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Abstract
A discrete-time Holling-Tanner model with ratio-dependent functional response is
examined. We show that the system experiences a flip bifurcation and Neimark-Sacker
bifurcation or both together at positive fixed point in the interior of R2+ when one of
the model parameter crosses its threshold value. We concentrate our attention to
determine the existence conditions and direction of bifurcations via center manifold
theory. To validate analytical results, numerical simulations are employed which
include bifurcations, phase portraits, stable orbits, invariant closed circle, and attracting
chaotic sets. In addition, the existence of chaos in the system is justified numerically by
the sign of maximum Lyapunov exponents and fractal dimension. Finally, we control
chaotic trajectories exists in the system by feedback control strategy.
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Introduction
Mathematical modeling is a promising approach to understand and analyze the dynamics
of ecological systems. In population ecology, the classical and significant studied theme
is the interaction between predator and prey species. In recent year, the Leslie type
predator-prey model has received more interest to investigate the dynamical behaviors
between the species. The dynamic complexity of predator-prey system depends on preda-
tor’s functional response. Holling type II functional response is mostly used functional
response among arthropod predators. The Leslie predator-prey model with Holling type
II functional response is called Holling-Tanner model. A number of famous ecologist and
mathematician have been given attention and investigated extensively Holling-Tanner
models [1–3]. Their empirical works found complex dynamical behaviors including sta-
ble or unstable limit cycle, stability states around positive equilibrium. They showed that
the asymptotic stability of the positive equilibrium does not imply the global stability.
They also showed that the model may undergo the Bogdanov-Takens bifurcation and the
subcritical Hopf bifurcation if parameters vary in a small vicinity of critical values. But
Holling-Tanner models with ratio-dependent functional response (1) has been studied in
[4]. The authors established the global stability conditions of themodel near positive equi-
librium with the help of Lyapunov function. It is also proved that the model (1) possess a

© The author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-019-0055-4&domain=pdf
http://orcid.org/0000-0002-6657-2269
mailto: srana.mthdu@gmail.com
http://creativecommons.org/licenses/by/4.0/


Sohel Rana Journal of the EgyptianMathematical Society           (2019) 27:48 Page 2 of 16

unique stable limit cycle at the positive equilibrium showing coexistence of predator and
prey in the sense of oscillatory balance behavior.
However, lots of exploratory works have recommend that if population size is small,

or population generations are relatively discrete (nonoverlapping), or population changes
within certain time intervals, one can consider the difference equation model rather than
differential equation model to reveal chaotic dynamics [5–15]. These researches explored
many complex properties including flip and Neimark-Sacker bifurcations, stable orbits
and chaotic attractors which had been derived either by numerically or by normal form
and center manifold theory.
Recently, a little works in literature studied discrete-time Holling-Tanner models

[16–18] and its chaotic behaviors. For instance, a discrete-time Holling and Leslie type
predator-prey system with constant-yield prey harvesting analyzed in [16], in [17] the
authors investigated a discrete Holling-Tanner model and a discrete predator-prey model
with modified Holling-Tanner functional response discussed in [18]. These studies paid
their attention to determine the stability and directions of flip and Neimark-Sacker
bifurcations via use of center manifold theory.
The following ratio-dependent Holling-Tanner model [4] is considered in this paper:

ẋ = rx
(
1 − x

K
) − mx

x+Ayy
ẏ = sy

(
1 − h y

x
) (1)

where x and y represent prey and predator population densities, respectively; r and s are
the intrinsic growth rates of the prey and predator, respectively. K is the prey environ-
ment carrying capacity. The predator consumes prey according to the ratio-dependent
Holling type II functional response mx

x+Ay . The carrying capacity x/h of predator is
proportional to the population size of the prey. The parameter h is the number of preys
required to support predator births. m is the maximal predator per capita consumption
rate; A is the number of prey necessary to achieve one-half of the maximum rate m; the
constants r,K ,A,m, s and, h all are being positive.

We introduce the new variables and parameters by the following scaling transforma-
tions:

x
K

→ x,
my
rK

→ y, rt → t and, a = rA
m

, d = sh
m
, b = m

hr
.

