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Abstract
In this paper, we obtain Fekete-Szegő inequalities for a certain class of analytic

functions f satisfying 1 + 1
ζ

[
z
(
N λ

ν ,qf (z)
)′

(1−γ )N λ
ν ,qf (z)+γ z

(
N λ

ν ,qf (z)
)′ − 1

]
≺ �(z). Application of

our results to certain functions defined by convolution products with a normalized
analytic function is given, and in particular, Fekete-Szegő inequalities for certain
subclasses of functions defined through Poisson distribution are obtained.
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Introduction
LetA denote the class of analytic functions of the form:

f (z) = z +
∞∑
k=2

akzk , z ∈ D := {z ∈ C : |z| < 1}, (1)

and S be the subclass ofA which are univalent functions in D.
If k ∈ A is given by:

k(z) = z +
∞∑
k=2

bkzk , z ∈ D, (2)

then, the Hadamard (or convolution) product of f and k is defined by:

(f × k)(z) := z +
∞∑
k=2

akbkzk , z ∈ D. (3)

If f and F are analytic functions in D, we say that f is subordinate to F, written f ≺ F , if
there exists a Schwarz function w, which is analytic in D, with w(0) = 0, and |w(z)| < 1
for all z ∈ D, such that f (z) = F(w(z)), z ∈ D. Furthermore, if the function F is univalent
in D, then we have the following equivalence (see [1] and [2] ):

f (z) ≺ F(z) ⇔ f (0) = F(0) and f (D) ⊂ F(D).
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The Bessel function of the first kind of order ν is defined by the infinite series:

Jν(z) :=
∑
k≥0

(−1)k
( z
2
)2k+ν

k!� (k + ν + 1)
, z ∈ C, (ν ∈ R) ,

where � stands for the Gamma function. Recently, Szász and Kupán [3] investigated the
univalence of the normalized Bessel function of the first kind gν : D → C defined by (see
also [4–6])

gν(z) := 2ν�(ν + 1)z1−
ν
2 Jν(z

1
2 )

= z +
∞∑
k=2

(−1)k−1�(ν + 1)
4k−1(k − 1)!�(k + ν)

zk , z ∈ D, (ν ∈ R) .

For 0 < q < 1, the q-derivative operator for gν is defined by:

∂qgν(z) = ∂q

[
z +

∞∑
k=2

(−1)k−1�(ν + 1)
4k−1(k − 1)!�(k + ν)

zk
]
:= gν(qz) − gν(z)

z(q − 1)
=

1 +
∞∑
k=2

(−1)k−1�(ν + 1)
4k−1(k − 1)!�(k + ν)

[ k, q] zk−1, z ∈ D,

where

[ k, q] := 1 − qk

1 − q
= 1 +

k−1∑
j=1

qj,
[
0, q

]
:= 0. (4)

Using definition formula (4), we will define the next two products:
(i) For any non-negative integer k, the q-shifted factorial is given by:

[ k, q] ! :=
{
1, if k = 0,[
1, q

] [
2, q

] [
3, q

]
. . . [ k, q] , if k ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbol is defined by:

[
r, q

]
k :=

{
1, if k = 0,[
r, q

] [
r + 1, q

]
. . .

[
r + k − 1, q

]
, if k ∈ N.

For ν > 0, λ > −1, and 0 < q < 1, define the function Iλ
ν,q : D → C by:

Iλ
ν,q(z) := z +

∞∑
k=2

(−1)k−1�(ν + 1)
4k−1(k − 1)!�(k + ν)

[ k, q] !
[ λ + 1, q]k−1

zk , z ∈ D.

Remark 1 A simple computation shows that:

Iλ
ν,q(z) × Mq,λ+1(z) = z ∂qgν(z), z ∈ D,

where the functionMq,λ+1 is given by:

Mq,λ+1(z) := z +
∞∑
k=2

[ λ + 1, q]k−1
[ k − 1, q] !

zk , z ∈ D.
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Using the definition of q-derivative along with the idea of convolutions, we introduce
the linear operatorN λ

ν,q : A → A defined by:

N λ
ν,qf (z) := Iλ

ν,q(z) × f (z) = z +
∞∑
k=2

ψkakzk , z ∈ D, (5)

(ν > 0, λ > −1, 0 < q < 1),

where

ψk := (−1)k−1�(ν + 1)
4k−1(k − 1)!�(k + ν)

· [ k, q] !
[ λ + 1, q]k−1

. (6)

Remark 2 From definition relation (5), we can easily verify that the next relations hold
for all f ∈ A:
(i) [ λ + 1, q]N λ

ν,qf (z) =[ λ, q]N λ+1
ν,q f (z) + qλz∂q

(
N λ+1

ν,q f (z)
)
, z ∈ D;

(ii) lim
q→1− N

λ
ν,qf (z) = Iλ

ν,1 × f (z) =: Iλ
ν f (z) =

z +
∞∑
k=2

k!
(λ+1)k−1

(−1)k−1�(ν+1)
4k−1(k−1)!�(k+ν)

akzk , z ∈ D.

