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Abstract

In this paper, we propose a self adaptive spectral conjugate gradient-based projection
method for systems of nonlinear monotone equations. Based on its modest memory
requirement and its efficiency, the method is suitable for solving large-scale equations.
We show that the method satisfies the descent condition FTk dk ≤ −c‖Fk‖2, c > 0, and
also prove its global convergence. The method is compared to other existing methods
on a set of benchmark test problems and results show that the method is very efficient
and therefore promising.
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Introduction
In this paper, we focus on solving large-scale nonlinear system of equations

F(x) = 0, (1)

where F : Rn → R
n is continuous and monotone. A function F is monotone if it satisfies

the monotonicity condition

(F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ R
n. (2)

Nonlinearmonotone equations arise inmany practical applications, for example, chem-
ical equilibrium systems [1], economic equilibrium problems [2], and some monotone
variational inequality problems [3]. A number of computational methods have been
proposed to solve nonlinear equations. Among them, Newton’s method, quasi-Newton
method, Gauss-Newton method, and their variants are very popular due to their local
superlinear convergence property (see, for example, [4–9]). However, they are not suit-
able for large-scale nonlinear monotone equations as they need to solve a linear system of
equations using the second derivative information (Jacobian matrix or an approximation
of it).
Due to their modest memory requirements, conjugate gradient-based projection meth-

ods are suitable for solving large-scale nonlinear monotone equations (1). Conjugate
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gradient-based projection methods generate a sequence {xk} by exploring the monotonic-
ity of the function F. Let zk = xk+αkdk , where αk > 0 is the step length that is determined
by some line search and

dk =
{

−Fk , k = 0,
−Fk + βkdk−1, k ≥ 1,

Fk = F(xk) and βk is a parameter, is the search direction. Then by monotonicity of F, the
hyperplane

Hk = {x ∈ R
n|F(zk)T (x − zk) = 0}

strictly separates the current iterate xk from the solution set of (1). Projecting xk on this
hyperplane generates the next iterate xk+1 as

xk+1 = xk − F(zk)T (xk − zk)
‖F(zk)‖2 F(zk). (3)

This projection concept on the hyperplane Hk was first presented by Solodov and Svaiter
[10].
Following Solodov and Svaiter [10], a lot of work has been done, and continues to

be done, to come up with a number of conjugate gradient-based projection methods
for nonlinear monotone equations. For example, Hu and Wei [11] proposed a conju-
gate gradient-based projection method for nonlinear monotone equations (1) where the
search direction dk is given as

dk =
⎧⎨
⎩

−Fk , k = 0,

−Fk + FTk yk−1dk−1−dTk−1Fkyk−1

max
(
γ ‖dk−1‖‖yk−1‖,dTk−1yk−1,−dTk−1Fk−1

) , k ≥ 1,

yk−1 = Fk − Fk−1 and γ > 0. This method was shown to perform well numerically and
its global convergence was established using the line search

−F(zk)Tdk ≥ σαk‖F(zk)‖‖dk‖2, (4)

with σ > 0 being a constant.
Recently, three term conjugate gradient-based projection methods have also been pre-

sented. One such method is that by Feng et al. [12] who presented their direction
as

dk =
⎧⎨
⎩

−Fk , k = 0,

−
(
1 + βk

FTk dk−1
‖Fk‖2

)
Fk + βkdk−1, k ≥ 1,

where |βk| ≤ t ‖Fk‖‖dk−1‖ , ∀k ≥ 1, and t > 0 is a constant. The global convergence of this
method was also established using the line search (4). For other conjugate gradient-based
projection methods, the reader is referred to [13–27].
In this paper, following the work of Abubakar and Kumam [21], Hu and Wei [11] and

that of Liu and Li [22], we propose a self adaptive spectral conjugate gradient-based
projection method for solving systems of nonlinear monotone Eq. (1). This method
is presented in the next section and the rest of the paper is organized as follows. In
“Convergence analysis” section, we show that the proposed method satisfies the descent
property FT