Then, the system (1) becomes

ẋ = x (1 − x) − xy
x+ay

ẏ = dy
(
b − y

x
) (2)

To get following two-dimensional discrete system, forward Euler scheme with integral
step size δ is applied to system (2):

(
x

y

)

�→
(
x +δx

[
(1 − x) − y

x+ay

]

y + δy
[
d

(
b − y

x
)]

)

(3)

This studywillmainly focus onhowmodel parameters affect on the dynamics of system (3).
Especially, we discuss systematically to show the existence condition of Flip bifurcation
andNeimark-Sacker bifurcation using bifurcation theory and centermanifold theory [19].
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Because in the discrete predator-prey system, Flip bifurcation and Neimark-Sacker bifur-
cation both are the important mechanisms for the generation of complex dynamics and
both bifurcations cause the system to jump from stable window to chaotic states through
periodic and quasi-periodic states, and trigger a route to chaos.
The outlines of this paper is as follows. The existence condition for fixed points of

system (3) in the interior of R
2+ and their stability analysis are given in “Existence

conditions and stability analysis of fixed points” section. In “Direction and stability
analysis of bifurcation” section, we determine direction of bifurcation for system (3)
under certain parametric condition. The bifurcation diagrams, phase portraits, max-
imum Lyapunov exponents, and Fractal dimensions are presented numerically in
“Numerical simulations” section by changing one or more control parameters values. In
“Controlling chaos” section, a feedback control technique has been used to stabilize
unstable trajectories. A short conclusion is presented in the “Discussions” section.

Existence conditions and stability analysis of fixed points
To find fixed points of system (3), we set

{
x + δx

[
(1 − x) − y

x+ay

]
= x

y + δy
[
d

(
b − y

x
)] = y

(4)

By solving system of non-linear Eqs. 4 we obtain the following result.

Lemma 1 For all feasible values of parameters, the system (3)
(i) always has axial fixed point E1(1, 0),
(ii) has a unique coexistence fixed point E2(x∗, y∗) if b < 1 + ab where x∗ =
1−b+ab
1+ab and y∗ = bx∗.

Next, we analyze local stability at each fixed points for system (3). The Jacobian matrix
of system (3) around arbitrary fixed point E(x, y) is given by

J(x, y) =
(
j11 j12
j21 j22

)

(5)

where

j11 = 1 + δ

(
1 − 2x + xy

(x + ay)2
− y

x + ay

)
, j12 = δ

(
axy

(x + ay)2
− x

x + ay

)

j21 = dδy2

x2
, j22 = 1 − dδy

x
+ dδ

(
b − y

x

)
.

The characteristic equation of matrix J is

λ2 + p(x, y)λ + q(x, y) = 0 (6)

where p(x, y) = −trJ = −(j11 + j22) and detJ = j11j22 − j12j21.
Now, the topological classification of stability around fixed points by using Jury’s criterion
[20] are expressed as follows.

Proposition 1 For predator free fixed point E1(1, 0), the following topological
classification true
(i) E1 is a saddle if 0 < δ < 2,
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(ii) E1 is a source if δ > 2,
(iii) E1 is a non-hyperbolic if δ = 2.

Let

FBE1 = {(a, b, d, δ) : δ = 2, a, b, d > 0} .
It is obvious that when parameters are in FBE1 , then one of the eigenvalues of J(E1):

λ1 = 1− δ and λ2 = 1+bdδ is −1 and the other is not equal to ±1. Therefore, system (3)
experience a flip bifurcation when parameters change in small vicinity of FBE1 .

At E2(x∗, y∗), the Eq. 6 becomes

F(λ) := λ2 − (2 + Lδ)λ + (1 + Lδ + Mδ2) = 0,

where

L = 1 + bd − 2x∗ − 2dy∗
x∗ − ay∗2

(x∗+ay∗2 ,

M = d(b − 2bx∗ + 4y∗) − 2dy∗
x∗ − (2+ab)dy∗

(x∗+ay∗)2 + (3x∗+2ay∗)dy∗2
x∗(x∗+ay∗)2 .

Therefore, F(1) = Mδ2 > 0 and F(−1) = 4 + 2Lδ + Mδ2.
For topological classification of E2, we state following Proposition.

