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Abstract

The present study scrutinizes slip effects and stagnation point flows of upper-
convected Maxwell fluid past a stretching sheet. The non-linear ordinary differential
equations are obtained from the governing partial differential equations and solved
using implicit finite difference method. The impacts of non-dimensional governing
parameters such as Brownian motion parameter, velocity ratio, velocity slip parameter,
suction/injection parameter, Lewis numbers, upper-convected Maxwell parameter,
magnetic field, thermophoresis parameter, chemical reactions parameter, thermal slip
parameter, solutal slip parameter, and heat source parameter on the velocity field, heat
and mass transfer characteristics are discussed and presented through graphs. The
values of local Sherwood number, local Nusselt number, and skin friction coefficient are
discussed and presented through tables. The results indicate that when the magnetic
field is intensified, it reduces velocity profiles and raises temperature and concentration
profiles. Moreover, with an upsurge in velocity slip parameter, the local Nusselt number
and local Sherwood number diminish.

Keywords: Upper-convected Maxwell fluid, Nanofluid, Chemical reaction, MHD, Slip
effects, Stagnation point
Introduction
Nanofluid is a colloidal postponement containing nanoparticles in a base fluid. Nanofluids

have enhanced physical properties such as mass diffusivity, thermal diffusivity and conduct-

ivity, viscosity, and convective heat transfer coefficients compared to those of base fluids.

Nanofluids can be rummage-sale in a plethora of engineering applications extending from

the use in the automotive industry to the medical field to use in power plant cooling sys-

tems, as well as computers viz. heat transfer applications (in industrial cooling applications

as smart fluids, in nuclear reactors, in extraction of geothermal energy sources), automotive

applications (as nanofluid coolant and nanofluid in fuel, brake, and other vehicular nano-

fluids), electronic applications (cooling of microchips, micro scale fluid applications), and

biomedical applications (nano drug delivery, cancer therapeutics, cryopreservation, nano

cryosurgery), etc. Because of these original properties, nanofluids are important to study.

Therefore, more precise researches are presented in this topic in the references [1–6].

Because of its comprehensive applications in biomechanics, industry, and engineering,

the research on boundary layer flows of non-Newtonian fluids past a stretching surface is
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very important. Accordingly, Jayachandra and Sandeep [7], Reddy et al. [8], Vijayalakshmi

et al. [9], and Tian et al. [10] examined with different parameters on the non-Newtonian

fluid flow past various stretching surfaces. The effect of thermal radiations on MHD three-

dimensional flow over a stretching sheet was studied by Nasir et al. [11]. In the presence of

graphene nanoparticles, Khan et al. [12] investigated the Eyring-Powell slip flow of a nano

liquid film.

The upper-convected Maxwell fluid is a type of a viscoelastic or rate type fluid. This

model is very important since it predicts the relaxation time effect and it excludes compli-

cated effects of shear-dependent viscosity. Commonly, many researchers have studied

upper-convected Maxwell fluid flow. Yu Bai et al. [13], Imran et al. [14], Elsayed Mohamed

Abdel Rahman Elbashbeshy et al. [15], Vajravelu et al. [16], Omowaye and Animasaun [17],

Alireza Rahbari et al. [18], Gireesha et al. [19], and Meysam Mohamadali [20] scrutinized

non-Newtonian Maxwell fluid with different physical conditions such as viscous dissipation,

Newtonian heating, homogeneous-heterogeneous chemical reactions, and thermal stratifica-

tion past different stretching surfaces. Their result shows that as Prandtl number increases,

temperature, as well as rate of heat transfer, dwindled.

The research on stagnation point flow of nanofluid over stretching surface has different

applications in industries and technology. As a result, Sajid et al. [21], Sirinivasulu et al.

[22], and Wubshet [23] investigated MHD stagnation point flow in different non-

Newtonian fluids such as Oldroyd-B fluid Casson and upper-convected Maxwell fluid on

a stretching sheet with various physical parameters. Similarly, Mageswari and Nirmala

[24] scrutinized stagnation point flow on stretching sheet with Newtonian heating. More-

over, Abuzar et al. [25] have examined the effect of radiation and convective boundary

condition on oblique stagnation point of non-Newtonian nanofluids over the stretching

surface. Furthermore, stagnation point flow of nanofluid due to inclined stretching sheet

was studied numerically by Yasin Abdela et al. [26]. The numerical result shows that when

velocity ratio parameter, Grashof number, solutal expansion parameter, and angle of in-

clination velocity increased, the boundary layer thickness increases.

The studies of chemical reaction and slip boundary condition with heat transfer have im-

portant application in technology and industry. Accordingly, the slip effect on MHD flow

with different model of non-Newtonian nanofluids such as Casson fluid and Jeffrey nano-

fluid past a stretching sheet with various physical conditions are investigated by Sathies

Kumar [27], Raghawendra Mishra [28], Manjula and Jayalakshmi [29], and Mohamed Abd

El-Aziz and Ahmed Afify [30]. Their study displays that if velocity ratio, momentum slip,

and magnetic parameters increase, then the velocity boundary layer thickness become re-

duced. Krishnamurthy et al. [31], Mabood et.al [32], and Ibrahim et.al [33] probed the effect

of chemical reaction on mass and heat transfer MHD boundary layer flow with viscous dis-

sipation, thermal radiation, mixed convection, etc., past stretching sheet and observed that

with an increasing magnetic field, the Nusselt number, skin friction coefficient, and

Sherwood number are increased. Madasi krishnaiah et al. [34] studied the effect of slip

conditions, viscous dissipation, and chemical reaction on MHD stagnation point flow of

nanofluid. They observed that as the values of suction parameter rise, the velocity

upsurges, also the temperature and concentration profiles are reduced. Moreover, the

reference covering slip effects and chemical reaction are described in references [35–47].

All the above investigators disregard the effects of nanoparticles with slip effects in the ana-

lysis of the problem of MHD stagnation point flow of upper-convected Maxwell fluid with
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chemical reaction. So, the objective of the present paper is to inspect the effect of nanoparticle

and chemical reaction on MHD slip stagnation point flow, the boundary layer flow, and heat

and mass transfer of upper-convected Maxwell fluid above a stretching sheet via implicit finite

difference method. Therefore, the inclusion of the effect of nanoparticles with chemical reac-

tion and slip effect in upper-convected Maxwell fluids makes this study a novel one.