k dk ≤ −c‖Fk‖2, c > 0, and also establish its global convergence. In
“Numerical experiments” section, we present the numerical results and lastly, conclusion
is presented in “Conclusion” section.
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Algorithm
In this section, we give the details of the proposed method. We start by briefly reviewing
the work of Abubakar and Kumam [21] and that of Liu and Li [22].
Most recently, Abubakar and Kumam [21] proposed the direction

dk =
⎧⎨
⎩

−Fk , k = 0,

−Fk + FTk wk−1dk−1−FTk dk−1wk−1

max
(
μ‖dk−1‖‖wk−1‖,wT

k dk−1
) , k ≥ 1,

where μ is a positive constant and

wk−1 = yk−1 + t‖Fk‖sk−1, t = 1 + ‖Fk‖−1 max
(
0,−yTk−1sk−1

‖sk−1‖2
)

and sk−1 = zk−1−xk−1 = αk−1dk−1. This method was shown to performwell numerically
and its global convergence was established using line search (4). In 2015, Liu and Li [22]
proposed a spectral DY-type projection method for nonlinear monotone system of Eq. (1)
with the search direction dk as

dk =
{

−Fk , k = 0,
−λkFk + βDY

k dk−1, k ≥ 1,

where
βDY
k = ‖Fk‖2

dTk−1uk−1
, uk−1 = yk−1 + tdk−1, t = 1 + max

{
0,− dTk−1yk−1

dTk−1dk−1

}
, yk−1 = Fk − Fk−1 +

rsk−1 with sk−1 = xk − xk−1, r > 0 being a constant and λk = sTk−1sk−1
sTk−1yk−1

. The global
convergence of this method was established using the line search

−F(zk)Tdk ≥ σαk‖dk‖2. (5)

Motivated by the work of Abubakar and Kumam [21], Hu and Wei [11] and that of Liu
and Li [22], in this paper we present our direction as

dk =
{

−Fk , k = 0,
−λ∗

kFk + βMP
k dk−1 − δMP

k yk−1, k ≥ 1,
(6)

where

βMP
k = FT

k yk−1

max{μkdTk−1yk−1,−ηFT
k−1dk−1 + μk‖dk−1‖‖yk−1‖}

(7)

and

δMP
k = FT

k dk−1

max{μkdTk−1yk−1,−ηFT
k−1dk−1 + μk‖dk−1‖‖yk−1‖}

(8)

with η > 0 being a constant and the parameters λ∗
k = sTk−1yk−1

sTk−1sk−1
and μk > 1

λ∗
k
where

sk−1 = xk − xk−1 and yk−1 = Fk − Fk−1 + rsk−1, r ∈ (0, 1). With dk defined by (6), (7),
and (8), we now present our algorithm.
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Algorithm 1 Self adaptive spectral conjugate gradient-based projection method
(SASCGM)
1: Give x0, the parameters σ ∈ (0, 1), κ , r ∈ (0, 1), ε > 0 and ρ ∈ (0, 1). Set k = 0.
2: for k = 0, 1, . . . do
3: If ‖Fk‖ ≤ ε, then stop. Otherwise, go to Step 4.
4: Compute dk by (6), (7) and (8).
5: Compute zk = xk + αkdk where αk = max{κρi : i = 0, 1, 2, . . .} such that (5) is

satisfied.
6: If ‖F(zk)‖ ≤ ‖F(xk)‖, then set xk+1 = zk . Otherwise, compute xk+1 using (3).
7: Set k = k + 1 and go to Step 3.
8: end for

Throughout this paper, we assume that the following assumption holds.

Assumption 1
(i) The function F(·) is monotone on R

n, i.e. (F(x) − F(y))T (x − y) ≥ 0, ∀x, y ∈ R
n.