Proposition 2 Suppose b < 1 + ab holds. Then for coexistence fixed point E2(x∗, y∗) of
system (3), the following topological classification true
(i) E2 is a sink if one of the following conditions holds
(i.1) L2 − 4M ≥ 0 and δ < −L−√

L2−4M
M ;

(i.2) L2 − 4M < 0 and δ < − L
M ;

(ii) E2 is a source if one of the following conditions holds
(ii.1) L2 − 4M ≥ 0 and δ > −L+√

L2−4M
M ;

(ii.2) L2 − 4M < 0 and δ > − L
M ;

(iii) E2 is a non-hyperbolic if one of the following conditions holds
(iii.1) L2 − 4M ≥ 0 and δ = −L±√

L2−4M
M ;

(iii.2) L2 − 4M < 0 and δ = − L
M ;

(iv) E2 is a saddle if otherwise.

From Proposition 2, it can be easily seen that if condition (iii.1) holds then eigenvalues
of J(E2) are λ1 = −1 and λ2 �= ±1. If (iii.2) is true, then eigenvalues of J(E2) are complex
having modulus one.
Let

FB1
E2 =

{

(a, b, d, δ) : δ = −L − √
L2 − 4M
M

, L2 − 4M ≥ 0, a, b, d > 0
}

,

or

FB2
E2 =

{

(a, b, d, δ) : δ = −L + √
L2 − 4M
M

, L2 − 4M ≥ 0, a, b, d > 0
}

.

Then system (3) experience a flip bifurcation at E2 when parameters (a, b, d, δ) vary in
a small vicinity of either set FB1

E2 or set FB
2
E2 .
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Also let

NSBE2 =
{
(a, b, d, δ) : δ = − L

M
, L2 − 4M < 0, a, b, d > 0

}
,

then system (3) experience a NS bifurcation at E2 if the parameters (a, b, d, δ) change
around the set NSBE2 .

Direction and stability analysis of bifurcation
Here, we will pay attention to determine the direction and stability of flip bifurcation and
Neimark-Sacker bifurcation of system (3) around E2 via application of center manifold
theory [19]. The integral step size δ is being taken as a real bifurcation parameter.

Flip bifurcation: direction and stability

We take the parameters (a,α,β , δ) arbitrarily locate in FB1
E2 . For other set FB

2
E2 , one can

apply similar reasoning. Consider the system (3) at fixed point E2(x∗, y∗) with parameters
lie in FB1

E2 .
Let

δ = δF = −L − √
L2 − 4M
M

,

then the eigenvalues of J(E2) are

λ1(δF) = −1 and λ2(δF) = 3 + LδF .

In order for |λ2(δF)| �= 1, we have

LδF �= −2,−4. (7)

Assume that x̃ = x − x∗, ỹ = y − y∗, and set A(δ) = J(x∗, y∗). Then, we transform
the fixed point (x∗, y∗) of system (3) to the origin. By Taylor expansion, system (3) can be
written as

(
x̃

ỹ

)

→ A(δ)

(
x̃

ỹ

)

+
(
F1(x̃, ỹ, δ)

F2(x̃, ỹ, δ)

)

(8)

where X = (x̃, ỹ)T is the vector of the transformed system and

F1(x̃, ỹ, δ) = 1
6

[

− 6aδy∗2

(x∗ + ay∗)4
x̃3 − 6a2δx∗2

(x∗ + ay∗)4
x̃3 − 6aδy∗(−2x∗ + ay∗)

(x∗ + ay∗)4
x̃2ỹ + 6aδx∗(−x∗ + 2ay∗)

(x∗ + ay∗)4
x̃ỹ2

]

+ 1
2

[

δ

(
−2 − 2x∗y∗

(x∗ + ay∗)3
+ 2y∗

(x∗ + ay∗)2

)
x̃2 + 2aδx∗2

(x∗ + ay∗)3
ỹ2 − 4aδx∗y∗

(x∗ + ay∗)3
x̃ỹ

]

+ O(‖X‖4)

F2(x̃, ỹ, δ) = dδ

x∗4 x̃
(
x∗ỹ − y∗x̃

)2 − dδ

x∗3 x̃
(
x∗ỹ − y∗x̃

)2 + O(‖X‖4)
(9)

The system (8) can be expressed asXn+1 = AXn+ 1
2B(Xn,Xn)+ 1

6C(Xn,Xn,Xn)+O(Xn4)

where B(x, y) =
(
B1(x, y)

B2(x, y)

)

and C(x, y,u) =
(
C1(x, y,u)

C2(x, y,u)

