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Abstract
In this paper, an algorithm for the bi-objective median path (BMP) problem on a tree
network is considered. The algorithm is based on the two-phase method which can
compute all Pareto solutions for the BMP problem. The first phase is applied to find
supported Pareto solutions by solving the uni-objective problem D(P, λ). The second
phase is used to compute the unsupported Pareto solutions by applying a k-best
algorithm which computes the k-best Pareto solutions in order of their objective values.
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Introduction
The problem of locating a path on a tree network has been receiving a lot of attention
in the literature since it has many applications including the design of pipe lines, public
transit line, and railroad lines. Most of papers study the problem of locating a path on a
tree which minimizes either the sum of weighted distances from all vertices to the path
(median criterion) or minimizes the maximum weighted distance from the vertices to the
path (the center criterion). The path which satisfies the first criterion is called a median
path [4, 5, 19, 20, 22, 34], and the path which satisfies the second criterion is called a
central path [1, 2, 7, 28, 33]. The median criterion is used to reduce the total cost of the
service systems. On the other hand, the center criterion is used to serve the clients who
are located far away from the facility. Becker et al. [6] studied the problem of finding a
path on a tree by considering both the median and the center criterion. They solved two
problems, and each one was about finding a path of bounded length which minimizes one
criterion with a restriction on the other criterion. They gave O(n log2 n) algorithms for
both problems.
In real world optimization problems, there is usually more than one objective that has to

be optimized, thus leading to multi-objective optimization problems. In general, no single
solution exists that optimizes all objective functions simultaneously and they are con-
flicting. The optimal solution concept is replaced with efficient (Pareto) solution. Several
authors studied multi-objective optimization problems (see, e.g., [11, 24, 25, 29]).
The location problem is concerned with the selection of the best set of facility sites on

a network to supply a set of costumers. The objective is to locate a number of facilities
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which satisfies some criteria. Traditionally, these facilities (single facilities) are located at
vertex or along an edge of the network [14, 26]. However, some authors extended the con-
cept of the location problem to include sites which can be represented by subtrees or paths
(extensive facilities) of the underlying network. Averbakh and Berman [3] introduced the
problem of locating a path on a tree network which minimizes both the center and the
median criteria. Tamir et al. [31] described an O(n log n) algorithm for siting the optimal
location of a tree-shaped facility in a tree network, using a combination of the center cri-
terion and the median criterion. Puerto et al. [23] considered the problem introduced in
[3] with an additional constraint, namely that the Pareto path must be of bounded length,
whereas this article concentrates on the bi-objectivemedian path (BMP) of a tree. The aim
of the BMP problem is to find the set of all Pareto solutions. A two-phase approach is pro-
posed to solve such problem. In the first phase, supported Pareto solutions are computed
with a parametric median path algorithm. The other Pareto solutions which are unsup-
ported are computed in the second phase using a ranking algorithm applied on restricted
areas of the objective space.
Puerto et al. [23] considered the problem of locating a path-shaped facility with

bounded length on a doubly weighted tree network. They used a bi-objective model
where each vertex is associated with a pair of non-negative weights, namely, the center
weight and the median weight. The aim of their work focused on determining all the non-
dominated points in the objective space. Their approach can be viewed as an application
of the well-known ε-constraint approach. They provided an O(n log n) algorithm to find
the set of different ε values E and proved that the cardinality of E is less than or equal
2n. Therefore they applied at most 2n cent-dian models and each cent-dian model needs
O(n log n) time to be solved. Following the same approach presented in [23] to solve the
(BMP) problem leads to generating the set E with |E | ≤ n(n+ 1)/2. Hence, the restricted
models which give the non-dominated points will be nearly run n(n + 1)/2 times and
each one of them needs O(n log n) time, whereas the proposed approach based on the
two-phase technique reduces the number of running times to 3r + r′ − 1, where r is the
number of the supported non-dominated points and r′ is the number of unsupported
non-dominated points. These results can be summarized in Table 1.
In this paper, a new bi-objective median path-shaped facility location problem is

studied.
• For this purpose, an algorithm of time complexity O(n log n) is presented to locate a

median path with bounded length of an n-tree network.
• Pareto solutions are catagorized into two types, namely, supported and unsupported.

– An O(n log n) time algorithm is given to compute the supported Pareto
solutions. This algorithm based on the weighted scalarization method.

