z, %)}
W,=1{z€C:{x, —zJx — Jx,) > 0}
xp+1 = Ha,nw,er N € N

O

We first show that M, N W, is closed and convex, and it is obvious that M, is
closed and convex since ¢ (z, u,) < kﬁ(p (z,%,) <— (1 — k,%) lzI2 =2 (1 — kﬁ) (z,Ju,) +
2
2k (2, Jotn — Jutn) < Ky |2l = Nt |
Thus, M, N W, is a closed and convex subset of E for all # € N U {0}, so that {x,} is well
defined.
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Letu € F(T) N GMEP(f, A, ), putting u, = w, € T,,y, for all n € N U {0}, and since
T,, are quasi-¢-asymptotically nonexpansive multivalued, we have

¢, uy) = ¢, wp)
= kn¢(u»)’n)

B N
=ky|o (”:]_1 (ao,n]xn + Z ai,n]Wi,n>>i| )
L i=1

[ N
=k | llul® -2 <u aiofn+ Y ai,n]Wi,n> +

i=1

2

N
Confin + Y CinWin
i=1

B N N
< ko | el =2 ((u ao,nfxn)+<u, Zai,nfwi,n» +ato ||/xn||2+Za,',nnfwi,nnz}

i=1 i=1

B N
= ko | o (I 1 1% =2 (10, Jen) + 106 l®) 4D tin (Ill® = 218, Jwi ) + ||w,-,n||2)}
L i=1
B N
= ky aou® (U, x,) + Z a; @ (u, Wi,n)j|
L i=1
B N
< ky g, (u, %0) + ky Z i (u, xn):|

L i=1

B N
< ky knao,n¢ (1, %) + kn Z ai,n¢ (u, xn)]

L i=1

N
= ky (Oto,n + Zai,n) kn (u,xn):|
i=1

= ke (1, %)
Hence, we have u € M,,. This implies that F(T) N GMEP(f, A, ¢) C M,,¥Yn € NU {0}.

Next, we show by induction that F(T) N GMEP(f, A, ¢) C M, N W,,¥n € NU {0}.
From Wy = C, we have

F(T) N GMEP(f, A, ¢) C Mo N W, .
Suppose that F(T) N GMEP (f,A,¢) C My N Wy, for some k € N U {0}. Then, there

exists xxy1 € My N Wy such that xg 1 = Hagnw,x
From the definition of x4 1, we have for all z € My N W,

(%1 — 2,0 — Jxgq1) = 0.
Since F(T) N GMEP(f, A, ) C My N Wy, we have
(0rs1 — 2 I — Jxgs1) = 0.

Vz € F(T) N GMEP(f,A,¢) and so z € Wyy;. Thus, F(T) N GMEP(f,A,¢) C Wiy1-
Therefore, we have F(T) N GMEP (f, A, ¢) C Mj41 N Wi1. Therefore, we obtain
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F(T) NGMEP (f,A,¢) C M, N Wy, Vn € NU {0}.
From the definition of W},, we have x,, = ITw,x; using this and Lemma 1, we have

¢ X x) = ¢ (Mw,x,%) < ¢, x) — ¢ (u, My, x,) (10)
=< ¢(u,x)

forallu € F(T)NGMEP(f,A, ) C W,,. Therefore, ¢ (x,, x) is bounded, and consequently
{x,,} and {Ti”xn} are bounded.
Since %41 = Har,nw,x € M, N W, C W, and x,, = 1w, x, we have

¢ (Xn, %) < ¢ (Xny1,%), Vn € NU{0}. (11)

Thus, {¢ (x4, %)} is nondecreasing. Using (10) and (11), we have the limit of {¢ (x,, x)}
exists.

From x,, = Ty, x and Lemma 1, we also have

¢(xn+lrxn) = ¢(xn+1) H\/\’/nx’) < ¢(xn+1,x) - d)(Hannx) = ¢(xn+11x) - ¢(xn:x)

for all » € N U {0}. This means that lim ¢ (x,+1,x,) = O.
n—> 00
From %41 = Ha,nw,x € M, and the definition of M, we have