Now, we define the class of functionsMλ,γ
ν,q (ζ ;�) as follows:

Definition 1 Let �(z) := 1 + B1z + B2z2 + . . . , z ∈ D, with B1 > 0, be a starlike
(univalent) function with respect to 1, which maps the unit disk D onto a region included
in the right half plane which is symmetric with respect to the real axis. For ζ ∈ C

∗, and
0 ≤ γ < 1, the function f ∈ A is said to be in the classMλ,γ

ν,q (ζ ;�) if the function

1 + 1
ζ

⎡
⎢⎣ z

(
N λ

ν,qf (z)
)′

(1 − γ )N λ
ν,qf (z) + γ z

(
N λ

ν,qf (z)
)′ − 1

⎤
⎥⎦

is analytic in D and satisfies:

1 + 1
ζ

⎡
⎢⎣ z

(
N λ

ν,qf (z)
)′

(1 − γ )N λ
ν,qf (z) + γ z

(
N λ

ν,qf (z)
)′ − 1

⎤
⎥⎦ ≺ �(z)

(
ν > 0, λ > −1, 0 < q < 1, ζ ∈ C

∗, 0 ≤ γ < 1
)
.

Putting q → 1−, we obtain that lim
q→1− M

λ,γ
ν,q (ζ ;�) =: Gλ,γ

ν (ζ ;�), where

Gλ,γ
ν (ζ ;�) :=

{
1 + 1

ζ

[
z
(
Iλ

ν f (z)
)′

(1 − γ )Iλ
ν f (z) + γ z

(
Iλ

ν f (z)
)′ − 1

]
≺ �(z)

}
(
ν > 0, λ > −1, ζ ∈ C

∗, 0 ≤ γ < 1
)
.

In this paper, we obtain the Fekete-Szegő inequalities for the functions of the class
Mλ,γ

ν,q (ζ ;�). We give some application of our results to certain functions defined by
convolution products with a normalized analytic function. In particular, Fekete-Szegő
inequalities for certain subclasses of functions defined through Poisson distribution are
obtained.
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Fekete-Szegő problem
Denoted byP , the well-knownCarathéodory’s class of analytic functions inD, normalized
with P(0) = 1, and having positive real part in D, that is ReP(z) > 0 for all z ∈ D (see [7]).
To prove our results, we need the following two lemmas.

Lemma 1 [8, Lemma 3] If p(z) = 1+ c1z + c2z2 + · · · ∈ P , and α is a complex number,
then

max
∣∣c2 − αc21

∣∣ = 2max{1; |2α − 1|}.

Lemma 2 [9, Lemma 1] If p(z) = 1 + c1z + c2z2 + · · · ∈ P , then

∣∣c2 − αc21
∣∣ ≤

⎧⎪⎨
⎪⎩

−4α + 2, if α ≤ 0,
2, if 0 ≤ α ≤ 1,
4α − 2, if α ≥ 1.

When α < 0 or α > 1, the equality holds if and only if p(z) = 1+z
1−z or one of its rotations.

If 0 < α < 1, then the equality holds if and only if p(z) = 1+z2
1−z2 or one of its rotations.

If α = 0, the equality holds if and only if:

p(z) =
(
1
2

+ λ

2

)
1 + z
1 − z

+
(
1
2

− λ

2

)
1 − z
1 + z

, with 0 ≤ λ ≤ 1,

or one of its rotations.
If α = 1, the equality holds if and only if:

1
p(z)

=
(
1
2

+ λ

2

)
1 + z
1 − z

+
(
1
2

− λ

2

)
1 − z
1 + z

, with 0 ≤ λ ≤ 1.