Mathematical formulation
Let us contemplate time-independent and incompressible MHD slip flow of upper-

convected Maxwell (UCM) fluid with chemical reaction along a stretching sheet. It is

expected that the free stream velocity Ue(x) and the stretching velocity Uw(x) are of the

forms Ue(x) = dx and Uw(x) = cx where c and d are constants. For this, study x-axis is

along the sheet and normal to the sheet y-axis is chosen. Over the stretching sheet, the

concentration is represented by Cw and temperature is represented by Tw. Moreover,

the ambient temperature and the ambient concentration are represented by T∞ and C∞.

Under these assumptions, the governing equations of time-independent and incom-

pressible boundary layer flow nanofluid over stretching sheet are given by:

∂u
∂x

þ ∂v
∂y

¼ 0 ð1Þ

u
∂u
∂x

þ v
∂u
∂y

¼ ν
∂2u
∂y2

−ξ u2
∂2u
∂x2

þ v2
∂2u
∂y2

þ 2uv
∂2u
∂x∂y

� �
þ Ue

∂ue
∂x

þ σB2
0

ρ f
Ue−uð Þ ð2Þ

u
∂T
∂x

þ v
∂T
∂y

¼ αm
∂2T
∂y2

þ τ DB
∂C
∂y

∂T
∂y

þ Dτ

T∞

∂T
∂y

� �2
( )

−
1

ρcp
� �

f

∂qr
∂y

þ Q0 T−T∞ð Þ
ρcp
� �

f

ð3Þ

u
∂C
∂x

þ v
∂C
∂y

¼ DB
∂2C
∂y2

þ Dτ

T∞

∂2T
∂y2

−Kr C−C∞ð Þ ð4Þ

The appropriate boundary conditions are:

u ¼ Uw þ Α
∂u
∂y

; v ¼ 0;T ¼ Tw þ Β
∂T
∂y

;C ¼ Cw þ Κ
∂C
∂y

; at y ¼ 0 ð5Þ

u→Ue xð Þ ¼ dx; v→0;T→T∞;C→C∞ asy→∞ ð6Þ
where u and v are the velocity components along the x and y directions, respectively, ρf is
the density of the base fluid, αm ¼ k
ρc f

is the thermal diffusivity, ξ is the relaxation time

parameter of the fluid, B0 is the strength of the magnetic field, ν is the kinematic viscosity

of the fluid, k is the thermal conductivity of the fluid, DB is the Brownian diffusion coeffi-

cient, Dτ is the thermophoretic diffusion coefficient, τ ¼ ðρcÞp
ðρcÞ f is the ratio between the ef-

fective heat capacity of the nanoparticle material and heat capacity of the fluid, c is the

volumetric volume expansion coefficient, and ρ is the density of the particles Fig. 1.

We can write for the radiation using Rosseland approximation

qr ¼ −
4σ�

3k�
∂T 4

∂y
ð7Þ

where σ∗ is the Stefan-Boltzman constant and k∗ is the absorption coefficient; assuming
the temperature difference within the flow in such that T4 may be expanded in a Taylor

series about T∞ and neglecting higher orders we get T4 ¼ 4TT3
∞−3T

4
∞.



Fig. 1 Coordinate system and physical model

Ibrahim and Negera Journal of the Egyptian Mathematical Society            (2020) 28:7 Page 4 of 28
Hence,

∂qr
∂y

¼ −
16σ�T 3

∞

3k�
∂2T
∂y2

ð8Þ

Introducing similarity transformations

ψ ¼ ffiffiffiffiffi
cν

p
f ηð Þ; θ ηð Þ ¼ T−T∞ð Þ

Tw−T∞ð Þ ; ϕ ηð Þ ¼ C−C∞ð Þ
Cw−C∞ð Þ ; η ¼

ffiffiffi
c
ν

r
y ð9Þ

We choose the stream function ψ(x, y) such that
∂ψ
∂y

¼ u; and −
∂ψ
∂x

¼ v ð10Þ

Using the similarity transformation defined by (9), Eqs. 1–4 are transformed into the
non-dimensional ordinary differential equation form as follows:

f
0 00 þ f f

0 0− f
02 þ E2 þM E− f

0� �
þ β 2f f

0
f
0 0− f 2 f

0 00
� �

¼ 0 ð11Þ

1þ 4
3R

� �
θ

0 0 þ Prf θ
0 þ PrNbϕ

0
θ

0 þ Ntθ02 þ PrQθ ¼ 0 ð12Þ

ϕ
0 0 þ Lef ϕ

0 þ Nt
Nb

θ
0 0−hLeϕ ¼ 0 ð13Þ

The transformed boundary conditions are
f ηð Þ ¼ S; f
0
ηð Þ ¼ 1þ λ f

0 0 ηð Þ; θ ηð Þ ¼ 1þ δθ
0 ηð Þ; ϕ ηð Þ ¼ 1þ γϕ

0
ηð Þ; at η ¼ 0 ð14Þ

f
0
ηð Þ→E; θ ηð Þ→0;ϕ ηð Þ→0; as η→∞ ð15Þ

where f is dimensionless velocity, θ is dimensionless temperature, ϕ is dimension-
less concentration, and η is the similarity variable. The prime denotes differenti-

ation with respect to η.
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The overall governing parameters are defined as the following:

S ¼ −vwðxÞ
ffiffiffiffiffiffi
2x
νu∞

q
is the suction-injection parameter, E ¼ d

c is velocity ratio, β = ξc is

Deborah number, M ¼ σB2
0x

ρu∞
is magnetic field parameter, λ ¼ Α

ffiffi
c
ν

p
is velocity slip par-

ameter, δ ¼ Β
ffiffi
c
ν

p
is thermal slip parameter, γ ¼ Κ

ffiffi
c
ν

p
is solutal slip parameter, R

¼ kk�
4σ�T 3

∞
is thermal radiation parameter, k = (ρcp)f, Pr ¼ ν

α is Prandtl number, Nb

¼ ðρcÞpDBðCw−C∞Þ
ðρcÞ f ν is Brownian motion parameter, Nb ¼ ðρcÞpDτðTw−T∞Þ

ðρcÞ f νT∞
is thermophoresis

parameter, Le ¼ ν
DB

is Lewis number, h ¼ hr
c is chemical reaction parameter, and Q

¼ Q0
aðρcpÞ f is heat source parameter.