(ii) The solution set of (1) is nonempty.
(iii) The function F(·) is Lipschitz continuous on R

n, i.e. there exists a positive constant L
such that

‖ F(x) − F(y) ‖ ≤ L ‖ x − y ‖, ∀ x, y ∈ R
n. (9)

Convergence analysis
In this section we present the descent property and global convergence of the proposed
method.

Lemma 1 For all k ≥ 0, we have

r ≤ λ∗
k ≤ L + r. (10)

Proof From the definition of yk−1, we get that

sTk−1yk−1 = (Fk − Fk−1)
T (xk − xk−1) + r‖sk−1‖2,

which using the monotonicity of F it follows that

sTk−1yk−1 ≥ r‖sk−1‖2. (11)

Also, from the Lipschitz continuity we obtain that

sTk−1yk−1 ≤ (L + r)‖sk−1‖2. (12)

Combining (11) and (12) we get the inequality (10). This, therefore, means that λ∗
k is well

defined.

Lemma 2 Suppose that Assumption 1 holds. Let the sequence {xk} be generated by
Algorithm 1. Then the search direction dk satisfies the descent condition

FT
k dk ≤ −r‖Fk‖2, ∀ k ≥ 0. (13)
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Proof Since d0 = −F0, we have FT
0 d0 = −‖F0‖2, which satisfies (13). For k ≥ 1, we

have from (6) that

FT
k dk = −λ∗

k‖Fk‖2 + βMP
k FT

k dk−1 − δMP
k FT

k yk−1. (14)

Using (7) and (8) we obtain

FT
k dk = −λ∗

k‖Fk‖2 +
(
FT
k yk−1

) (
FT
k dk−1

)
max

{
μkdTk−1yk−1,−ηFT

k−1dk−1 + μk‖dk−1‖‖yk−1‖
}

−
(
FT
k dk−1

) (
FT
k yk−1

)
max

{
μkdTk−1yk−1,−ηFT

k−1dk−1 + μk‖dk−1‖‖yk−1‖
}

= −λ∗
k‖Fk‖2

≤ −r‖Fk‖2.

Lemma 3 For all k ≥ 0, we have

r‖Fk‖ ≤ ‖dk‖ ≤ 3(L + r)‖Fk‖. (15)

Proof From (13) and Cauchy-Schwarz inequality, we have

‖dk‖ ≥ r‖Fk‖. (16)

Also, we have that

max
{
μkdTk−1yk−1,−ηFT

k−1dk−1 + μk‖dk−1‖‖yk−1‖
}
≥−ηFT

k−1dk−1+μk‖dk−1‖‖yk−1‖.
It then follows from (6), (7), and (8) that

‖dk‖ ≤ λ∗
k‖Fk‖ + |βk|‖dk−1‖ + |δk|‖yk−1‖

≤ λ∗
k‖Fk‖ + ‖Fk‖‖yk−1‖

μk‖dk−1‖‖yk−1‖‖dk−1‖ + ‖Fk‖‖dk−1‖
μk‖dk−1‖‖yk−1‖‖yk−1‖

= λ∗
k‖Fk‖ + 2

μk
‖Fk‖

≤ 3λ∗
k‖Fk‖

≤ 3(L + r)‖Fk‖.

Lemma 4 Suppose Assumption 1 holds and let {xk} be generated by Algorithm 1. Then
the steplength αk is well defined and satisfies the inequality

αk ≥ min
{
κ ,

ρr
9(L + σ)(L + r)2

}
. (17)

Proof Suppose that, at kth iteration, xk is not a solution, that is, Fk 	= 0, and for all
i = 0, 1, 2, ..., inequality (5) fails to hold, that is

−F(xk + κρidk)Tdk < σκρi ‖ dk ‖2 . (18)
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Since F is continuous, taking limits as i → ∞ on both sides of (18) yields

−F(xk)Tdk ≤ 0, (19)

which contradicts Lemma 2. So, the steplength αk is well defined and can be determined
within a finite number of trials. Now, we prove inequality (17). If αk 	= κ , then α′

k = αk
ρ

does not satisfy (5), that is

−F(xk + α′
kdk)

Tdk < σα′
k ‖ dk ‖2 .