)

are symmetric multi-linear

vector functions of x, y,u ∈ R
2 and defined as follows:
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B1(x, y) =
2∑

j,k=1

δ2F1(ξ , δ)
δξjδξk

∣
∣
∣
∣
ξ=0

xjyk = − 2aδx∗y∗

(x∗ + ay∗)3
(x1y2 + x2y1) + 2aδx∗2

(x∗ + ay∗)3
x2y2

+ δ

(
−2 − 2x∗y∗

(x∗ + ay∗)3
+ 2y∗

(x∗ + ay∗)2

)
x1y1,

B2(x, y) =
2∑

j,k=1

δ2F2(ξ , δ)
δξjδξk

∣∣
∣
∣
ξ=0

xjyk = −2dδ

x∗ x2y2 + 2dδy∗

x∗2 (x1y2 + x2y1) − 2dδy∗2

x∗3 x1y1,

C1(x, y,u) =
2∑

j,k,l=1

δ2F1(ξ , δ)
δξjδξkδξl

∣
∣
∣
∣
ξ=0

xjykul = − 6aδy∗2

(x∗ + ay∗)4
x1y1u1 − 6a2δx∗2

(x∗ + ay∗)4
x2y2u2

− 2ay∗(−2x∗ + ay∗)δ
(x∗ + ay∗)4

(x1y2u1 + x2y1u1 + x1y1u2)

+ 2ax∗(−x∗ + 2ay∗)δ
(x∗ + ay∗)4

(x1y2u2 + x2y1u2 + x2y2u1),

C2(x, y,u) =
2∑

j,k,l=1

δ2F2(ξ , δ)
δξjδξkδξl

∣
∣
∣
∣
ξ=0

xjykul = 2dδ

x∗2 (x1y2u2 + x2y1u2 + x2y2u1)

− 4dδy∗

x∗3 (x1y1u2 + x1y2u1 + x2y1u1) + 6dδy∗2

x∗4 x1y1u1.

Let p, q ∈ R
2 be eigenvectors of A and transposed matrix AT respectively for λ1(δF) =

−1 Then, we have

A(δF)q = −q and AT (δF)p = −p.

Direct computation shows

q ∼
(

2 + bdδF − 2dδFy∗

x∗ ,−dδFy∗2

x∗2

)T

,

p ∼
(

2 + bdδF − 2dδFy∗

x∗ ,
δFx∗2

(x∗ + ay∗)2

)T

.

We use 〈p, q〉 = p1q1 + p2q2, standard scalar product in R
2 to normalize the vectors p

and q. Setting the normalized vectors as

q =
(

2 + bdδF − 2dδFy∗

x∗ ,−dδFy∗2

x∗2

)T

,

p = γ1

(

2 + bdδF − 2dδFy∗

x∗ ,
δFx∗2

(x∗ + ay∗)2

)T

.

where γ1 = 1

(2+bdδF− 2dδF y∗
x∗ )2− dδ2F y

∗2
(x∗+ay∗)2

. We see that 〈p, q〉 = 1.

The sign of coefficient l1(δF) determines the direction of flip bifurcation and is
computed by

l1(δF) = 1
6
〈p,C(q, q, q)〉 − 1

2
〈p,B(q, (A − I)−1B(q, q))〉 (10)

We summarize above discussion into the following theorem for direction and stability
of flip bifurcation.
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Theorem 1 Assume that (7) holds. Then, if l1(δF) �= 0 and the parameter δ varies its
value in a small vicinity of FB1

E2 , the system (3) experiences a flip bifurcation at positive
fixed point E2(x∗, y∗). Moreover, if l1(δF) > 0 (resp., l1(δF) < 0), then there exists stable
(resp., unstable) period-2 orbits bifurcate from E2(x∗, y∗).

Neimark-Sacker bifurcation: direction and stability

Next, we take the parameters (a,α,β , δ) arbitrarily located in NSBE2 . Consider the system
(3) at fixed point E2(x∗, y∗) with parameters vary in the vicinity of NSBE2 . Then, the roots
(eigenvalues) of Eq. 6 are pair of complex conjugate and given by

λ, λ̄ = −p(δ) ± i
√
4q(δ) − p(δ)2
2

= 1 + Lδ

2
± iδ

2

√
4M − L2.

Let

δ = δNS = − L
M

(11)

Then, we have |λ| = √
q(δNS) = 1.