– An O(n log n) time algorithm is given to compute the unsupported Pareto
solutions. This algorithm is based on the k-best method.

The remainder of this paper is organized as follows. Related works are presented in
“Related works” section. “Notations and definitions” section introduces the definitions
and the notations of the (BMP) problem. In “Median path of a tree” section, an O(n log n)

median path algorithm is mentioned. The “Two-phase method to solve BMP problem”
section is devoted to the algorithm that solves the BMP problem. An illustra-
tive example is given in the “An illustrative example” section. A case study is
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Table 1 Summary of results

Bi-objective location problem

Algorithm proposed in [23] Algorithm proposed in this paper

Model min
P∈P(M1(P),D2(P)), where min

P∈P(D1(P),D2(P)), where

M1(P) = max
vj∈V

w1
j d(vj , P), D1(P) = ∑

vj∈V
w1
j d(vj , P),

D2(P) = ∑

vj∈V
w2
j d(vj , P) D2(P) = ∑

vj∈V
w2
j d(vj , P)

Used approach ε-constraint method Two-phase method

Subproblems Cent-dian problem of the form For supported Pareto pathsPSE

min
P∈P D2(P)

s.t.M1(P) = ε
min
P∈P λD1(P) + (1 − λ)D2(P)

For unsupported Pareto paths

min
P∈P\PSE

λD1(P) + (1 − λ)D2(P)

Complexity O(n log n) O(n log n)

stated in the “Case study” section. The final conclusion of this paper is in the
“Conclusion” section.

Related works
Although researchers have paid much attention to the location problems, surprisingly,
certain generalization of these problems, which take into account various real-life con-
siderations, has not been studied thoroughly. Hamacher et al. [14] addressed the multi-
criteria median problem taking into account several weights on the vertex. Ramos et al.
[26] studied the problem of locating a single facility on a network in the presence of sev-
eral median objectives. Colebrook and Sicilia [9] addressed the λ-cent-dian problem on
a multi-objective network G = (V ,E), |V | = n, |E| = m. They developed a polynomial
approach in O(m2n2k2) time that solves this problem for a given value of λ, where k is
the number of the objective functions. They also generalized the model to problem such
as the multi-objective center problem and the multi-objective median problem. Hassin
et al. [15] considered the problem of locating facilities on the vertices of a network to
maximize the expected demand service and gave two polynomial time exact algorithms.
Also, hubs are particular facilities which serve as mediators through aggregation, clas-
sification, and distribution of network flows from the origin to a destination. Kahag et
al. [16] modeled a multi-objective hub-location-allocation problem and formulated the
problem as a constrained bi-objective optimization model to minimize the total costs as
well as minimizing the total system time. Ghezavati and Hosseinifar [12] considered a hub
location problem where the weights of the vertices are stochastic. They first proposed a
bi-objective location problem with value at risk criterion that optimizes the opportunity
lost by maximizing the probability that total demands arriving at a facility to be less than
the capacity.

Notations and definitions
Let T = (V ,E) be a tree network, with |V | = n. Each edge e = (v,u) ∈ E has a positive
length l(e). Let the pair of non-negative weights

(
w1
i ,w2

i
)
associate to each vertex vi ∈
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V representing two median weights corresponding to two median criteria. Let P be a
discrete path in T, that is, its endpoints are restricted to be vertices. The length of P is
L(P) = ∑

e∈P
l(e). Let P be the set of discrete bounded paths in T, that is, P = {P ⊂ T :

P is discrete and L(P) ≤ l}. For any two vertices v,u ∈ V , the distance d(v,u) between
v and u is the length of the path Pv,u connecting them. Define the distance between a
vertex v ∈ V and a path P ∈ P by d(v,P) = min

u∈P d(v,u). For any path P ∈ P , the sum
of weighted distances from P to all vertices v ∈ V is Dr(P) = ∑

vi∈V
wr
i d(vi,P), r = 1, 2. A

median path Pwith respect to the first or the second criterion is the path whichminimizes
Dr(P), r ∈ 1, 2. Let D be a two-dimensional function which maps each path P ∈ P into a
point in the plane R2 such that

D : P → R
2

P → (D1(P),D2(P)) (1)

In this article, all paths P ∈ P which minimize the two-dimensional functionD are found,
so the bi-objective median path BMP problem can be formulated as

min
P∈P D(P) =

⎧
⎪⎨

⎪⎩

D1(P) = ∑

vj∈V
w1
j d(vj,P)

D2(P) = ∑

vj∈V
w2
j d(vj,P)

(2)

Some necessary concepts from multi-objective optimization [8, 10] will be introduced.
The set P is called the decision (feasible) space and the set D(P) = {(D1(P),D2(P)) : P ∈
P} is called the objective space.