Using (9), (13) and (15) we have that

r‖Fk‖2 ≤ −FT
k dk

= (
F

(
xk + α′

kdk
) − Fk

)T dk − F
(
xk + α′

kdk
)T dk

≤ Lα′
k‖dk‖2 + σα′

k‖dk‖2
= (L + σ)αkρ

−1‖dk‖2
≤ (L + σ)αkρ

−1 (3(L + r)‖Fk‖)2 .
Thus

αk ≥ min
{
κ ,

ρr
9(L + σ)(L + r)2

}
.

The following lemma shows that if the sequence {xk} is generated by Algorithm 1, and
x∗ is a solution of (1), i.e. F(x∗) = 0, then the sequence {‖xk − x∗‖} is decreasing and
convergent. Thus, the sequence {xk} is bounded.

Lemma 5 Suppose Assumption 1 holds and the sequence {xk} is generated by
Algorithm 1. For any x∗ such that F(x∗) = 0, we have that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − ‖xk+1 − xk‖2 (20)

and the sequence{xk} is bounded. Furthermore, either {xk} is finite and the last iterate is a
solution of (1), or {xk} is infinite and

∞∑
k=0

‖xk+1 − xk‖2 < ∞,

which means

lim
k→∞

‖xk+1 − xk‖ = 0. (21)

Proof The conclusion follows from Theorem 2.1 in [10].

Theorem 1 Let {xk} be the sequence generated by Algorithm 1. Then

lim
k→∞

inf ‖Fk‖ = 0. (22)

Proof Suppose that the inequality (22) is not true. Then there exists a constant ε1 > 0
such that

‖Fk‖ ≥ ε1, ∀ k ≥ 0.
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This together with (13) implies that

‖dk‖ ≥ r‖Fk‖ ≥ rε1 > 0, ∀ k ≥ 0. (23)

This and (21) gives that

lim
k→∞

αk = 0. (24)

On the other hand, Lemma 5 implies that

αk ≥ min
{
κ ,

ρr
9(L + σ)(L + r)2

}
> 0,

which contradicts (24). Therefore (22) is true.

Numerical experiments
In this section, results of our proposed method SASCGM are presented together with
those of improved three-term derivative-free method (ITDM) [21], the modified Liu-
Storey conjugate gradient projection (MLS) method [11], and the spectral DY-type
projection method (SDYP) [22]. All algorithms are coded in MATLAB R2016a. In our
experiments, we set ε = 10−4, i.e., the algorithms are stopped whenever the inequality
‖Fk‖ ≤ 10−4 is satisfied, or the total number of iterations exceeds 1000. The method
SASCGM is implemented with the parameters σ = 10−4, ρ = 0.5, r = 10−3, μk =
1
λ∗
k

+ 0.1 and κ = 1, while parameters for algorithms ITDM, MLS, and SDYP are set as in
respective papers.
The methods are compared using number of iterations, number of function evaluations

and CPU time taken for each method to reach the optimal value or termination. We test
the algorithms on ten (10) test problems with their dimensions varied from 5000 to 20000,
and with four (4) different starting points x0 = ( 1

n ,
1
n , . . . ,

1
n
)T , x1 = (−1,−1, . . . ,−1)T ,

x2 = (0.5, 0.5, . . . , 0.5)T and x3 = (−0.5,−0.5, . . . ,−0.5)T . The test functions are listed
as follows:
Problem 1. Sun and Liu [19] The mapping F is given by

F(x) = Ax + g(x),

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and g(x) = (2ex1 − 1, 3ex2 − 1, . . . , 3exn−1 − 1, 2exn − 1)T .
Problem 2. Liu and Li [22] Let F be defined by