¢ Fnt1, thn) < K2 (Xns1, %), ¥ € N U {0}

Therefore, we have
lim ¢ (%41, u,) = 0. As E is uniformly convex and smooth, we have from Lemma 3 that
n—0o0

lim [l%,41 — %l = lim (%41 — ua] = 0.
n—00 n—o0
From which, we have
lim ||x, — u,|| = 0.
n—oo
Since J is uniformly norm-to-norm continuous on bounded sets, we have
lim ||, — Juull = 0.
n—0o0

Let r = supyen {||x,, I 1T % ||} . Since E is a uniformly smooth Banach space, we know
that E* is a uniformly convex Banach space. So, for u € F(T) N GMEP(f, A, ¢), putting
Uy = wy = Ty, y, and using Lemma 4, we have :

Page 8 of 16
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¢ (u, un) = ¢ (u, wy)
= kn¢(u,yn)

B N
=ki|o (”:]_1 (aO,n]xn + Z ai,n]Wi,n)>:| ’
L i=1

i N N 2
= kn | llull2 —2 <M, a0/ + Zai,nfwi,n> + [leonfn + D cinWin :|

i=1 i=1

N N
< K | Nll® = 2((1t, cto,f0n) + (Y i Win)) + c0ullfinl® + D ctinllJwinll?

L i=1 i=1
— a0, ng (|1 Jxn _]Wi,n”)i|

N

= kn [ao,n [llel® = 240, Jo) + llnll*] + > etim [llel® = 20, Jwin) + [[Win*]
i=1

— @outing (IJxn — Wi ||)]

N
= ky ao,nP (4, x,) + Z in® (U, W) — 0,n0ing(I1Jxn — ]Wi,n||)]

L i=1

B N
< K | €0n® (s 20) + Y Knlineh (thy %) — 0t0,n0ting (Vtn — ]Wi,n||):|
L i=1

B N

< ki | Ko, (1, %) + K Y i (14, %) — 0,0 (V60 — JWin II)}
L i=1

= ky [kn¢ (%) — 0,n0;,ng (| Jxn _]Wi,n”)]

= K2 (u, %) — k0, @ing (I — Winl). (12)

Therefore, from (12), we have
kncton@ing (1Jn — JWinll) < k2 (4, 0) — ¢ (ut, ), ¥V € N U {O}.
But
ki (1, %) — (1) = kip [uall® = 204, Jen) + Nl *] = [Nt 11> =200, Jt)+ || 1n]|?]
= (k2 — 1) Il ull® — 2 (k} — 1) (4, Jun) — 2k (1t Jon — Jutm) + Ko || 20l >— || 4]|®
= (k2 = 1) || ull®* — 2 (k2 — 1) (t, Juun) — 2k} (1 Jon, — Juin) + (K — 1) || 2|
+ 1wl = 1 2]
< V(K2 = 1) 1wl + 202 = D)0, Jun)| + 1262 (0t Jtn — Jun)| + | (K2 = 1) || )1
1 wall>= 1 el
< (ky = 1) [l ul® +2 (ky — 1) Null el + 2k el Joen — Jutn ]l + (ki = 1) | 200>
(Il %0 — D)l 2+ 11 2]])

Hence,

Jim (ki (1, 26n) — (16, 1) = 0. (13)
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Since lim infeg 0, > 0, we have
n— 00

lim g(|[/xn, — Jwinl) = 0.
n—o0
From the property g, we have lim |[|Jx, — Jw;,| = 0.
n—oo

Since /71 is uniformly norm-to-norm continuous on bounded sets, we have
lim ||%;, — wiull = 0.
n— 00

Since {x,} is bounded, there exists a subsequence {xnk} of {x,} such that x,, — X, for
some x € E. Since T is quasi-¢-asymptotically nonexpansive multivalued mapping and E
is a reflexive space, then we have ¥ € F(T}).

Next, we show that x € GMEP (f,A, (p) . From u,, = T}, y, Lemma 7(d) and (13), we

have
¢(unxyn) = ¢(Tr,,yn:yn)
< ¢ yn) — ¢ (u, Tr,yn)
= kﬁ(”: xn) — &, Ty, yn)
= kiu (1, %n) — b (11, ).
Thus, lim ¢(uy,y,) = 0.
n— 00
Since E is uniformly convex and smooth, we have from Lemma 3 that
lim || #, —yu |=0. (14)
n— 00

From x,, — &, ||x, — uu|l —> 0 and (14), we have y,, — X and u,,, — %.