Definition 1 A feasible path P ∈ P is said to be Pareto solution for problem (2) if there
is no path P′ ∈ P such that D1(P′) ≤ D1(P) and D2(P′) ≤ D2(P) with at least one strict
inequality. The image D(P) = (D1(P),D2(P)) is called non-dominated point (outcome).

Let PE and DN be the set of Pareto solutions and the set of non-dominated points,
respectively. The setDN can be viewed graphically as depicted in Fig. 1.
The set of Pareto solutions can be divided into two subsets as follows:

Fig. 1 Classification of the non-dominated points
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• Supported solutions PSE which are the optimal solutions of the problem:

min
P∈P λD1(P) + (1 − λ)D2(P), (3)

for 0 ≤ λ ≤ 1. All the supported non-dominated points DSN are lying on the
boundary of the convex hull of D(P).
The supported solutions PSE are partitioned in two types. Extreme supported
solution P ∈ PSE whose image D(P) ∈ DSN is located on a vertex of the convex hull
of D(P) and non-extreme supported solution P ∈ PSE whose image D(P) ∈ DSN is
located on the interior of an edge of the convex hull of D(P) (see Fig. 1).

• Unsupported solutions PUE = PE\PSE which are not optimal solutions of problem
(3) and their imageDUN is lying in the interior of triangle constructed by marking
out dominating area of two consecutive extreme supported points (see Fig. 1).

Median path of a tree
Several authors studied the problem of finding a median path [4, 20, 22] in a tree net-
work where each vertex has only one weight. Becker et al. [5] provided an algorithm for
a median path with bounded length in weighted tree with time complexity O(n log2 n).
Tamir et al. [30] gave an O(n log n) algorithm for locating a median path in weighted
tree with length constraint. Here, an O(n log n) algorithm for finding a median path of a
weighted tree with bounded length is mentioned. The proposed algorithm starts with a
decomposition of the tree T into sequence of subtrees. This decomposition depends on
the definition of a middle vertex of a tree.

Definition 2 [5, 17] Given a weighted tree T, a middle vertex m of T is a vertex which
minimizes the maximum of the number of vertices of the subtrees obtained by removing m.

Remark 1 A middle vertex has maximum subtree cardinality less than or equal to n
2 .

Computing the middle vertex requires O(n) time as presented in [13].

In Fig. 2, there is a tree T consisting of seven vertices. The vertex v4 is considered as the
middle vertex of T since removing v4 (see Fig. 3) leads to three subtrees with maximum
cardinality 3 ≤ 7

2 .

Themedian path algorithm

Let T = (V ,E) be an n-tree. Each vertex v ∈ V has only one non-negative weight wv and
each edge e ∈ E is assigned to a positive length l(e). In this case, there is only one sum of
weighted distances function D and it is defined as

D(P) =
∑

v∈V
wvd(v,P). (4)

Running a middle decomposition of the tree T leads to sequence of subtrees. For each
subtree T ′ in this decomposition, the distances from its middle, saym′ to all other vertices
in T ′ are computed and sorted. This occurs in O(n log n) total time. Let T be rooted at
its middle vertex m, and denote by Tm the rooted tree. Let f (v) be the father of v in Tm,
Son(v) be the set of sons of v. Each vertex v ∈ V splits the tree Tm into two subtrees,
TB
v = (

VB
v ,EBv

)
and TU

v = (
VU
v ,EUv

)
, where TB

v denotes the below subtree of Tm rooted at
vertex v and TU

v denotes the upper subtree of Tm which was induced by
(
V − VB

v
) ∪ {v},

that is VB
v ∪ VU

v = V and VB
v ∩ VU

v = {v} (see Fig. 4). The tree Tm can be decomposed
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Fig. 2 Example for middle vertex

into two subtrees T1 = (V1,E1) and T2 = (V2,E2) such that V1 ∪V2 = V , V1 ∩V2 = {m},
E1 ∪E2 = E, and |V1| = n1, |V2| = n2. Let Son(1,m) and Son(2,m) be the sets of the sons
of the middle vertexm in T1 and T2, respectively. Denote by SumB(v) and DB(v) the sum
of weights of vertices in TB

v and the sum of weighted distances of the vertices in TB
v to the

vertex v, respectively, see [5]. By scanning from the leaves to the root, SumB(v) and DB(v)
are computed in O(n) time as follows:

SumB(v) =
⎧
⎨

⎩

wv if v is a leaf in Tm,
wv + ∑

u∈Son(v)
SumB(u) otherwise. (5)

DB(v) =
⎧
⎨

⎩

0 if v is a leaf in Tm,
∑

u∈Son(v)
DB(u) + SumB(u)l(v,u) otherwise. (6)

Fig. 3 Removing v4
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Fig. 4 Interpretation of the subtrees TBv and TUv of Tm

The following quantities will be needed:

D
r(m) =

∑

u∈Son(r,m)

DB(u) + SumB(u)l(m,u), r = 1, 2. (7)

Definition 3 [5] Given two paths Pvi,vj and Pvj ,vk with edge disjoint, the distance saving
of Pvj ,vk with respect to Pvi,vj , is the reduction of the sum of weighted distances obtained by
adding Pvj ,vk to Pvi,vj , that is,

sav(Pvi,vj ,Pvj ,vk ) = D(Pvi,vj) − D(Pvi,vk ). (8)

Remark 2 If the first path consists of only one vertex vi, write sav(vi,Pvi,vk ) instead of
sav(Pvi,vi ,Pvi,vk ). In linear time, sav(vi,Pvi,vk ) is computed as follows:

sav(vi,Pvi,vk ) =
{
0 if vk = vi,
sav(vi,Pvi,f (vk)) + SumB(vk)l(vk , f (vk))otherwise.

(9)

Also, calculate ∀vk ∈ Vr , r = 1, 2, the following quantities in linear time.

D(r, vk) = D
r(m) − sav(m,Pm,vk ), vk ∈ Tr . (10)

Note that D(r, vk) is the sum of weighted distances of all vertices in Tr from the path
Pm,vk . Let V1 = (vi(1), vi(2), ..., vi(n1)) and V2 = (vq(1), vq(2), ..., vq(n2)) be the non-decreasing
ordering of the vertices in V1 and V2 by their distances from the middle vertexm respec-
tively. The best paths of length at most l which are included in T1\{m} and T2\{m} may
be found by computing for each vertex vk ∈ V1, the best path of length bounded above
by l which has vk as an endpoint. Starting with vi(n1), if d(m, vi(n1)) > l, there is no
such path. Otherwise, find the largest index t = t(n1) such that d(vi(n1), vq(t)) ≤ l and
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d(vi(n1), vq(t+1)) > l. Let vQ, Q ∈ Q = {q(1), q(2), ..., q(t(n1))} be a vertex which gives
min

s=1,...,t(n1)
D(2, vq(s)) and put

αi(n1) = D(1, vi(n1)) + D(2, vQ), (11)

where αi(n1) is the value of the sum of the weighted distances of the best
path which has vi(n1) as an endpoint. Continuing on with vi(n1−1), ..., vi(1), in lin-
ear time all terms αi(r), r = n1, ..., 1 are evaluated. The value of the median
function of the best path of length at most l which passes through the mid-
dle vertex m and contains vertices in both V1 − {m} and V2 − {m} is given by
min

r=n1,...,1
αi(r).

Suppose that vI , I ∈ I = {i(1), i(2), ..., i(n1)} is a vertex where min
r=n1,...,1

αi(r) takes place
therefore the path PvI ,vQ is passing through the middle vertex m and minimizing the
median function with D(PvI ,vQ) = min

r=n1,...,1
αi(r).

To find the best path in T1, replace the weight of m by
∑

v∈V2

wv, delete all vertices

in V2 − {m} from T, and solve the problem in the resulting subtree T1 and add the
constant D

2(m) = ∑

vt∈V 2
wtd(vt ,m) to the value of the median function. By simi-

lar technique, the best path in T2 can be located. For simplicity, define i′ as (to be
used later):

i′ =
{
1 if i = 2,
2 if i = 1.