Like it was mentioned in [9, pages 162–163], although the above upper bound is sharp,
it can be improved as follows when 0 < α < 1:∣∣c2 − αc21

∣∣ + α |c1|2 ≤ 2, if 0 < α ≤ 1
2
, (7)

and ∣∣c2 − αc21
∣∣ + (1 − α) |c1|2 ≤ 2, if

1
2

≤ α < 1. (8)

Theorem 1 If the function f given by (1) belongs to the class Mλ,γ
ν,q (ζ ;�), with �(z) =

1+ B1z+ B2z2 + . . . satisfying the conditions of Definition 1, and μ is a complex number,
then:

∣∣a3 − μa22
∣∣ ≤ |ζ |B1

2(1 − γ )ψ3
· max

{
1;

∣∣∣∣∣B2
B1

+ ζB1(1 + γ )

1 − γ
− 2μζB1ψ3

(1 − γ )ψ2
2

∣∣∣∣∣
}
,

where ψk, k ∈ {2, 3}, are given by (6).

Proof If f ∈ Mλ,γ
ν,q (ζ ;�), then there exists a Schwarz function w, that is w is analytic in

D, with w(0) = 0 and |w(z)| < 1, z ∈ D, such that:

1 + 1
ζ

⎡
⎢⎣ z

(
N λ

ν,qf (z)
)′

(1 − γ )N λ
ν,qf (z) + γ z

(
N λ

ν,qf (z)
)′ − 1

⎤
⎥⎦ = �(w(z)), z ∈ D. (9)

Since w is a Schwarz function, it follows that the function p1 defined by:
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p1(z) := 1 + w(z)
1 − w(z)

= 1 + c1z + c2z2 + . . . , z ∈ D, (10)

belongs to P . Defining the function p by:

p(z) := 1+ 1
ζ

⎡
⎢⎣ z

(
N λ

ν,qf (z)
)′

(1 − γ )N λ
ν,qf (z) + γ z

(
N λ

ν,qf (z)
)′ − 1

⎤
⎥⎦ = 1+d1z+d2z2+. . . , z ∈ D,

(11)

in view of (9) and (10), we have:

p(z) = �

(
p1(z) − 1
p1(z) + 1

)
, z ∈ D. (12)

From (10), we easily get:

p1(z) − 1
p1(z) + 1

= 1
2

[
c1z +

(
c2 − c21

2

)
z2 +

(
c3 + c31

4
− c1c2

)
z3 + . . .

]
, z ∈ D;

therefore,

�

(
p1(z) − 1
p1(z) + 1

)
= 1 + 1

2
B1c1z +

[
1
2
B1

(
c2 − c21

2

)
+ 1

4
B2c21

]
z2 + . . . , z ∈ D,

and from (12), we obtain:

d1 = 1
2
B1c1 and d2 = 1

2
B1

(
c2 − c21

2

)
+ 1

4
B2c21. (13)

On the other hand, from (11), according to (5), it follows that

d1 = (1 − γ )a2ψ2
ζ

and d2 = 2(1 − γ )a3ψ3
ζ

− (1 − γ )(1 + γ )a22ψ
2
2

ζ
, (14)

and combining (13) with (14), we have:

a2 = ζB1c1
2(1 − γ )ψ2

, (15)

and

a3 = ζB1
4(1 − γ )ψ3

[
c2 − c21

2
+ 1

2
B2
B1

c21 + ζB1(1 + γ )c21
2(1 − γ )

]
.

Therefore,

a3 − μa22 = ζB1
4(1 − γ )ψ3

(
c2 − αc21

)
, (16)

where

α = 1
2

[
1 − B2

B1
− ζB1(1 + γ )

1 − γ
+ 2μζB1ψ3

(1 − γ )ψ2
2

]
, (17)

and from Lemma 1, our result follows immediately.

Putting q → 1− in Theorem 1, we obtain the next corollary:

Corollary 1 If the function f given by (1) belongs to the class Gλ,γ
ν (ζ ;�), with �(z) =

1+ B1z+ B2z2 + . . . satisfying the conditions of Definition 1, and μ is a complex number,
then
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∣∣a3 − μa22
∣∣ ≤

8|ζ |B1(λ + 1)2(ν + 1)2
3(1 − γ )

· max
{
1;
∣∣∣∣B2
B1

+ ζB1(1 + γ )

1 − γ
− 3μζB1(λ + 1)(ν + 1)

2(1 − γ )(λ + 2)(ν + 2)

∣∣∣∣
}
.