The skin friction Cf, local Nusselt number Nux, and the Sherwood number Shx are

the important physical quantities of interest in this problem which are defined as

C f ¼ τw
ρu2w

;Nux ¼ xqw
k T f −T∞
� � ; Shx ¼ xqm

DB cw−c∞ð Þ

Here τ ¼ μð1þ βÞ ∂u is the surface shear stress, q ¼ −kð∂TÞ þ q is the surface
w ∂y w ∂y ðy¼0Þ r

heat flux, and qm ¼ −DBð∂C∂yÞðy¼0Þ
Using the similarity transformation in (9) we have the following relations:

C f Re
1
2
x ¼ f 00ð0Þ; Nux Re

−1
2

x ¼ −ð1þ 4
3RÞθ0ð0Þ; Shx Re

−1
2

x ¼ −ϕ0ð0Þ, where Rex is the local

Reynolds number.

Numerical solution

a. The Keller-box method

The transfigured ordinary differential Eqs. (11), (12), and (13) subject to the boundary

conditions (14) and (15) are solved numerically using an implicit finite difference

method (Keller-box) in combination with Newton’s linearization techniques. The key

topographies of this method are:

i) Unconditionally stable and has a second-order accuracy with arbitrary spacing and

attractive extrapolation features.

ii) The most reliable and powerful numerical methods for nonlinear boundary layer

flows that are generally parabolic in nature.

iii) Tolerates very speedy x variations.

The Keller-box scheme comprises four steps:

1) Reducing the order ordinary differential equations into a system of fist order equations.

2) Using central differences write difference equations.

3) Linearizing the resulting algebraic equations by using Newton’s method and

writing in matrix-vector form.

4) By using block-tridiagonal elimination method solving the linearized system

of equations.
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b. The finite difference scheme
We write the governing third-order momentum Eq. (11) and second-order energy

and concentration Eqs. (12) and (13) in terms of a first-order equations. For this pur-

pose, we introduce new dependent variables u, v, t, θ = s(x, η), ϕ(η) = g(x, η) such that

f′ = u, u′ = v, s′ = t, and g′ = z

Thus Eqs. (11), (12), and (13) can be written as

v
0 þ fv−u2 þ E2 þM E−uð Þ þ β 2fuv− f 2v0

� � ¼ 0 ð16Þ

1þ 4
3R

� �
t
0 þ Prf t

0 þ PrNbzt þ Ntt2 þ PrQs ¼ 0 ð17Þ

z0 þ Lefz þ Nt
Nb

t0−hLeg ¼ 0 ð18Þ

The boundary conditions are

f ηð Þ ¼ S; u ηð Þ ¼ 1þ λv ηð Þ; s ηð Þ ¼ 1þ δt ηð Þ; g ηð Þ ¼ 1þ γz ηð Þ; at η ¼ 0 ð19Þ
u ηð Þ→E; s ηð Þ→0; g ηð Þ→0; as η→∞ ð20Þ

where prime denotes the differentiation with respect to η.
We now consider the net rectangle in the x − η plane shown in Fig. 2 and the net

points defined as below

x0 ¼ 0 xi ¼ xi−1 þ ki i ¼ 1; 2; 3;…; I
η0 ¼ 0 η j ¼ η j−1 þ hj j ¼ 1; 2; 3;…; J η j ¼ η∞

where ki is the Δx-spacing and hj is the Δη-spacing. Here, i and j are the sequence of

numbers that indicate the coordinate location, not tensor indices or exponents.

Since only first derivatives appear in the governing equations, centered differ-

ences and two-point averages can be constructed involving only the four corner

nodal values of the “box.” For example, if g represents any of the dependent vari-

ables u, v, s, and t then
2 Net rectangle for difference approximations



Ibrahim and Negera Journal of the Egyptian Mathematical Society            (2020) 28:7 Page 7 of 28
g½ �ij−1
2
¼ 0:5 gij−1 þ gij

� �
g½ �i−1

2

j−1
2
¼ 0:5 g½ �i−1j−1

2
þ g½ �ij−1

2

� �
∂g
∂η

	 
i−1
2

j−1
2

¼ 0:5
∂g
∂η

	 
i−1
j−1

2

þ ∂g
∂η

	 
i
j−1

2

 !

∂g
∂η

	 
i
j−1

2

¼ 0:5
g½ �ij−1

2
− g½ �i1−1

2

� �
η j−η j−1

� �
∂g
∂x

	 
i−1
2

j−1
2

¼ 0:5
g½ �ij−1

2
− g½ �i−11−1

2

� �
xi−xi−1ð Þ

Now write the finite difference approximations for first-order ordinary differential
equation for the mid-point ðxi; η j−1
2
Þ of the segment P1P2using centered difference

derivatives. This process is called centering about ðxi; η j−1
2
Þ. We get

f j− f j−1−
hj

2
uj þ uj−1
� � ¼ 0

uj−uj−1−
hj

2
v j þ v j−1
� � ¼ 0

s j−s j−1−
hj

2
t j þ t j−1
� � ¼ 0

g j−g j−1−
hj

2
z j þ z j−1
� � ¼ 0

v j−v j−1
� �þ hj

4
f j þ f j−1
� �

v j þ v j−1
� �

−
hj

4
uj þ uj−1
� �2 þ hjβ

4
f j þ f j−1
� �

uj þ uj−1
� �

v j þ v j−1
� �

−
β
4

f j þ f j−1
� �

f j þ f j−1
� �

v j−v j−1
� �þMhj E−

1
2

uj þ uj−1
� �� �

þhjE
2 ¼ P j−1

2
1þ 4

3R

� �
t j−t j−1
� �þ hj Pr

4
f j þ f j−1
� �

t j þ t j−1
� �

þ hjPrNb

4
z j þ z j−1
� �

t j þ t j−1
� �þ hjPrNt

4
t j þ t j−1
� �

t j þ t j−1
� �

þ hjPrQ

2
s j þ s j−1
� � ¼ S j−1

2
z j−z
� �þ hjLe

4
f j þ f j−1
� �

z j þ z j−1
� �

þ Nt
Nb

t j−t j−1
� �

−
Leh jh

2
g j þ g j−1

� �
¼ T j−1

2

ð21Þ

where P 1 ¼ −ðv −v Þ−h ð f vÞ 1 þ h ðu2Þ 1−2h ðfuvÞ 1 þ β ð f 2Þ 1ðv −v Þ−Mh ðE
1−2
j j−1 j j−2