F(x) = Ax + g(x),
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where g(x) = (ex1 − 1, ex2 − 1, . . . , exn − 1)T and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
. . . . . . −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Problem 3. Liu and Feng [18] The mapping F is given by

F1(x) =3x31 + 2x2 − 5 + sin(x1 − x2) sin(x1 + x2),

Fi(x) = − xi−1e(xi−1−xi) + xi(4 + 3x2i ) + 2xi+1

+ sin(xi − xi+1) sin(xi + xi+1) − 8, i = 2, 3, . . . , n − 1,

Fn(x) = − xn−1e(xn−1−xn) + 4xn − 3.

Problem 4. Liu and Li [20] The mapping F is given by

F1(x) = 2x1 − x2 + ex1 − 1,

Fi(x) = −xi−1 + 2xi − xi+1 + exi − 1, i = 2, 3, . . . , n − 1,

Fn(x) = −xn−1 + 2xn + exn − 1.

Problem 5. Abubakar and Kumam [21] The mapping F is given by

Fi(x) = exi − 1, i = 1, 2, 3, . . . , n.

Problem 6. Hu and Wei [11] The mapping F is given by

F1(x) = 2.5x1 + x2 − 1,

Fi(x) = xi−1 + 2.5xi + xi+1 − 1, i = 2, 3, . . . , n − 1,

Fn(x) = xn−1 + 2.5xn − 1.

Problem 7. Hu and Wei [11] The mapping F is given by

F1(x) = 2x1 + 0.5h2(x1 + h)3 − x2,

Fi(x) = 2xi + 0.5h2(xi + hi)3 − xi−1 + xi+1, i = 2, 3, ..., n − 1,

Fn(x) = 2xn + 0.5h2(xn + hn)3 − xn−1,

where h = 1
n+1 .

Problem 8.Wang and Guan [25] The mapping F is given by

Fi(x) = 2xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

Problem 9.Wang and Guan [25] The mapping F is given by

Fi(x) = exi − 2, i = 1, 2, 3, ..., n.

Problem 10. Gao and He [24] The mapping F is given by

Fi(x) = xi − sin(|xi| − 1), i = 1, 2, 3, ..., n.

The numerical results are reported in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, where “SP”
represents the starting point (initial point), “DIM” denotes the dimension of the problem,
“NI” refers to the number of iterations, “NFE” stands for the number of function evalua-
tions, and “CPU” is the CPU time in seconds. In Table 3, “*” indicates that the algorithm
did not converge within the maximum number of iterations. From the tables, we observe
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Fig. 1 Iterations performance profile

that the proposed method performs better than the other methods in Problems 2, 3, 4,
6, 9, and 10. The proposed method performs slightly lower in Problems 1, 5, 7, and 8.
However, overall, the proposed method shows that it is very competitive with the other
methods and can be a good addition to the existing methods in the literature.
The performance of the three methods is further presented graphically in Figs. 1, 2 , and

3 based on the number of iterations (NI), number of function evaluations (NFE), and the
CPU time, respectively, using the performance profile of Dolan andMoré [28]. That is, we

Fig. 2 Function evaluations performance profile
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Fig. 3 Cpu time performance profile

plot the probability ρS(τ ) of the test problems for which each of the three methods was
within a factor τ . Figures 1, 2, and 3 clearly show the efficiency of the proposed SASCGM
method as compared to the other three methods.

Conclusion
In this paper, we proposed a self adaptive spectral conjugate gradient-based projection
(SASCGM) method for solving systems of large-scale nonlinear monotone equations.
The proposed method is free from derivative evaluations and also satisfies the descent
condition FT

k dk ≤ −c‖Fk‖2, c > 0, independent of any line search. The global conver-
gence of the proposed method was also established. The proposed algorithm was tested
on some benchmark problems with different initial points and different dimensions and
the numerical results show that the method is competitive.
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