Using a similar proof like for Theorem 1 combined with Lemma 2, we can obtain the
following theorem:

Theorem 2 If the function f given by (1) belongs to the class Mλ,γ
ν,q (ζ ;�), with �(z) =

1+B1z+B2z2+. . . satisfying the conditions of Definition 1 andμ,B2 ∈ R, and ζ > 0, then

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζB1
2(1−γ )ψ3

[
B2
B1 + ζB1(1+γ )

1−γ
− 2μζB1ψ3

(1−γ )ψ2
2

]
, if μ ≤ σ1,

ζB1
2(1−γ )ψ3

, if σ1 ≤ μ ≤ σ2,

−ζB1
2(1−γ )ψ3

[
B2
B1 + ζB1(1+γ )

1−γ
− 2μζB1ψ3

(1−γ )ψ2
2

]
, if μ ≥ σ2,

with

σ1 = (1 − γ )ψ2
2

2ζB1ψ3

[
−1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
, (18)

and

σ2 = (1 − γ )ψ2
2

2ζB1ψ3

[
1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
, (19)

where ψk, k ∈ {2, 3}, are given by (6).

Proof With the same proof like those of Theorem 1, we obtain the equalities (16) and
(17) hold.
(i) According to the first part of Lemma 2, we have:∣∣c2 − αc21

∣∣ ≤ −4α + 2, if α ≤ 0.

Using (17), simple computation shows that the inequality α ≤ 0 is equivalent to μ ≤ σ1,
and from (16) combined with the inequality

∣∣c2 − αc21
∣∣ ≤ −4α+2, the first of our theorem

is proved.
(ii) The second part of Lemma 2 shows that:∣∣c2 − αc21

∣∣ ≤ 2, if 0 ≤ α ≤ 1.

From (17), it is easy to check that the inequality 0 ≤ α ≤ 1 is equivalent to σ1 ≤ μ ≤ σ2.
From the relation (16), the inequality

∣∣c2 − αc21
∣∣ ≤ 2 proves the second part of our result.

(iii) Finally, form the third part of Lemma 2, we have:∣∣c2 − αc21
∣∣ ≤ 4α − 2, if α ≥ 1.

The relation (17) shows immediately that α ≥ 1 is equivalent to μ ≥ σ2, while (16)
combined with the inequality

∣∣c2 − αc21
∣∣ ≤ 4α − 2 proves the last part of our result.

Taking q → 1− in Theorem 2, we get the next special case:

Corollary 2 If the function f given by (1) belongs to the class Gλ,γ
ν (ζ ;�), with �(z) =

1+B1z+B2z2+. . . satisfying the conditions of Definition 1 andμ,B2 ∈ R, and ζ > 0, then
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∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

8ζB1(λ+1)2(ν+1)2
3(1−γ )

[
B2
B1 + ζB1(1+γ )

1−γ
− 3μζB1(λ+1)(ν+1)

2(1−γ )(λ+2)(ν+2)

]
,

if μ ≤ η1,

8ζB1(λ+1)2(ν+1)2
3(1−γ )

, if η1 ≤ μ ≤ η2,

−8ζB1(λ+1)2(ν+1)2
3(1−γ )

[
B2
B1 + ζB1(1+γ )

1−γ
− 3μζB1(λ+1)(ν+1)

2(1−γ )(λ+2)(ν+2)

]
,

if μ ≥ η2,

with

η1 = 2(1 − γ )(λ + 2)(ν + 2)
3ζB1(λ + 1)(ν + 1)

[
−1 + B2

B1
+ ζB1(1 + γ )

(1 − γ )

]
, (20)

and

η2 = 2(1 − γ )(λ + 2)(ν + 2)
3ζB1(λ + 1)(ν + 1)

[
1 + B2

B1
+ ζB1(1 + γ )

(1 − γ )

]
. (21)

With a similar proof like for Theorem 1 and using the inequalities (7) and (8), we
obtained the next result.