As ] is uniformly norm-to-norm continuous on bounded sets and (14), we have

lim ”]u,, — H = 0. From r;; > a, we have

n—o0
lim | =2l o, (15)
n— 00 r}’l

By u, = T}, yn, we have

1
T (Un,y) + r—(y — tp, Juy — Jyn) > 0, Vy € C.
n

Replacing #n by n, we have from (A3) that

1
—y = s Juny, — ) = =7 (o y) = T (yrum,) ¥y € C (16)

g
Letting k —> o0, in (16) and using (A4), we obtain
T(y,%) <0,Vy e C.

Fortwith0 < ¢ <1landy e C, lety; = ty + (1 — t)x. Since y € C and x € C, we have
y; € Cand 7(y, %) < 0,Vy € C. Now, using (A1) and (43), we have
0=ty
T (o)) + (1= D7 (¥, X)
It (¥, ).

IA

IA

Dividing by, t we have

T(y) = 0,Vy e C.

Page 10 of 16
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Letting ¢ —> 0, and using (A43), we have
T(%y) >0,VyeC.

This shows that x € GMEP (f A, ga).
Letw = HF(T)ﬂGMEP(f’A’w)x, From %41 = Ium,nw,x and w € F(T) N GMEP(f,A, ¢) C
M, N W,, we have

¢ (Xn41,%) < ¢ (@,%).
Since the norm is weakly lower semi-continuous and x,, — &, we have
Al[2 N
2] = 2 (& Jx) + lx1>

liminf ([, 1> =2 (g, ) + 1 117)
k— 00

¢ (%, %)

IA

= liminfg (xnk, x)
k— 00

IA

lim sup¢ (x,,k, x)

k—o00

¢ (w, x).

IA

From the definition of Ip()nGaep(ra,0), We have & = o. Hence, klim ¢ (xn, %) =
—00
¢ (w, x), Therefore,

0 = lim (qb (x,,k,x) — ¢>(a),x))

k— o0
(I 12— 1| @l = 2 {2, — 0, Jx))

lim
k— 00

. 2 2
lim (|| % I°— || @l?).
k— 00

Since E has the Kadec-Klee property, we have that x,, — @ = Hrr)nGMEP(f.4,0)*-
Therefore, {x,} converges strongly to I1 F(T)NGMEP(f,A,0)%-

Weak convergence theorem

In this section, we prove a weak convergence theorem for finding a common element of
the set of solutions of generalized mixed equilibrium problem and the set of fixed point
of quasi-¢-asymptotically nonexpansive multivalued mapping in Banach space. Before
proving the Theorem, we need the following proposition.

Proposition 1 Let E be a uniformly smooth and uniformly convex Banach space and let
C be a nonempty closed convex subset of E and CB(C) be the family of nonempty, closed,
and bounded subsets of C. Let f; : C x C — R, (i = 1,2,3,..K € N) be bifunctions
satisfying (A1) — (As), A : C —> E* be a nonlinear mapping and let ¢ : C —> RU{oo} be
a proper, convex, and lower semi-continuous function. Let T be a quasi-¢-asymptotically
nonexpansive multivalued mapping from C into CB(C) such that F(T)NGMEP (f LA, <p) #
?. Let {x,} be a sequence generated by u; € E

1

xy € C such that t(x,,y) + — (y — Xy JXn —]u,,) >0,VyeC
n

Up+1 = ]_1 (ao,n]xn + Zi\il ]Wi,n) y Win € Tinxn: K,N,e N

for every n € N, where ] is the normalized duality mapping on E, {«;,} C[0, 00) satisfying
lim infao s > 0, SN in =1and wiy, € T'x,,Vi=1,2,3,..N € N.
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Let {r,} C (0,00). Then, {HF(T)HGMEP(f,A,w)xn} converges strongly to z € F(T) N

GMEP (f,A, (p), where Tlp(T)nGMEP(f.Ap) is generalized projection of E onto F(T) N
GMEP (f, A, ).