From the transversality condition, we get

d|λ(δ)|
dδ

∣
∣
∣
∣
δ=δNS

= −L
2

�= 0 (12)

Moreover, the nonresonance condition p(δNS) �= 0, 1 obviously satisfies

L2

M
�= 2, 3 (13)

and we have

λk(δNS) �= 1 for k = 1, 2, 3, 4 (14)

Let q, p ∈ C
2 be eigenvectors of A(δNS) and AT (δNS) for eigenvalues λ(δNS) and λ̄(δNS)

respectively such that

A(δNS)q = λ(δNS)q, A(δNS)q̄ = λ̄(δNS)q̄

and

AT (δNS)p = λ̄(δNS)p, AT (δNS)p̄ = λ(δNS)p̄.

By direct calculation, we obtain

q ∼
(

1 + bdδNS − 2dδNSy∗

x∗ − λ,−dδNSy∗2

x∗2

)T

,

p ∼
(
1 + bdδNS − 2dδNSy∗

x∗ − λ̄,
δNSx∗

(x∗ + ay∗)2

)T
.

For normalization of the vectors p and q, we set p = γ2(
1 + bdδNS − 2dδNSy∗

x∗ − λ̄, δNSx∗
(x∗+ay∗)2

)T
where

γ2 = 1

(1 + bdδNS − 2dδNSy∗
x∗ − λ̄)2 − dδ2NSx∗2y∗2

x∗(x∗+ay∗)2

.

Then we see that 〈p, q〉 = p̄1q2 + p̄2q1 = 1.
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When δ close to δNS and z ∈ C, the vector X ∈ R
2 can be decomposed uniquely as

X = zq + z̄q̄.
It is obvious that z = 〈p,X〉. Thus, we obtain the following transformed form of system
(8) for all sufficiently small |δ| near δNS:

z �→ λ(δ)z + g(z, z̄, δ),

where λ(δ) = (1 + ϕ(δ))eiθ(δ) with ϕ(δNS) = 0 and g(z, z̄, δ) is a smooth complex-valued
function. According to Taylor expression, the function g can be written as

g(z, z̄, δ) =
∑

k+l≥2

1
k! l!

gkl(δ)zkz̄l, with gkl ∈ C, k, l = 0, 1, · · · .

By symmetric multi-linear vector functions, the Taylor coefficients gkl are obtained as

g20(δNS) = 〈p,B(q, q)〉,
g11(δNS) = 〈p,B(q, q̄)〉
g02(δNS) = 〈p,B(q̄, q̄)〉,
g21(δNS) = 〈p,C(q, q, q̄)〉,

The coefficient l2(δNS) which determines the direction of Neimark-Sacker bifurcation
in a generic system exhibiting invariant closed curve can be calculated via
l2(δNS) = Re

(
e−iθ(δNS)g21

2

)
− Re

(
(1−2eiθ(δNS))e−2iθ(δNS)

2(1−eiθ(δNS))
g20g11

)
− 1

2 |g11|2 − 1
4 |g02|2, where

eiθ(δNS) = λ(δNS).
Summarizing above analysis, we present the following theorem for direction and

stability of Neimark-Sacker bifurcation.

Theorem 2 Suppose that (13) holds and l2(δNS) �= 0. If the parameter δ varies its value
in small neighborhood ofNSBE2 , then system (3) experiences a Neimark-Sacker bifurcation
at positive fixed point E2. Moreover, if the sign of l2(δNS) is negative (resp., positive), then a
unique invariant closed curve bifurcates from E2 which is attracting (resp., repelling) and
the Neimark-Sacker bifurcation is supercritical (resp., subcritical).

Numerical simulations
In this section, numerical simulation are performed to validate our theoretical results,
especially diagrams for bifurcation of system (3) at fixed point E2, phase portraits, maxi-
mum Lyapunov exponents and fractal dimension corresponding to bifurcation diagrams.
For bifurcation analysis, we consider different sets for parameter values as given in
Table 1 :

Example 1 Flip bifurcation with bifurcation parameter δ covering [2.6, 3.86]

Table 1 Parameter values

Varying parameter in range Fixed parameters

Case (i) 2.6 ≤ δ ≤ 3.86 a = 3.0, b = 1.0, d = 0.1

Case (ii) 2.0 ≤ δ ≤ 4.5 a = 0.6, b = 1.0, d = 0.1

Case (iii) 0.6 ≤ a ≤ 3.0 b = 1.0, d = 0.1, δ = 3.9

Case (iv) 2.0 ≤ δ ≤ 4.5 , 0.6 ≤ a ≤ 3.0 b = 1.0, d = 0.1.
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We set values of parameter as given in case (i). By calculation, we obtain a unique fixed
point E2(0.75, 0.75) of system (3). A flip bifurcation point is evaluated as δF = 2.95569. It is
observed that the system (3) experiences a flip bifurcation around E2 when δ passes its crit-
ical value δF . Also, at δ = δF the corresponding eigenvalues are λ1 = − 1, λ2 = 0.672397,
a(δF) = 20.5735 and (a, b, d, δ) ∈ FB1

E2 . This shows the correctness of Theorem 1.