Theorem 3 If the function f given by (1) belongs to the class Mλ,γ
ν,q (ζ ;�), with �(z) =

1 + B1z + B2z2 + . . . satisfying the conditions of Definition 1 and μ,B2 ∈ R, and ζ > 0,
then the next inequalities hold:
(i) for σ1 < μ ≤ σ3, we have

∣∣a3 − μa22
∣∣+ (1 − γ )ψ2

2
2ζB1ψ3

[
1 − B2

B1
− ζB1(1 + γ )

1 − γ
+ 2μζB1ψ3

(1 − γ )ψ2
2

]
|a2|2 ≤ ζB1

2(1 − γ )ψ3
;

(22)

(ii) for σ3 ≤ μ ≤ σ2, we have

∣∣a3− μa22
∣∣+ (1 − γ )ψ2

2
2ζB1ψ3

[
1 + B2

B1
+ ζB1(1 + γ )

1 − γ
− 2μζB1ψ3

(1 − γ )ψ2
2

]
|a2|2 ≤ ζB1

2(1 − γ )ψ3
,

(23)

where σ1 and σ2 are defined by (18) and (19), respectively,

σ3 = (1 − γ )ψ2
2

2ζB1ψ3

[
B2
B1

+ ζB1(1 + γ )

(1 − γ )

]
,

and ψk, k ∈ {2, 3}, are given by (6).

Proof With the same computations like in the proof of Theorem 1, we obtain the
relations (16) and (17), while (15) is equivalent to:

c1 = 2(1 − γ )ψ2
ζB1

. (24)

(i) To prove the first part of our theorem, we will use the inequality (7). Thus, according
to (16), (17), and the above relation, it is easy to check that (7) could be written in the
equivalent form (22), while the assumption 0 < α ≤ 1

2 is equivalent to σ1 < μ ≤ σ3.
(ii) For the proof of the second part of our result, we will use the inequality (8). From

(16), (17), and (24), it follows that (8) could be written in the form (23), and the assumption
1
2 ≤ α < 1 is equivalent to σ3 < μ ≤ σ2.
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Putting q → 1− in Theorem 3, we obtain the following result:

Corollary 3 If the function f given by (1) belongs to the class Gλ,γ
ν (ζ ;�), with �(z) =

1 + B1z + B2z2 + . . . satisfying the conditions of Definition 1 and μ,B2 ∈ R, and ζ > 0,
then the next inequalities hold:
(i) for η1 < μ ≤ η3, we have

∣∣a3 − μa22
∣∣

+2(1 − γ )(λ + 2)(ν + 2)
3ζB1(λ + 1)(ν + 1)

[
1 − B2

B1
− ζB1(1 + γ )

1 − γ
+ 3μζB1(λ + 1)(ν + 1)

2(1 − γ )(λ + 2)(ν + 2)

]
|a2|2

≤ 8ζB1(λ + 1)2(ν + 1)2
3(1 − γ )

;

(ii) for η3 ≤ μ ≤ η2, we have

∣∣a3 − μa22
∣∣

+2(1 − γ )(λ + 2)(ν + 2)
3ζB1(λ + 1)(ν + 1)

[
1 + B2

B1
+ ζB1(1 + γ )

1 − γ
− 3μζB1(λ + 1)(ν + 1)

2(1 − γ )(λ + 2)(ν + 2)

]
|a2|2

≤ 8ζB1(λ + 1)2(ν + 1)2
3(1 − γ )

,

where η1 and η2 are defined by (20) and (21), respectively, and

η3 = 2(1 − γ )(λ + 2)(ν + 2)
3ζB1(λ + 1)(ν + 1)

[
B2
B1

+ ζB1(1 + γ )

(1 − γ )

]
.

Applications to functions defined by poisson distribution
In [10], Porwal studied a power series whose coefficients are probabilities of the Poisson
distribution, that is:

Im(z) = z +
∞∑
k=2

mk−1

(k − 1)!
e−mzk , z ∈ D, (m > 0),

and motivated by this investigation Srivastava and Porwal [11] introduced the linear
operator Im : A → A defined by:

Imf (z) := Im(z) × f (z) = z +
∞∑
k=2

mk−1

(k − 1)!
e−makzk , z ∈ D,

where f ∈ A has the form (1).

Definition 2 Let the function � satisfying the conditions of Definition 1. For ζ ∈ C
∗,

0 ≤ γ < 1, and k ∈ A, the function f ∈ A is said to be in the class Mλ,γ
ν,q (ζ ; k;�) if

f × k ∈ Mλ,γ
ν,q (ζ ;�) , that is"

1 + 1
ζ

⎡
⎢⎣ z

(
N λ

ν,q(f × k)(z)
)′

(1 − γ )N λ
ν,q(f × k)(z) + γ z

(
N λ

ν,q(f × k)(z)
)′ − 1

⎤
⎥⎦

is analytic in D and satisfies
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1 + 1
ζ

⎡
⎢⎣ z

(
N λ

ν,q(f × k)(z)
)′

(1 − γ )N λ
ν,q(f × k)(z) + γ z

(
N λ

ν,q(f × k)(z)
)′ − 1

⎤
⎥⎦ ≺ �(z)

(
ν > 0, λ > −1, 0 < q < 1, ζ ∈ C

∗, 0 ≤ γ < 1
)
.