Proof Letu € F(T) N GMEP (f,A, <p) . Putting x, = w, € T, u, for all n € N, we know
that T}, are quasi-¢-asymptotically nonexpansive multivalued, and we have

¢ (4, Xpt1)

= ¢ (4, wny1)

< kuo (4, Up+1)

r N
= kn | ¢, ] (0nfn + Zai,nlwi,n)):| v Win € Txp,n =1
L i=1
i N N 2
= kn | lul* =2 <u o 0fxn + Zai,njwi,n> + |eonfn + D dinfWin
i=1 i=1
i N N 2
< kn ”u”2 -2 <<M, aO,n]xn> + <u7 Z Oli,n]Wi,n>) + aon || Jxn 24 Zai,n IWin
i=1 i=1
B N
= K | oo, (Il 2 1% =20 Jn) + I6a1%) + D etin (12> = 2010, Jwin) + ||w,-,n||2)}
L i=1
B N
< kn | @0,u® (4, xn) + ky Z in® (U, xn):|
L i=1
B N
< ky knao,nfﬁ(% xn) + Ky Z o (u, xn):|
L i=1
= kﬁ(]b(u, Xn).
Thus,
Gt xn41) < Ky (t, %) (17)

Hence, we have

¢ (U xp41) < K2, x0) = (1+ (k2 — 1)) ¢ (4, %)

By Lemma 6, ) o, (kﬁ - 1) < 00, we obtain lim ¢ (i, x,) exists. It follows that {x,} and
n—o0

{win} are bounded.
Define y, = HrrynGmEP(f,A,0)%n for all n € N. Then, y, € F(T) N GMEP (f, A, go);
therefore, from (17), we have

Thus,

& Oy Xn1) < K2 (Vs %) (18)

O Wnt1,%n+1) = ¢ <HF(T)QGMEP(f,A,¢))xn+1¢xn+1>

< ¢0/n;xn+1) - ¢ <)’n: HF(T)QGMEp(fA,w)xn+1>
= OWnxn+1) — @ Wnr Ynt1)
=< ¢(yn;xn+1)~

Page 12 of 16
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Hence, from (18), we have ¢ (41, %n+1) < k20 O %0) = (L4 (k2 — 1)) ¢ Gs %)
By the assumption ) ;°; (kﬁ - 1) < oo and using Lemma 6, we have lim ¢ (y,,x,). For
n—oo

m € N such that m > n, we also have from (18) that

& O Xnem) < (k2)" & (s 20).

From yym = N p(r)nGMEP(f,A,9)%n+m and Lemma 1, we have

& O Ynam) + @ Ontms Xntm) < O Wn» Xntm)
< (kz)m(b(yn:xn)

Hence,

S Vs Yntm) < (kﬁ)m Vs xXn) — @ Wntms Xnym). Letr = SupneN”_yn”;
from Lemma 5, we have

EUYn — Ynrml) = G Ons Yntm) < (k;?,)m¢(ymxn) = O Wntm> Xntm)

Since [lim ¢ (yu, %) exists, from the property of g, we have that {y,} is Cauchy. Since
n—0oQ

F(T)NGMEP (f, A, ¢) is closed, {y,} converges strongly to z € F(T)NGMEP (f,A,¢). O
Now, we prove the following theorem.

Theorem 2 Let E be a real uniformly smooth and uniformly convex Banach space, let
C be a nonempty, closed, and convex subset of E, and let CB(C) be family of nonempty,
closed, and bounded subsets of C. Let f; : C x C — R, (i = 1,2,3,..K) be bifunctions
satisfying (A1) — (A4), A : C —> E* be a nonlinear mapping, and ¢ : C —> R U {oo} be
a proper, convex, and lower semi-continuous function. Let T be a quasi-¢-asymptotically
nonexpansive multivalued mapping from C into CB (C) such that F(T)NGMEP (f A, <p) *
?. Let {x,} be a sequence generated by u; € E

1

xn € C such that t(x,,y) + — (y — X, JXn —]un) >0,Vy e C.
T'n

Up+1 = ]71 <0l0,n]xn + Zf\il ]Wi,n> y Win € Tl."xn,](, N,eN

for every n € N, where ] is the normalized duality mapping of E, {a;,} C[0,00] satisfies
lim infag iy > 0, YN o @i = 1 and w;y, € TV, ¥i=1,2,3,..N € N.

nZeo; {rn} Cla,o0) for some a > 0. If ] is weakly sequentially continuous, then {x,}
converges weakly to z € F(T) N GMEP (f,A, <p) , where z = n@”goHF(T)ﬂGMEP(fA,w)xn'

Proof As in the proof of proposition 17, we have that {x,} and {w;,} and {T}'x,} are
bounded sequences. Let r = sup,,cn{ll%xl, [Winll}. For u € F(T) N GMEP (f,A, ¢), we
have