The bifurcation diagrams shown in Fig. 1a, b reveal that fixed point E2 is stable for
δ < δF , loses its stability at δ = δF and for δ > δF there exists a period doubling phenomena
leading to chaos. It is also seen that the period −2,−4, −8, and −16 orbits emerging for
δ ∈[2.6, 3.668], chaotic set for δ ∈[3.69, 3.86] and the period −12 orbit occurs at δ =
3.7924which is in chaotic window δ ∈[3.69, 3.86] causing dynamic transition from periodic
behaviors to chaos. The maximum Lyapunov exponents (MLE) and fractal dimension (FD)
related to Fig. 1a, b are displayed in Fig. 1c, d which confirm stable, periodic, or chaotic
states exists in system (3).

Example 2 Neimark-Sacker (NS) bifurcation with bifurcation parameter δ covering
[2.0, 4.5]

With the variation of parameter a, the predator-prey system (3) exhibits much richer
dynamics through the emergence of NS bifurcation.We take parameters as given in case (ii).
After calculation, we find a unique fixed point E2(0.375, 0.375) of system (3). A NS bifurca-
tion point is obtained as δNS = 2.25. It is seen that a NS bifurcation emerges around fixed
point E2 when δ passes through δNS. Also, we have λ, λ̄ = 0.905078 ± 0.425245i, g20 =

Fig. 1 Flip bifurcation of system (3). a Bifurcation in prey. b Bifurcation in predator. cMaximum Lyapunov
exponents related to a, b. d FD corresponding to a. (x0, y0) = (0.74, 0.74)
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0.359863+ 0.156709i, g11 = 0.50625− 0.499099i, g02 = − 1.27625+ 0.58727i, g21 = −
1.27332 + 1.64876i, a(δNS) = − 0.742379 and (a, b, d, δ) ∈ NSBE2 . The correctness of
Theorem 2 is verified.

The bifurcation diagrams are depicted in Fig. 2a, b which illustrate that the fixed point
E2 is stable for δ < δNS, loses its stability near δ = δNS and an attracting invariant closed
cycle appears if δ > δNS. The maximum Lyapunov exponents related to Fig. 2a, b are
disposed in Fig. 2c, which exhibits the existences of periodic orbits and chaos as parameter
δ increases. These results indicate that NS bifurcation instigates a route to chaos, through
a dynamic transition from a stable state, to invariant closed cycle, with periodic and
quasi-periodic states occurring in between, to chaotic sets. For instance, chaotic set is
observed when δ ∼ 4.15 which is consistent with the sign of maximum Lyapunov exponent.
Figure 2d is a local amplification of Fig. 2a for δ ∈[3.5, 4.0].

Fig. 2 NS bifurcation of system (3). a NS bifurcation in prey, b NS bifurcation in predator, cmaximum
Lyapunov exponents corresponding to a, b. d Local amplification diagram in a for δ ∈[ 3.5, 4.0] . e FD
associated with a. (x0, y0) = (0.37, 0.37)



Sohel Rana Journal of the EgyptianMathematical Society           (2019) 27:48 Page 11 of 16

Figure 3 explicitly shows that as the values of δ increases, there are alternation between
periodic or quasi-periodic behaviors and invariant cycle or chaotic behavior. For different
values of δ, phase portraits of system (3) associated with Fig. 2a, b are plotted in Fig. 3
illustrating the existence of period −10, −19, −38, and −9 orbits, and chaos in system (3)
at δ ∼ 3.6, δ ∼ 3.9, δ ∼ 3.95, δ ∼ 4.075, and δ ∼ 4.5, respectively.