A special case of the class Mλ,γ
ν,q (ζ ; k;�) is obtained for k = Im; hence, f ∈

Mλ,γ
ν,q (ζ ; Im;�) if and only if Imf ∈ Mλ,γ

ν,q (ζ ;�) .
Applying Theorems 1 and 2 for the function f × k given by (3), we get the following

results, respectively:

Theorem 4 If the function f given by (1) belongs to the classMλ,γ
ν,q (ζ ; k;�), with �(z) =

1+B1z+B2z2+ . . . , k ∈ A is given by (2) with b2b3 �= 0, and μ is a complex number, then

∣∣a3 − μa22
∣∣ ≤ |ζ |B1

2(1 − γ )|b3|ψ3
· max

{
1,

∣∣∣∣∣B2
B1

+ ζB1(1 + γ )

1 − γ
− 2μζB1b3ψ3

(1 − γ )b22ψ
2
2

∣∣∣∣∣
}
,

where ψk and k ∈ {2, 3} are given by (6).

Theorem 5 If the function f given by (1) belongs to the classMλ,γ
ν,q (ζ ; k;�), with �(z) =

1+B1z+B2z2 + . . . satisfying the conditions of Definition 1 and μ,B2 ∈ R, k ∈ A is given
by (2) with b2b3 �= 0, and ζ > 0, then

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζB1
2(1−γ )|b3|ψ3

[
B2
B1 + ζB1(1+γ )

(1−γ )
− 2μζB1b3ψ3

(1−γ )b22ψ
2
2

]
, if μ ≤ σ1,

ζB1
2(1−γ )|b3|ψ3

, if σ1 ≤ μ ≤ σ2,

−ζB1
2(1−γ )|b3|ψ3

[
B2
B1 + ζB1(1+γ )

(1−γ )
− 2μζB1b3ψ3

(1−γ )b22ψ
2
2

]
, if μ ≥ σ2,

with

σ1 = (1 − γ )b22ψ
2
2

2ζB1b3ψ3

[
−1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
,

and

σ2 = (1 − γ )b22ψ
2
2

2ζB1b3ψ3

[
1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
,

and ψk, k ∈ {2, 3}, are given by (6).

For k := Im, we have

b2 = me−m and b3 = m2

2
e−m,

and for this special case from Theorems 4 and 5, we deduce to the following results,
respectively:

Theorem 6 If the function f given by (1) belongs to the class Mλ,γ
ν,q (ζ ; Im;�) , with

�(z) = 1 + B1z + B2z2 + . . . , and μ is a complex number, then

∣∣a3 − μa22
∣∣ ≤ |ζ |B1

(1 − γ )m2e−mψ3
· max

{
1;

∣∣∣∣∣B2
B1

+ ζB1(1 + γ )

1 − γ
− μζB1ψ3

(1 − γ )e−mψ2
2

∣∣∣∣∣
}
,
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where ψk and k ∈ {2, 3} are given by (6).

Theorem7 If the function f given by (1) belongs to the classMλ,γ
ν,q (ζ ; Im;�), with�(z) =

1+B1z+B2z2+. . . satisfying the conditions of Definition 1 andμ,B2 ∈ R, and ζ > 0, then

∣∣a3 − μa22
∣∣ ≤

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ζB1
(1−γ )m2e−mψ3

[
B2
B1 + ζB1(1+γ )

(1−γ )
− μζB1ψ3

(1−γ )e−mψ2
2

]
, if μ ≤ σ ∗

1 ,

ζB1
(1−γ )m2e−mψ3

, if σ ∗
1 ≤ μ ≤ σ ∗

2 ,

−ζB1
(1−γ )m2e−mψ3

[
B2
B1 + ζB1(1+γ )

(1−γ )
− μζB1ψ3

(1−γ )e−mψ2
2

]
, if μ ≥ σ ∗

2 ,

with

σ ∗
1 = (1 − γ )e−mψ2

2
ζB1ψ3

[
−1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
,

and

σ ∗
2 = (1 − γ )e−mψ2

2
ζB1ψ3

[
1 + B2

B1
+ ζB1(1 + γ )

1 − γ

]
,

where ψk and k ∈ {2, 3} are given by (6).
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