O (U, xpy1) = ¢ (U, wy11)

< knt (4 tny1)

N
= ky |:¢(u:]_1 (ao,n]xn + Z ai,n]Wi,n>)i|

i=1
2

N
o, fxy + Z Wi
i=1

N
= kn | llull® =2 <M, aioftn+ Y Oli,n]Wi,n> +

i=1
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< kn [Ilull2 — 2((u, 20,nfxn) + <u > n]WLn>)

N

2 2
oo ullnl> + D inlwinll* — ctoncting(Ven — Jwi,nn)}
i=1
N

= ky [ao,n(n w12 =20, ) + lull®) + D cinllael® = 20 i) + [1Win|®)

i=1

- aO,nai,ng(”]xn - ]Wi,n ”):|

= ky |:050 n® (U, %) + Z‘hnd’(” Win) — 00,niung (/X0 — ]Wzn||):|

i=1

N
[ 1001 (1hy %) + K D inh (4 %) — 00,1 ing (n — Wiy ||>}

i=1

ky [ n® (U, xn) — 0,n®ing (/X — ]Wi,n”)]
K (14, %) — Kn0t0,n0ing (1T — Jwinl).

Thus,
b Xn 1) < Kinch (4, %) — k00,1018 (T — JWinl))- (19)
Hence, we have
Kin€t0,nting (1o — TWinll) < konch (4 %11) — b (s, % 41).
Since {¢ (&, x,,)} is convergent, we have
lim (ky (s, %) — ¢ (1t Xpy1)) =
n— 00
As, we get lim oo 0, > 0
n— 00
lim g(|lfxy, — Jwinll) = 0.
n—o0

From the property of g, we have

lim ||Jx, — Jwiull = 0.

n—0o0

Since J 71 is uniformly norm-to-norm continuous on bounded sets, we have

lim ||, — wiyll = 0. (20)

n— 00
Since {x,} is bounded, there exists a subsequence {xnk } of {x,} such that {xnk } converges

weakly to ¥ € C. From (20) and F(T), we have x € F(T).

Next, we show that X € GMEP(f, A, ¢). Let T = sup,cn{ll®nll, |44} from Lemma 5,

and putting x, = T, u,, we have from Lemma 7(d) and( 19) that for u € F(T) N
GMEP(f, A, ¢).

G1Ulxn — unll) < ¢ (xp, uy)
< ¢ () — P (1, %)
< knp (tt, n) — ¢ (14, %)
< ko (1, %0-1) — (1, %)
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Since {¢ (4, x,)} converges, we have
lim g1 (|| %, — uy ||) = 0.
n— 00
From the property of g;, we have
lim || %, —u, ||=0.
n— o0
Since J is uniformly norm-to-norm continuous on bounded sets, we have
lim ||, — Ju,| = 0.
n— 00
From r,, > a, we have

Joy — Juy

I'n

=0.

n—00

By x, = T,,u,, we have
1
T ) + — (y — %u Jn — Jun) > 0,¥y € C.
n

As in the proof of Theorem 1, we have ¥ € GMEP (f,A, (p). Therefore, x € F(T) N
GMEP (f,A, (p). Let y» = IpmnGMEP(FAp)*n- From Lemma 2 and x € F(T) N
GMEP (f, A, ¢) , we have

<yl’lk - &rjxnk —])’nk) = 0.

From proposition 17, we also have that {y,} converges strongly to z € F(T) N
GMEP (f VA, <p) , since J is weakly sequentially continuous, as k — oo we have

(z—%Jx—Jz) = 0. (21)
On the other hand, since J is monotone, we have

(—%Jx—Jz) <0. (22)
Hence by (21) and (22), we have

(=273 —Jz)=0.
From the strict convexity of E, we have

z=2

Therefore, {x,} converges weakly to x € F(T) N GMEP (f VA, go), and we have

x = ngngonF(T)ﬂGMEP(f,A«p)xn'

Acknowledgements
Not applicable.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.



Ali et al. Journal of the Egyptian Mathematical Society (2019) 27:40 Page 16 of 16

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

! Department of Mathematical Sciences, Bayero University, Kano, Nigeria. 2Department of Mathematics, Federal College
of Education, Zaria, Kaduna, Nigeria. >Department of Science and Technology Education, Bayero University, Kano, Nigeria.
4Department of Mathematics, Ahmadu Bello University, Zaria, Kaduna, Nigeria.