j j−2
j j−2 4 j−2

j j−1 j

�ðuÞ j−1
2
Þ−hjE2and

S j−1
2
¼ − 1þ 4

3R

� �
t j−t j−1
� �

−hj Pr f tð Þ j−1
2
−hjPrNb ztð Þ j−1

2
−βhj t

2
� �

j−1
2
−hjPrQ sð Þ j−1

2

T j−1
2
¼ − z j−z j−1

� �
−hj f zð Þ j−1

2
−
Nt
Nb

t j−t j−1
� �þ Lehjhg j−1

2

We note that P1−1
2
, Qj−1

2
, and S j−1

2
involve only known quantities if we assume that

the solution is known on

x = xi − 1. In terms of the new dependent variables, the boundary conditions become

f x; 0ð Þ ¼ S; u x; 0ð Þ ¼ 1þ λv 0ð Þ; s x; 0ð Þ ¼ 1þ δt 0ð Þ; g 0ð Þ ¼ 1þ γz 0ð Þ
u x;∞ð Þ ¼ E s; x;∞ð Þ ¼ 0; s x;∞ð Þ ¼ 0; g x;∞ð Þ ¼ 0

ð22Þ

Equations in Eq. (21) are imposed for j = 1, 2, 3, …, J and the transformed
boundary layer thickness ηJ is sufficiently large so that it is beyond the edge of
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the boundary layer Cebeci and Bradshaw [48]. The boundary condition yields at

x = xi are

f i0 ¼ S; ui0 ¼ 1þ λvi0; si0 ¼ 1þ δti0; gi0 ¼ 1þ γzi0; u
i
J ¼ E; siJ ¼ 0; giJ ¼ 0 ð23Þ

Newton’s method
Equations in Eq. (21) are nonlinear algebraic equations and therefore have to be linear-

ized before the factorization scheme can be used. Let us write the Newton iterates as

follows: For (k + 1)th iterates, we write

f kþ1ð Þ
j ¼ f kð Þ

j þ δ f kð Þ
j ;

u kþ1ð Þ
j ¼ u kð Þ

j þ δu kð Þ
j ;

v kþ1ð Þ
j ¼ v kð Þ

j þ δv kð Þ
j ;

t kþ1ð Þ
j ¼ t kð Þ

j þ δt kð Þ
j ;

s kþ1ð Þ
j ¼ s kð Þ

j þ δ s kð Þ
j

g kþ1ð Þ
j ¼ g kð Þ

j þ δ g kð Þ
j

z kþ1ð Þ
j ¼ z kð Þ

j þ δ z kð Þ
j

ð24Þ

Equation (21) can be written as

f j þ δ f j− f j−1−δ f j−1 ¼
hj

2
uj þ δuj þ uj−1 þ δuj−1
� �

uj þ δuj−uj−1−δuj−1 ¼ hj

2
v j þ δv j; þ v j−1 þ δv j−1
� �

g j þ δg j−g j−1−δg j−1 ¼
hj

2
z j þ δz j þ z j−1 þ δz j−1
� �

s j þ δs j−s j−1−δs j−1 ¼ hj

2
t j þ δt j þ t j−1 þ δt j−1
� �

v j þ δv j;−v j−1−δv j−1 þ hj

4
f j þ δ f j þ f j−1 þ δ f j−1
� �

v j þ δv j; þ v j−1 þ δv j−1
� �

−
hj

4
uj þ δuj þ uj−1 þ δuj−1
� �2

þ hjβ
4

f j þ δ f j þ f j−1 þ δ f j−1
� �

uj þ δuj þ uj−1 þ δuj−1
� �

v j þ δv j þ v j−1 þ δv j−1
� �

−
β
4

f j þ δ f j þ f j−1 þ δ f j−1
� �

f j þ δ f j þ f j−1 þ δ f j−1
� �

v j þ δv j −v j−1−δv j−1
� �

þMhj E−
1
2

uj þ δuj þ uj−1 þ δuj−1
� �� �

þ hjE
2 ¼ P j−1

2
1þ 4

3R

� �
t j þ δt j−t j−1−δt j−1
� �

þ hj Pr
4

f j þ δ f j þ f j−1 þ δ f j−1
� �

t j þ δt j þ t j−1 þ δt j−1
� �

þ hjPrNb
4

z j þ δz j þ z j−1 þ δz j−1
� �

t j þ δt j þ t j−1 þ δt j−1
� �

þ hjPrNt
4

t j þ δt j þ t j−1 þ δt j−1
� �

t j þ δt j þ t j−1 þ δt j−1
� �

þ hjPrQ
2

s j þ δs j þ s j−1 þ δs j−1
� � ¼ Qj−1

2
z j þ δz j−z j−1−δz j−1
� �

þ hjLe
4

f j þ δ f j þ f j−1 þ δ f j−1
� �

z j þ δz j þ z j−1 þ δz j−1
� �

þ Nt
Nb

t j þ δt j−t j−1−δt j−1
� �

−
Lehjh

2
g j þ δg j þ g j−1 þ δg j−1

� �
¼ S j−1

2

ð25Þ

By dropping the quadratic and higher-order terms in δ f ðiÞ; δuðiÞ; δvðiÞ; δsðiÞ; δgðiÞ;
j j j j j