(12)

Algorithm 1.Median Path
Input: a weighted tree T = (V ,E)

Output: a feasible path P∗ minimizes the median function with D
∗ = D(P∗)

let D∗ = ∞, k = 1, and Droot(k) = 0
(P,α) = BestPath(T , k)
set D = α + Droot(k)
while D < D

∗ do
P∗ = P, D∗ = D

for i = 1, 2 do
while Di(m(k)) < D

∗ do
wm(k) = ∑

v∈Vi

wv, delete vertices of Vi − {m(k)}
set k = k + 1, Droot(k) = Droot(k − 1) + D

i(m(k − 1))
(P,α) = BestPath(Ti′ , k) (see 12)
D = α + Droot(k)

endwhile
endfor

endwhile
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Procedure: BestPath(T ′, k)
Input: a subtree T ′ = (V ′,E′) of T with n′ vertices and associated index k
Output: a feasible path P′ passing through middle vertexm(k) of T ′ whose

endpoints lying in T1 and T2 and minimizing the median function
find a middle vertexm(k) of T ′ and root T ′ atm(k)
decompose T ′ into T1 = (V ′

1,E′
1) and T2 = (V ′

2,E′
2) such that V ′

1 ∪ V ′
2 = V ′,

V ′
1 ∩ V ′

2 = {m(k)}, E′
1 ∪ E′

2 = E′, and
∣
∣V ′

1
∣
∣ = n′

1,
∣
∣V ′

2
∣
∣ = n′

2
sort vertices in V ′

1 and V ′
2 in non-decreasing order by their distances from

m(k) such that V ′
1 = (vi(1), vi(2), ..., vi(n′

1)
) and V ′

2 = (vq(1), vq(2), ..., vq(n′
2)

)

for j = n′
1 : 1 do

find t(j) such that d(vi(j), vq(t)) ≤ l and d(vi(j), vq(t+1)) > l
let vQ be the vertex which gives min

q(s)∈Q
D(2, vq(s))

αi(j) = D(1, vi(j)) + D(2, vQ)

endfor
let vI be a vertex which gives α′ = min

j=1,...,n′
1

αi(j)

set P′ = PvI ,vQ

Theorem 1 (See [30].) The time complexity of median path algorithm is O(n log n).

The k-best median path in a tree

It is known that |P| ≤ n
2 (n + 1). The k-best median path P ∈ P means the k-path which

minimizes the median function with k = 1, 2, ..., n2 (n+1). The algorithm presented in the
previous subsection finds the first best median path, but it is sometimes needed to locate
the second, the third, ..., etc., best median paths of the tree T. Therefore, this algorithm is
modified. For the sake of simplicity, it is assumed that the best median path P∗ = PvI ,vQ
with endpoints vI ∈ T1 and vQ ∈ T2. To compute the second best path in T, the first
median path P∗ = PvI ,vQ is excluded and the second median path is located by updating
the quantities αi(j) in linear time as follows:

αi(j) =
⎧
⎨

⎩

D(1, vi(j)) + min
q(s)∈Q−{Q}

D(2, vq(s)) if vi(j) = vI ,

αi(j) otherwise.
(13)

Two-phasemethod to solve BMP problem
The two-phase method is based on computing the supported and unsupported Pareto
solutions separately (see [32]). In phase 1, the supported Pareto solutions are computed
by solving the weighted sum problem. In phase 2, the unsupported Pareto solutions are
computed by an enumerative approach. The search space in phase 2 is restricted due
to information obtained from phase 1 since it is restricted to triangles given by two
consecutive supported non-dominated points. These triangles are said to be the viable
regions.

Phase 1

It is used to find the supported Pareto solutions whose corresponding supported non-
dominated points lie on the boundary of the convex hull. The weighted-sum scalarization
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is one of the most common methods used for this purpose. In this technique, the indi-
vidual criteria are combined together so that one can solve a series of single objective
problems. Consider the following minimization problem:

min
P∈P λD1(P) + (1 − λ)D2(P), (14)

where 0 ≤ λ ≤ 1. The problem (14) is equivalent to finding a median path P in the tree T
which minimizes the sum of weighted distances function

D(P, λ) =
n∑

i=1

(
λw1

i + (1 − λ)w2
i
)
d(vi,P), 0 ≤ λ ≤ 1. (15)