Received: 2 June 2019 Accepted: 9 October 2019
Published online: 26 October 2019

References

1. Blum, E, Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Students. 63,
123-145 (1994)

2. Ali, B, Harbau, M. H.: Convergence theorems for pseudomonotone equilibrium problem, split feasibility problem,
and multivalued strictly pseudocontractive mappings. Numer. Funct. Anal. Optim. 40(10), 1194-1214 (2019). https://
doi.org/10.1080/01630563.2019.1599014

3. Combettes, I, Hirstoaga, S. A.: Equilibrium programming in Hilbert spaces. J. Nonlinear. Convex Anal. 6, 117-136
(2005)

4. Moudafi, A: Second-order differential proximal methods for equilibrium problems. J. Inequal. Pure Appl. Math. 4(1),
1-7 (2003)

5. Tada, A, Takahashi, W.: Strong convergence theorem for an equilibrium problem and a nonexpansive mapping. In:
W. Takahashi, W. Tanaka, T. (Eds), Nonlinear analysis and convex analysis, pp. 609-617. Yokohama Publishers,
Yokohama, (2007)

6. Tada, A, Takahashi, W.: Weak and strong convergence theorems for a nonexpansive mapping and equilibium
problem. J. Opt. Theory Appl. 133, 359-370 (2007)

7. Takahashi, S, Takahashi, W.: Viscosity approximation methods for equilibrium problem and fixed point problems in
Hilbert space. J. Math. Anal. Appl. 331, 506-515 (2007)

8.  Takahashi, W., Zembayashi, K: Strong and weak convergence theorems for equilibrium problems and relatively
nonexpansive mappings in Banach spaces. Nonlinear Anal. 70, 45-57 (2009)

9. Chang,S.S., Wang, L, Tang, Y. K, Wang, B., Qin, L. J.: Strong convergence theorems for a countable family of
quasi-¢-asymptotically nonexpansive nonself mappings. Appl. Mahts. Comput. 218, 7864-7870 (2012)

10. Deng, C.B, Chen, T, Yin, Y. L: Strong convergence theorems for mixed equilibrium problem and asymptotically I-
nonexpansive mapping in Banach spaces. Abstr. Appl. Anal. 965737, 12 (2014)

11. Ezeora, J. N.: Convergence theorem for generalized mixed equilibrium problem and common fixed point problem
for a family of multivalued mappings. Int. J. Anal. Appl. 10(1), 48-57

12. Cioranescu, |.. Geometry of Banach spaces, duality mappings and nonlinear problems. Kluwer, Dordrechi (1990)

13. Alber, Y. Metric and generalised projection operators in Banach spaces, properties and applications. Marcel
Dekker, New York (1996)

14. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Opt. 13,
938-945 (2002)

15. Takahashi, W.: Nonlinear functional analysis. Yokohama Publishers, Yokohama (2000)

16. Matsushita, S, Takahashi, W.: Weak and strong convergence theorems for relatively nonexpansive mappings in
Banach space. Fixed Point Theory Appl. 2004, 37-47 (2004)

17. Matsushita, S., Takahashi, W.: A strong convergence theorem for relatively nonexpansive mappings in a Banach
space. J. Approx Theory. 134, 257-266 (2005)

18. Reich, S.: A weak convergence theorem for the alternating method with Bregman distance. Marcel Dekker, New York
(1996)

19. Chang, S.S., Kim, J. K, Wang, X. R:: Modified block iterative algorithm for solving convex feasibility problem in Banach
spaces. J. ineq. Appl. 14 (2010). Article ID 869684

20. Takahashi, W.: Convex analysis and approximation of fixed points. Yokohama Publishers, Yokohama (2000). (in
Japanese)

21. Tan, K, Xu, H. K: Approximation fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math.
Anal. Appl. 178(2), 301-308 (1993)

22. Zhang, S. S.: Generalized mixed equilibrium problem in Banach spaces. Appl. Math. Mech. 30(9), 1105-1112 (2009)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


https://doi.org/10.1080/01630563.2019.1599014
https://doi.org/10.1080/01630563.2019.1599014

	Abstract
	Keywords

	Introduction
	Preliminaries
	Strong convergence theorem
	Weak convergence theorem
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