δtðiÞj ; and δzðiÞj , a linear tridiagonal system of equations will be obtained as

follows:
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δ f j−δ f j−1−
hj

2
δuj þ δuj−1
� � ¼ r1ð Þ j−1

2

δuj −δuj−1−
hj

2
δv j þ δv j−1
� � ¼ r2ð Þ j−1

2

δs j −δs j−1−
hj

2
δt j þ δt j−1
� � ¼ r3ð Þ j−1

2

δg j−δg j−1−
hj

2
δz j þ δz j−1
� � ¼ r4ð Þ j−1

2

δv j−δv j−1 þ hj

2
v j−1

2
δ f j þ δ f j−1
� �

þ hj

2
f j−1

2
δv j þ δv j−1
� �

−hju j−1
2
δuj þ δuj−1
� �þ hjβ uvð Þ j−1

2
δ f j þ δ f j−1
� �

þhjβ f vð Þ j−1
2
δuj þ δuj−1
� �þ hjβ fuð Þ j−1

2
δv j þ δv j−1
� �

−β f 2j−1
2
δv j−δv j−1
� �

−β f j−1
2
v j−v j−1
� �

δ f j þ δ f j−1
� �

þM
hj

2
δuj þ δuj−1
� � ¼ r5ð Þ j−1

2
1þ 4

3R

� �
δt j−δt j−1
� �þ hj Pr

2
f j−1

2
δt j þ δt j−1
� �þ hj Pr

2
t j−1

2
δ f j þ δ f j−1
� �

þ hjPrNb

2
t j−1

2
δz j þ δz j−1
� �þ hjPrNb

2
z j−1

2
δt j þ δt j−1
� �þ hjPrNtt j−1

2
δt j þ δt j−1
� �

þ hjPrQ
2

δs j þ δs j−1
� � ¼ r6ð Þ j−1

2
δz j−δz j−1
� �þ hjLe

2
z j−1

2
δ f j þ δ f j−1
� �

þ hjLe
2

f j−1
2
δz j þ δz j−1
� �

þ Nt
Nb

δt j−δt j−1
� �

−
Leh jh

2
δg j þ δg j−1

� �
¼ r7ð Þ j−1

2

ð26Þ
where
r1ð Þ j−1
2
¼ f j−1− f j þ

hj

2
uj þ uj−1
� �

r2ð Þ j−1
2
¼ uj−1−uj þ hj

2
v j þ v j−1
� �

r3ð Þ j−1
2
¼ s j−1−s j þ hj

2
t j þ t j−1
� �

r4ð Þ j−1
2
¼ g j−1−g j þ

hj

2
z j þ z j−1
� �

r5ð Þ j−1
2
¼ − v j−v j−1

� �
−hj f vð Þ j−1

2
þ hju

2
j−1

2
−2hjβ fuvð Þ j−1

2
þ β f 2j−1

2
v j−v j−1
� �

−hjMuj−1
2
−E2hj−MEhj

r6ð Þ j−1
2
¼ − 1þ 4

3R

� �
t j−t j−1
� �

− Prhj f tð Þ j−1
2
− Prh jNb ztð Þ j−1

2
−hjPrNtt

2
j−1

2
− Prh jQs j−1

2

r7ð Þ j−1
2
¼ − z j−z j−1

� �
−Leh j f zð Þ j−1

2
−
Nt
Nb

t j−t j−1
� �

−Leh jhg j−1
2

ð27Þ

δ f j−δ f j−1−
hj

2
δuj þ δuj−1
� � ¼ r1ð Þ j−1

2

δuj−δuj−1−
hj

2
δv j þ δv j−1
� � ¼ r2ð Þ j−1

2

δs j−δs j−1−
hj

2
δt j þ δt j−1
� � ¼ r3ð Þ j−1

2

δg j−δg j−1−
hj

2
δz j þ δz j−1
� � ¼ r4ð Þ j−1

2

a1δv j þ a2δv j−1 þ a3δ f j þ a4δ f j−1 þ a5δuj þ a6δuj−1 ¼ r5ð Þ j−1
2

b1δt j þ b2δt j−1 þ b3δ f j þ b4δ f j−1 þ b5δz j þ b6δz j−1 þ b7δs j þ b8δs j−1 ¼ r6ð Þ j−1
2

c1δz j þ c2δz j−1 þ c3δ f j þ c4δ f j−1 þ c5δt j þ c6δt j−1 þ c7δg j þ c8δg j−1 ¼ r7ð Þ j−1
2

ð28Þ

Where

a1ð Þ j ¼ 1þ hj

2
f j−1

2
þ hjβ f uð Þ j−1

2
−β f 2j−1

2

a2ð Þ j ¼ −1þ hj

2
f j−1

2
þ hjβ f uð Þ j−1

2
þ β f 2j−1

2

a3ð Þ j ¼ a4ð Þ j ¼
hj

2
v j−1

2
þ hjβ uvð Þ j−1

2
−β f j−1

2
v j−v j−1
� �

a5ð Þ j ¼ a6ð Þ j ¼ −
hj

2
uj−1

2
þ hjβ f vð Þ j−1

2
þMhj

2

b1ð Þ j ¼ 1þ 4
3R

� �
þ hj Pr

2
f j−1

2
þ hjPrNb

2
z j−1

2
þ hjPrNtt j−1

2

b2ð Þ j ¼ − 1þ 4
3R

� �
þ hj Pr

2
f j−1

2
þ hjPrNb

2
z j−1

2
þ hjPrNtt j−1

2

b3ð Þ j ¼ b4ð Þ j ¼
hj Pr
2

t j−1
2

b5ð Þ j ¼ b6ð Þ j ¼
hjPrNb

2
t j−1

2
; b7ð Þ j ¼ b8ð Þ j ¼

hjPrQ
2

c1ð Þ j ¼ 1þ hjLe

2
f j−1

2

c2ð Þ j ¼ −1þ hjLe

2
f j−1

2
; c3ð Þ j ¼ c4ð Þ j ¼

hjLe

2
f j−1

2

c5ð Þ j ¼
Nt
Nb

; c6ð Þ j ¼ − c5ð Þ j; c7ð Þ j ¼ c8ð Þ j ¼
−hjLeh

2

ð29Þ

To complete the system (28) we recall the boundary conditions (23) which can be satisfied
exactly with no iteration. Therefore, in order to maintain these correct values in all the iter-

ates, we take δf0 = 0, δu0 = 0, δs0 = 0, δg0 = 0 δuJ = 0, δsJ = 0, and δgJ = 0.
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In a general case, Eq. (31) in vector matrix forms:

A½ � δ½ � ¼ r½ � ð30Þ

where

A ¼

A1½ � C1½ �
B2½ � A2½ � C2½ �

B3½ � A3½ � C
� �

; δ ¼

δ1½ �
δ2½ �
:
:
:

δ J−1½ �
δ J½ �

2
666666664

3
777777775
; r ¼

r1½ �
r2½ �
:
:
:

r J−1½ �
r J½ �

2
666666664

3
777777775

2
6666666666664

In Eq. (31), the elements are defined by

A1½ � ¼

0 0 0 1 0 0 0

−
h1
2

0 0 0 −
h1
2

0 0

0 −
h1
2

0 0 0 −
h1
2

0

0 0 −
h1
2

0 0 0 −
h1
2

a2 0 0 a3 a1 0 0
0 b2 b6 b3 0 b1 b5
0 c6 c2 c3 0 c5 c1

2
6666666666664

3
7777777777775

Aj
� � ¼

−
hj

2
0 0 1 0 0 0

−1 0 0 0 −
hj

2
0 0

0 −1 0 0 0 −
hj

2
0

0 0 −1 0 0 0 −
hj

2
a6 0 0 a3 a1 0 0
0 b8 0 b3 0 b1 b5
0 0 c8 c3 0 c5 c1

2
666666666666664

3
777777777777775

2≤ j≤ J

B j
� � ¼

0 0 0 −1 0 0 0

0 0 0 0 −
hj

2
0 0

0 0 0 0 0 −
hj

2
0

0 0 0 0 0 0 −
hj

2
0 0 0 a4 a2 0 0
0 0 0 b4 0 b2 b6
0 0 0 c4 0 c6 c2

2
6666666666664

3
7777777777775

2≤ j≤ J

C j
� � ¼

−
hj

2
0 0 0 0 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
a5 0 0 0 0 0 0
0 b7 0 0 0 0 0
0 0 c7 0 0 0 0

2
6666666664

3
7777777775
1≤ j≤ J

δ1½ � ¼

δv0
δt0
δz0
δ f 1
δv1
δt1
δz1

2
666666664

3
777777775
; δ j
� � ¼

δuj−1

δs j−1
δg j−1
δ f j
δv j
δt j
δz j

2
666666664

3
777777775
2≤ j≤ J r j

� � ¼

r1ð Þ j−1
2

r2ð Þ j−1
2

r3ð Þ j−1
2

r4ð Þ j−1
2

r5ð Þ j−1
2

r6ð Þ j−1
2

r7ð Þ j−1
2

2
66666666664

3
77777777775
1≤ j≤ J

ð31Þ

To solve Eq. (34), we assume that A is nonsingular and can be factored into
A½ � ¼ L½ � U½ � ð32Þ
where
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A ¼

α1½ �
B2½ � α1½ �

: :
: :

: α j−1
� �
BJ½ � α J½ �

2
6666664

3
7777775

and
U ¼

I½ � Γ1½ �
I½ � Γ2½ �

: :
: :

I½ � Γ j−1
� �

I½ �

2
6666664

3
7777775

where [I] is the identity matrix of order 7 and [αi] and [Γi] are 7 × 7 matrices, in
which elements are determined by the following equations:

α1½ � ¼ A1½ �; ð33Þ
A1½ � Γ1½ � ¼ C1½ �; ð34Þ
α j
� � ¼ Aj

� �
− Bj
� �

Γ j−1
� �

; j ¼ 2; 3;…; J ð35Þ
α j
� �

Γ j
� � ¼ C j

� �
j ¼ 2; 3;…; J−1 ð36Þ

Equation (30) can now be substituted into Eq. (34) and we get

L½ � U½ � δ½ � ¼ r½ � ð37Þ
If we define

U½ � δ½ � ¼ W½ � ð38Þ
Equation (37) becomes

L½ � W½ � ¼ r½ � ð39Þ
where
W ¼

W 1½ �
W 2½ �
:
:
:

W j−1
� �
W J½ �

2
666666664

3
777777775
;

and the [ Wj] are 7 × 1 column matrices. The element W can be solved from Eq. (39):
α1½ � W 1½ � ¼ r1½ � ð40Þ
α j
� �

W j
� � ¼ r j

� �
− Bj
� �

W j−1
� �

2≤ j≤ J ð41Þ

The step in which Γj, αj, and Wj are calculated is usually referred to as the forward
sweep. Once the element of W is found, Eq. (38) then gives the solution in the so-

called backward sweep, in which the elements are obtained by the following relations:

δ J½ � ¼ W J½ � ð42Þ
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δ J½ � ¼ W J½ �− Γ J½ � δ jþ1
� �

1≤ j≤ J−1 ð43Þ

These calculations are repeated until some convergence criterion is satisfied and cal-

culations are stopped when

δv ið Þ
0




 


≤ε1 ð44Þ

where ε1is a small arranged value.
Its exactness and heftiness have been confirmed by different investigators. We have

compared our results with investigators Shravani Ittedi et al. [49] to further check on

the exactness of our numerical computations and have found to be in an admirable

agreement.

Results and discussions
This paper analyzed the effects of slip and chemical reaction on upper-convected Maxwell

fluid flow over a stretching sheet. Transfigured governing Eqs. (11–13) with the boundary

conditions (14) and (15) are coupled non-linear differential equations. Thus, it is impos-

sible to solve directly with the analytical method. Therefore, to solve this coupled non-

linear differential equations, we use implicit finite difference (Keller-box) method by

MatLabR2013a software. For various values of effective governing parameters such as

velocity ratio S, the suction-injection parameter, E velocity ratio, Deborah number β, mag-

netic field parameter M, velocity slip parameter λ, thermal slip parameter δ, solutal slip

parameter γ, thermal radiation parameter M, Prandtl number Pr, Brownian motion par-

ameter Nb, thermophoresis parameter Nt, Lewis number Le, chemical reaction parameter

h, and heat source parameter Q, the numerical solutions of velocity, temperature, and

concentration are obtained with step size Δη = 0.1. Unless otherwise the parameters are

specified, the value parameters are M = 1.0, β = 0.1, λ = 0.1, δ = 0.1, γ = 0.1, Pr = 2.0,

Le = 2.0, Nb = 0.1, S = 0.1, Nt = 0.1, R = 0.1, h = 0.1, Q = 0.0, E = 0.1. For this study, the

range of parameters is 1 ≤M ≤ 4, 0 ≤ β ≤ 1, 0 ≤ S ≤ 1.5, 0 ≤ h ≤ 1, 0.1 ≤ E ≤ 1.0, 0.1 ≤Nb ≤

1.5, 0.1 ≤Nt ≤ 1.0, −1.5 ≤Q ≤ 0.0, 2 ≤ Le ≤ 15, 0 ≤ R ≤ 1.0, 0.0 ≤ λ ≤ 1.5, 0 ≤ δ ≤ 1.5, 0 ≤ γ ≤ 1.0