The idea of this phase is based on finding two solutions P1 and P2 with D(P1) = (x1, y1),
and D(P2) = (x2, y2) obtained by solving the problem (15) for each criterion separately.
These solutions must be supported Pareto solutions. If they are identical, then the BMP
problem has unique minimum solution. Otherwise another supported Pareto solution
P with D(P) = (x, y) between D(P1) and D(P2) is computed (if there exists such one).
Algorithm 2. Phase 1
Input: a doubly weighted tree T = (V ,T)

Output: supported Pareto solutions set PSE
P1 ← solve (15) with λ = 1, s1 ← (D1(P1),D2(P1))
P2 ← solve (15) with λ = 0, s2 ← (D1(P2),D2(P2))
if s1 = s2 then
PE ← {P1}, andDN ← {s1}

else
P = Uniobjsearch(P1,P2), s ← (D1(P),D2(P))

PE ← {P1,P,P2}, andDN ← {s1, s, s2}
endif

Procedure: Uniobjsearch(Pi,Pj)
Input: two supported paths Pi,Pj with D(Pi) = (xi, yi), D(Pj) = (xj, yj)
Output: supported path Pr lying between Pi and Pj

Pr ← solve (15) for λ = yi−yj
(yi−yj)+(xj−xi) , s

(r) ← (D1(P(r)),D2(P(r)))

if Pr /∈ PE then
PE ← PE ∪ {Pr}, andDN ← DN ∪ {sr}
Uniobjsearch(Pi,Pr)
Uniobjsearch(Pr ,Pj)

end if

Theorem 2 The running time of Phase 1 algorithm is O(rn log n), where r is the number
of the supported non-dominated points.

Proof: The running time of Median Path algorithm is O(n log n). The uniobjsearch
procedure can be applied at most 2r time, where r is the number of the supported
non-dominated points. Hence, the overall time of the phase 1 algorithm is O(rn log n).
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Phase 2

The unsupported non-dominated points lie within triangles, viable regions, formed by
two consecutive supported non-dominated points. Phase 2 searches for unsupported
non-dominated points separately in each viable region.
Algorithm 3. Phase 2
Input: a doubly weighted tree T = (V ,E) and the setDSN
Output: the set of all Pareto solutions PE and the setDN
for each two consecutive supported points si = (x′, y′), sj = (x′′, y′′) do
solve problem (15) with λ = y′−y′′

(y′−y′′)+(x′′−x′) and define corresponding viable region
for k = 1, ..., n(n+1)

2 do
determine the kth best median path P and let s = D(P)

if no more solutions exist in the considered viable region then
break

else
PE ← PE ∪ {P}, andDN ← DN ∪ {s}

endif
endfor

endfor

Theorem 3 The running time of phase 2 algorithm is O(Rn log n), where R = |DN |.

An illustrative example
The computations of algorithms phase 1 and phase 2 are illustrated by using the following
tree given in Fig. 5. The following (BMP) problem is studied:

min
P∈P D(P) =

⎧
⎪⎨

⎪⎩

∑

vj∈V
w1
j d(vj,P),

∑

vj∈V
w2
j d(vj,P),

where P = {P ⊂ T : L(P) ≤ 26}.
It is equivalent to locating the median path in the tree depicted in Fig. 6 with differ-

ent values of λ. Table 2 shows the use of phase 1 and resulting three supported Pareto
solutions. The supported Pareto solutions in order obtained are P1 = Pv7,v11 ,P2 =
Pv1,v12 , and P3 = Pv7,v12 . Their corresponding supported non-dominated points are
s1 = (131, 689), s2 = (219, 350), and s3 = (169, 474). Figure 7 shows the two viable
regions sketched by these points.
Table 3 shows the application of phase 2 algorithm to the first viable region (first V.R.)

defined by the triangle whose vertices are s1 = (131, 689), s3 = (169, 474) and (169, 689).
The point s4 = (139, 676) is located in the first V.R. After that phase 2 is applied to the
second viable region (2nd V.R.) which is given by the triangle whose vertices are s3 =
(139, 474), s2 = (219, 350), and (219,474). The two unsupported points s5 = (177, 461)
and s6 = (194, 447) are lying in the 2nd V.R. The unsupported points found by phase 2
are shown in Fig. 7.