Example 3 Flip-NS bifurcation with bifurcation parameter a covering [0.6, 3.0]

When we set the parameter values as in case (iii), a new bifurcation diagrams is
obtained as plotted in Fig. 4. This illustrates that the predator-prey system (3) expe-
riences Neimark-Sacker bifurcation and flip bifurcation both together when parameter
a passes its critical value. The system firstly enters chaotic dynamics for small value
of a. However, with the increase of a value, the chaotic dynamics of the predator-prey
system suddenly disappear through a NS bifurcation occurring first at a ∼ 0.691714,
and then the system dynamics jump to a stable state. Thereafter, we find that the
predator-prey system undergoes a flip bifurcation occurs at a ∼ 1.92452 and then
period doubling phenomena trigger a route to chaos. The maximum Lyapunov expo-
nents (MLE) and fractal dimension (FD) related to Fig. 4a, b are displayed in Fig. 4c, d
which confirm dynamic transition in system (3) from chaotic set to stable window and
vice versa.

Example 4 Bifurcation for parameters δ and a

Fig. 3 Phase portraits for different values of δ corresponding to Fig. 2a, b
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Fig. 4 NS-flip bifurcation of system (3). a Bifurcation for prey, b bifurcation for predator, cmaximum
Lyapunov exponents related to a, b. d FD associated with a. (x0, y0) = (0.37, 0.37)

Suppose parameters are considered as given in case (iv). When two more parameters
change through its critical values, then system (3) can exhibit complex dynamic behavior.
Under this parametric condition, the 3D bifurcation diagrams in (δ, a, x)-space are dis-
played in Fig. 5a. Figure 5b shows the 2D projected maximum Lyapunov exponents onto
(δ, a) plane. It is now easy to determine values of bifurcation parameters to see how
does the dynamics of system (3) change from non-chaotic state to periodic or chaotic
state. For instance, unstable chaotic trajectories appear in the system for parameters
δ = 4.15, a = 0.6 whereas stable trajectories appear for δ = 3.6, a = 0.6 (see
Fig. 3), which are conformable with the signs presented in Fig. 5b. It is also remarkable from
Fig. 5a that with the growth of parameter a, the predator-prey system (3) experiences NS
bifurcation first and then flip bifurcation, and in between there is a stable window appears
showing that the predator and prey coexist at a oscillatory balance behavior.

Fractal dimension

In order to characterize the strange attractors exists in a system, one can measure fractal
dimensions (FD) [21, 22] which is defined by

dL = j +
∑j

i=1 hi
|hj|

where h1, h2, ..., hn are Lyapunov exponents and j is the largest integer such that
∑j

i=1 hi ≥
0 and

∑j+1
i=1 hi < 0.

For system (3), the fractal dimension dL takes the form
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Fig. 5 Bifurcation diagram in (δ − a − x) space. (a) the transition between NS bifurcation and flip bifurcation
for prey when δ ∈[ 2.0, 4.5] , a = 0.6, 1.0, 1.5, 2.0, 2.5, 3.0 ∈[ 0.6, 3.0]. b The 2D projection of 3D maximum
Lyapunov exponents onto (δ, a) plane. (x0, y0) = (0.37, 0.37)

dL = 1 + h1
|h2| , h1 > 0 > h2 and h1 + h2 < 0.

Considering parameter values as given in case (ii), FD of system (3) is plotted in Fig. 2e.
The strange attractors of system (3) (see Fig. 3) and its corresponding FD (see Fig. 2e)
confirms that growth of parameter δ causes a chaotic dynamics for the discrete-time ratio-
dependent Holling-Tanner system.

Controlling chaos
We will apply state feedback control method [20] to control chaos exists in system (3) at
the state of unstable trajectories. By adding a feedback control law as the control force un
to system (3), the controlled system becomes

xn+1 = xn + δxn
[
(1 − xn) − yn

xn+ayn

]
+ un

yn+1 = yn + δyn
[
d

(
b − yn

xn

)] (15)

and

un = −k1(xn − x∗) − k2(yn − y∗)

where the feedback gains are denoted by k1and k2 and (x∗, y∗) represent coexistence fixed
point of system (3).
The Jacobian matrix Jc of the controlled system(15) is

Jc(x∗, y∗) =
(

j11 − k1 j12 − k2
j21 j22

)