The comparison of the variation of the skin coefficient f ′ ′ (0) for different values of

magnetic field parameter M with respect to another study is presented in Table 1. The

values show that our result is in admirable agreement with the results given by re-

searchers Shravani Ittedi et al. [49] in limiting conditions. Moreover, a comparison of

heat and mass transfer rate for different values of δ and λ is made in Table 2 to check

the accuracy of the numerical solution with Shravani Ittedi et al. [49] and we have

found an admirable agreement with him. Therefore, we are assured that for the analysis

of our problem, the numerical method is appropriate.
Table 1 Comparison of skin friction coefficient −f ′ ′ (0) for different values of magnetic field
parameter M when E = 0, β = 0, Le = 2.0, Pr = 2.0, and h = 0.1

M Shravani Ittedi et al. (2017) Present result

0.0 1.2104 1.2105

0.3 1.3578 1.3578

0.5 1.4475 1.4478

1.0 1.6500 1.6504



Table 2 Comparison of Nusselt number −θ ′ (0) and Sherwood number −ϕ ′ (0) for different values
of thermal slip parameter δ and concentration slip parameter γ when E = 0, β = 0, Le = 2.0, and
Pr = 2.0

δ γ Shravani Ittedi et al. (2017)
(Nux)

Present Result Shravani Ittedi et al. (2017)
(Shx)

Present Result

0.0 0.1 0.7521 0.5720 0.5958 0.5957

0.3 0.1 0.5874 0.5873 0.6881 0.6880

0.5 0.1 0.5125 0.5120 0.7304 0.7304

1.0 0.1 0.3886 0.3886 0.8009 0.8008

0.1 0.1 0.6810 0.6810 0.7401 0.7401

0.1 0.3 0.6984 0.6984 0.4648 0.4648

0.1 0.5 0.7062 0.7062 0.3424 0.3423

0.1 1.0 0.7191 0.7190 0.1433 0.1432
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For different values of S, E, λ , and β , the variation of f ′ ′ (0), −θ ′ (0), and −ϕ ′ (0) is

given in Table 3. From the table, when the suction-injection parameter S and Deborah

number β increases, we see that skin friction coefficient increases but decreases with an

increase of velocity ratio E and velocity slip parameter λ. Moreover, the table shows

that the local Nusselt number −θ ′ (0) and the local Sherwood number −ϕ ′ (0) of the

flow field increases as the values of S and E and decreases with an upsurge of Deborah

number β and velocity slip parameter λ.

The sways of magnetic field parameter on flow velocity, temperature, and concentra-

tion are displayed through Figs. 3, 4, and 5. From the figures, we have perceived that as

magnetic field increased, the velocity of the fluid decreased; in contrast, the

temperature and concentration profiles demonstrated the behavior of increasing. These

are because of the magnetic field offerings a retarding body force known as Lorentz
Table 3 Calculation of skin friction coefficient −f ′ ′ (0), local Nusselt number −θ ′ (0), and local
Sherwood number −ϕ ′ (0) for different values of S, E, λ, and β when Nb = 0.1, Nt = 0.1, Pr = 2, Le =
2, R = 0.1, δ = 0.1, γ = 0.1, h = 0.1, and Q = 0.1

S E λ β −f ′ ′ (0) −θ ′ (0) −ϕ ′ (0)

0.0 0.1 0.1 0.1 0.3215 0.6207 0.5638

0.2 ----- ----- ----- 1.4387 0.8159 0.6097

0.4 ----- ----- ----- 1.5730 1.0272 0.6530

0.7 ----- ----- ----- 1.8155 1.3669 0.7178

0.1 0.1 ----- ----- 1.4761 0.6842 0.5587

----- 0.2 ----- ----- 1.2672 0.7441 0.6138

----- 0.4 ----- ----- 1.0091 0.7947 0.6619

----- 0.7 ----- ----- 0.5233 0.8663 0.7310

----- 0.1 0.0 ----- 1.3969 0. 7191 0.5886

----- ----- 0.2 ----- 1.3244 0.7069 0.5835

----- ----- 0.4 ----- 1.1418 0.6742 0.5703

----- ----- 0.7 ----- 0.8121 0.6068 0.5449

----- ----- 0.1 0.0 1.3494 0.7209 0.5908

----- ----- ----- 0.2 1.4069 0.7111 0.5839

----- ----- ----- 0.4 1.4647 0.7016 0.5776

----- ----- ----- 0.7 1.5517 0.6879 0.5690



Fig. 3 Velocity graph for various values of M
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force performs transverse to the direction of the practical magnetic field. The boundary

layer flow and the thickness of the momentum boundary layer are abridged by this body

force. Similarly, because of Lorentz force, a fractional resistive force which opposes the

fluid motion, it produces heat. Due to this fact the stronger the magnetic field, the thicker

the thermal boundary layer and concentration boundary layer. Figures 6, 7, and 8 reveal

the characteristic of velocity, temperature, and concentration profiles with respect to the

variation in suction parameter S. As the values of S increase the temperature, velocity and
Fig. 4 Temperature graph for various values of M



Fig. 5 Concentration graph for various values of M
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concentration profile results diminish. The variations of chemical reaction parameter on

concentration profile are executed in Fig. 9. These figures afford a clear insight that in-

creasing the value of chemical reaction, the concentration in the boundary layer falls. This

is due to the fact that negative chemical reaction reduces the concentration boundary

layer thickness and raises the mass transfer.

The influences of velocity ratio parameter on flow velocity and temperature profiles

are revealed through Figs. 10 and 11. As the values of velocity ratio upsurge, the

boundary layer thickness rises and the flow has boundary layer structure. The graph of
Fig. 6 Velocity graph for various values of S



Fig. 7 Temperature graph for various values of S
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velocity is possible when the free steam velocity is less than or equal to the velocity of

stretching sheet. That is when velocity ratio is less than or equal to one. But as the

value of velocity ratio parameter increases, thermal boundary layer thickness decreases.

The influence of Brownian motion parameter on concentration and temperature

profiles is depicted through Figs. 12 and 13. From the figures, it can be seen that as the

values of Brownian motion parameter rises, the thermal boundary layer thickness

increases and at the surface, the temperature gradient demises. But we witnessed an op-

posite result on the concentration profiles and concentration boundary layer thickness

as Brownian motion parameter upsurges. Figures 14 and 15 are devoted to demonstrate

the impact of thermophoresis parameter on temperature and concentration profiles.