Case study
Mahmoud et al. [18] gave a case study as an application to the multi-objective location
problem. They presented a methodology based on geographic information system (GIS)
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Fig. 5 Illustrative example

Fig. 6 Convex combination of weights of two criteria
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Table 2 Example solutions computed by Phase 1

λ Path P D(P) Comment

λ = 1 Pv7,v11 s1 = (131, 689) Obtained from minimizing criterion 1
λ = 0 Pv1,v12 s2 = (219, 350) Obtained from minimizing criterion 2
λ = 339

427 Pv7,v12 s3 = (169, 474) Supported point between s1 and s2

λ = 215
253

{
Pv7,v11
Pv7,v12

{
s1 = (131, 689)

s3 = (169, 474)
No supported points between s1 and s3

λ = 124
174

{
Pv1,v12
Pv7,v12

{
s2 = (219, 350)

s3 = (169, 474)
No supported points between s3 and s2

and multi-criteria decision analysis (MCDA) for regionally locating and sizing desaliniza-
tion facilities for domestic water supply. The GIS allows consideration of complex spatial
terrain and topographic impacts on locating desalination facilities and MCDA procedure
maximizes utility using a 0−1 integer programmingmodel for selecting cities to be served
under specified budget allocations. Thismethodology is applied to a graphwithN vertices
representing a region with N municipalities. The total number of combinations S up to N
municipalities receiving desalinated water supply from various combinations of plants is

S = ∑N
i=1

(
N
i

)

. The S alternatives are identified as binary variables pi (i = 1, ..., S), with

Mi(pi) representing the discrete set of municipalities receiving water from desalination
facility alternative i if pi = 1; otherwise, Mi(pi) = φ if pi = 0 and Ti(zi) are the sets
for each municipality i = 1, ...,N representing the desalination plant alternatives capa-
ble of delivering water to city i, assuming binary variable zi = 1, indicating that city i is
delivering desalinated water. They considered the model

min
xi

∑

j∈Mi(pi)
Wjd2(xi, �j) (16)

max
z

N∑

i=1
Uizi (17)

minCmax, (18)

where setting pi = 1 in (16) places plant i at spatial location xi,
Wj means the municipal demand at location �j,

Fig. 7 Graph of the setDN
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Table 3 Example solutions computed by phase 2

λ k Path P D(P) Comment

1

{
Pv7,v12
Pv7,v11

{
s3 = (169, 474)

s1 = (131, 689)

Supported point lies in the first V.R.
Supported point lies in the first V.R.

λ = 215
253 2

{
Pv6,v11
Pv6,v12

{
s4 = (139, 676)

s5 = (177, 461)

Unsupported point lies in the first V.R.
Unsupported point lies out in the first V.R.

3 Pv5,v12 s6 = (194, 447) Unsupported point lies out in the first V.R.
1 Pv1,v12 s2 = (219, 350) Supported point lies in the second V.R.

λ = 124
174 2 Pv6,v12 s5 = (177, 461) Unsupported point lies in the second V.R.

3 Pv5,v12 s6 = (194, 447) Unsupported point lies out in the second V.R.

4 Pv2,v12 (201, 482) Dominated point lies out in the second V.R.

d(xi, �j) is the distance between the plant and city j, j ∈ Mi(pi),
Ui = ∑R

k=1 wkuik ,∀i = 1, ...,N , such that wk is weight-assigned by a decision-maker to
each criterion k = 1, ...,R; and uik is a score for city i related to criterion k, and
Cmax is the least-cost selection of plants that supply water to only the selected cities.
They applied this model to the Northwestern coast of Egypt far from the freshwater

sources in theNile Valley and theDelta to optimally locate and size desalinization facilities
over the region (see Fig. 8).

Conclusion
The problem of siting special types of subgraphs such as trees and paths of the under-
lying network is considered as an extensive facility location problem. There are many
applications in which several weights per each vertex need to be considered representing
demand, importance, population, etc. This paper concentrates on the location problem
of a path-shaped facility with bounded length on a doubly weighted tree network. A
two-phase method is presented to finding all Pareto solutions.
The proposed problem in this paper is considered as desirable facilities that people

like to be nearby. However, there also exist facilities that are undesirable and obnoxious

Fig. 8 Best locations of desalination plants serving all cities in the region
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such as nuclear reactors, military installations, and chemical plants (see [21, 27]). For the
future directions, one aims to study undesirable and obnoxious facilities in amulti-criteria
networks.
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