(16)

where j11 = 1 + δ
(
1 − 2x + xy

(x+ay)2 − y
x+ay

)
, j12 = δ

(
axy

(x+ay)2 − x
x+ay

)
, j21 = dδy2

x2 , j22 =
1 − dδy

x + dδ
(
b − y

x
)
are evaluated at (x∗, y∗). The characteristic equation of Jc(x∗, y∗) is

λ2 − (trJc)λ + detJc = 0 (17)

where

trJc = j11 + j22 − k1,

detJc = j22(j11 − k1) − j21(j12 − k2).
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Let λ1 and λ2 be the roots of (17). Then,

λ1 + λ2 = j11 + j22 − k1 (18)

and

λ1λ2 = j22(j11 − k1) − j21(j12 − k2) (19)

The solution of the equations λ1 = ± 1 and λ1λ2 = 1 determines the lines of
marginal stability. These conditions confirm that |λ1,2| < 1. Suppose that λ1λ2 = 1, then
from (19), we have

l1 : j22k1 − j21k2 = j11j22 − j12j21 − 1.

Now assume that λ1 = 1, then from (18) and (19), we get

l2 : (1 − j22)k1 + j21k2 = j11 + j22 − 1 − j11j22 + j12j21.

Next, assume that λ1 = − 1, then from (18) and (19), we obtain

l3 : (1 + j22)k1 − j21k2 = j11 + j22 + 1 + j11j22 − j12j21.

Then, the lines l1, l2, and l3 (see Fig. 6a) in the (k1, k2) plane determine a triangular
region which keeps |λ1,2| < 1.
We have carried out numerical simulations to check how the implementation of feed-

back control method works and controls chaos at unstable state. Taking parameter
values as in case (ii) with fixed δ = 2.126. We consider the feedback gains are as
k1 = − 1.3 and k2 = 0.16 and initial value as (x0, y0) = (0.65, 0.95). Region of stable
eigenvalues in (k1, k2) plane is plotted in Fig. 6a. We numerically show that at the fixed
point (0.662032, 0.993048), the chaotic trajectory is stabilized, see Fig. 6b, c.

Fig. 6 Controlling chaos in system (15). a Stability region in (k1, k2) plane, (b, c). Time series for states x and y,
respectively
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Discussions
This work is concerned with the dynamics and chaos control of a discrete-time ratio-
dependent Holling-Tanner model in R

2+. By the center manifold theory, we determine
the existence condition and direction of flip and NS bifurcations of system (3) around
coexistence fixed point. In particular, we show that system (3) experiences a flip or NS
bifurcation at unique coexistence fixed point if parameter δ varies in the neighborhood
of FB1

E2 or NSBE2 . Based on Figs. 1 and 2, we notice that the small integral step size δ

can stabilize the dynamical system (3), but the large integral step size may destabilize the
system producing more complex dynamical behaviors. To see how does the integral step
size play a key role in exploring the dynamical behaviors, we carry out numerical simula-
tions to reveal unpredictable dynamics of the system including periods −2, −4, −8, −12,
and −16 orbits via flip bifurcation and periods −9, −10, −19, and −38 orbits, invariant
closed cycle, and chaotic sets via NS bifurcation, respectively. In addition, from Fig. 4,
we can see that the appropriate choice of parameter a can stabilize the dynamical sys-
tem (3). However, for the low or high values of a may destabilize system (3). Thus, with
the increase of parameter a, it is shown that system (3) experiences NS and flip bifurca-
tions both together. The two bifurcations cause the system to jump from steady state to
chaotic dynamical behavior via periodic and quasi-periodic states and trigger routes to
chaos, and vice-versa; that is, chaotic dynamics appear or disappear along with the emer-
gence of bifurcations.
Moreover, in 3D bifurcation diagrams, we observe a dynamic transition between NS
bifurcation and flip bifurcation. Through the two-dimensional parameter-spaces, we also
notice that system dynamics can be periodic, quasi-periodic and chaotic. These com-
plex dynamic behaviors of populations occurred by the flip and NS bifurcations can be
explained ecologically, that is, the predator and prey population densities can fluctuate at
regular or irregular intervals or the predator-prey system become unstable [23, 24]. We
can also say that when the prey population are abundant, the consumption of prey by
predator may have a marginal effect on the dynamics of prey. The presence of chaos is
verified by the sign of maximum Lyapunov exponents and fractal dimension. Finally, we
provide state feedback control method to control chaos at unstable trajectories.We would
expect to explore more analytical results on multiple-parameter bifurcation of the system
in future.
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