From the figures, it is perceived that when thermophoresis parameter rises, there is an

improvement of the thermal and concentration boundary layer thickness. Figure 16 is

plotted to examine the effect of heat generation/absorption parameter on temperature
Fig. 8 Concentration graph for various values of S



Fig. 9 Concentration graph for various values of h
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profiles. From the figure, it can be seen that the temperature profiles increases as heat

generation/absorption parameter upsurges. This is because the thermal state of the

fluid rises with increasing the heat generation.

Figures 17 and 18 executed that the influence of Deborah number on velocity and

temperature profiles. These figures give a clear perception that the velocity boundary

thickness tumbles as the value of Deborah number rises, and the thermal boundary

layer thickness growths as the values increase. This is because of the fact that as the

values upsurge, the force due to the parameter opposes the velocity flow and declines

thermal diffusivity in the boundary layer, which encourages the upswing of

temperature. The impact of Lewis number on concentration profiles is illustrated

through Fig. 19. From the figure, it can be observed that higher values of Lewis number

decrease the concentration graph and the concentration boundary layer thickness. The
Fig. 10 Velocity graph for various values of E



Fig. 11 Temperature graph for various values of E
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temperature curves for different values of thermal radiation parameter are depicted in

Fig. 20. From the graph, it is possible to observe that as the values of thermal radiation

parameter upsurge, the temperature graph and the temperature boundary layer thick-

ness are snowballing.

The influences of velocity slip parameter on velocity, temperature, and concentration

profiles are portrayed in Figs. 21, 22, and 23. From the graphs, it can be seen that as

the value of velocity slip parameter upsurges, the velocity profiles decreases, but the

temperature and concentration profiles are snowballing. This is due to the fact that as

velocity slip rises, the velocity of fluid declines because pulling of stretching sheet can

transmit the fluid. The temperature and concentration profiles are presented in Figs. 24

and 25 for various values of thermal slip parameter. It is observed that as the values of

thermal slip parameter increase, both temperature and concentration profiles decline.
Fig. 12. Temperature graph for various values of Nb



Fig. 13 Concentraion graph for various values of Nb
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A decrement of concentration profiles with an increment of concentration slip param-

eter is executed through Fig. 26. Basically, this is due to the fact that slip retards the

motion of the fluid which indicates a decline in concentration profiles.

Conclusions
This study presents MHD slip effect and stagnation point flow of upper-convected

Maxwell fluid on a stretching sheet with chemical reaction. Depending on the govern-

ing parameters, velocity ratio, suction-injection parameter, Lewis numbers, Deborah

number, magnetic field, Brownian motion parameter, thermophoresis parameter, chem-

ical reactions parameter, thermal radiation parameter, velocity slip parameter, thermal

slip parameter, solutal slip parameter, and heat source parameter, a similarity solution

is obtained. The clarifications of the present study are precised as:
Fig. 14 Temperature graph for various values of Nt



Fig. 15 Concentration graph for various values of Nt
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1. The suction-injection parameter on velocity, concentration, and temperature

profiles has shown a reduction.

2. When the magnetic field upsurges, it reduces velocity profiles and it upsurge

temperature and concentration profiles.

3. A velocity profile is reduced with rising values of the Deborah number, and

temperature profile is increased with an increasing value of the Deborah number.

4. Temperature and concentration profiles are intensified with snowballing values of

velocity slip parameter but velocity profiles are decreased.

5. By increasing the values of the Brownian motion, chemical reaction, Lewis

number, thermal slip parameter, and solutal slip parameter, there is reduction in

concentration profiles.
Fig. 16 Temperature graph for various values of Q



Fig. 17 Velocity graph for various values of β
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6. The thickness of thermal boundary layer augmented as thermal radiation

parameter R upsurges.

7. Both rate of Nusselt number and rate of mass Sherwood number rise with suction-

injection parameter S and velocity ratio E, and declines velocity slips parameter

and the Deborah number.

Nomenclature
B0 Strength of magnetic field

Cf Skin friction coefficient

c Volumetric volume expansion coefficient

Cw Uniform concentration over the surface of the sheet

C∞ Ambient concentration
Fig. 18 Temperature graph for various values of β



Fig. 19 Concentration graph for various value of Le
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DB Brownian diffusion coefficient

hf Heat transfer coefficient

DT Thermophoresis diffusion coefficient

k Thermal conductivity

f Dimensionless velocity stream function

E Velocity ratio

Le Lewis number

h Chemical reaction parameter

M Magnetic parameter

Pr Prandtl number
Fig. 20 Temperature graph for various values of R



Fig. 21 Velocity graph for various values of λ
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Nb Brownian motion parameter

S Suction-injection parameter

Nt Thermophoresis parameter

Rex Local Reynolds number

Nux Local Nusselt number

R Heat source parameter

Shx Local Sherwood number

Tf Temperature of a hot fluid
Fig. 22 Temperature graph for various values of λ



Fig. 23 Concentration graph for various values of λ
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Tw Uniform temperature over the surface of the sheet

T∞ Ambient temperature

T Temperature of the fluid inside the boundary layer

ue Free steam velocity

(u, v) Velocity component along x- and y-direction
Fig. 24 Temperature graph for various values of δ



Fig. 25 Concentration graph for various values of δ

Ibrahim and Negera Journal of the Egyptian Mathematical Society            (2020) 28:7 Page 25 of 28
Greeks symbols

ϕ∞ Dimensionless concentration function at large values of y

η Dimensionless similarity variable

β Deborah number

ν Kinematic viscosity of the fluid

θ Dimensionless temperature stream function

ρf Density of the fluid

μ Dynamic viscosity of the fluid

σ Electrical conductivity

(ρc)f Heat capacity of the fluid

ψ Stream function

(ρc)p Effective heat capacity of a nanoparticle
Fig. 26 Concentration graph for various values of γ
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τ Parameter defined by
ðρcÞp
ðρcÞ f

ϕ Dimensionless concentration steam function

αm Thermal diffusivity

ϕw Dimensionless concentration function at the surface

λ Velocity slip parameter

δ Thermal slip parameter

γ Solutal slip parameter
Subscripts

ξ Relaxation time parameter of the fluid

∞ Condition at the free stream

w Condition at the surface
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