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Introduction

In this paper, we focus on solving large-scale nonlinear system of equations
Fx)=0, (1)

where F : R” — R” is continuous and monotone. A function F is monotone if it satisfies

the monotonicity condition
(F@) —Fp) (x—» 20, ¥ryeR" @)

Nonlinear monotone equations arise in many practical applications, for example, chem-
ical equilibrium systems [1], economic equilibrium problems [2], and some monotone
variational inequality problems [3]. A number of computational methods have been
proposed to solve nonlinear equations. Among them, Newton’s method, quasi-Newton
method, Gauss-Newton method, and their variants are very popular due to their local
superlinear convergence property (see, for example, [4-9]). However, they are not suit-
able for large-scale nonlinear monotone equations as they need to solve a linear system of
equations using the second derivative information (Jacobian matrix or an approximation
of it).

Due to their modest memory requirements, conjugate gradient-based projection meth-
ods are suitable for solving large-scale nonlinear monotone equations (1). Conjugate
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gradient-based projection methods generate a sequence {x;} by exploring the monotonic-
ity of the function F. Let zj = xx+oxdi, where o > 0 is the step length that is determined
by some line search and

—F, k=0,
di =
—Fr + ,Bkdkfl» k=>1,

Fi = F(xg) and By is a parameter, is the search direction. Then by monotonicity of F, the
hyperplane

Hy = {x € R"|F(z) T (x — ) = 0}

strictly separates the current iterate x; from the solution set of (1). Projecting xj on this
hyperplane generates the next iterate x;y; as

F(z) " (x — 1)
IF (ze) |12
This projection concept on the hyperplane Hy was first presented by Solodov and Svaiter

[10].
Following Solodov and Svaiter [10], a lot of work has been done, and continues to

F(zp). (3)

Xk+1 = Xk —

be done, to come up with a number of conjugate gradient-based projection methods
for nonlinear monotone equations. For example, Hu and Wei [11] proposed a conju-
gate gradient-based projection method for nonlinear monotone equations (1) where the
search direction dy is given as
—F, k=0,
Flyi_1dy_1—dl | Fiy—

_Fk+ k Yk—1%k—1 Tk,l kVk lT

max(y k1 lyk- ] yx-1,~d]_Fi 1)

dy =

Yk—1 = Fx — Fx—1 and y > 0. This method was shown to perform well numerically and
its global convergence was established using the line search

—F(zi)Tdy > oo F(zp)lllld 1%, (4)

with 0 > 0 being a constant.

Recently, three term conjugate gradient-based projection methods have also been pre-
sented. One such method is that by Feng et al. [12] who presented their direction
as
—Fk, k = 0,

Fldiy

d =
¢ - (1 +ﬁk HFkHZ )Fk +13kdk711 k Z 1;

where |B;] < t”ﬂlff!” , Vk > 1,and t > 0 is a constant. The global convergence of this

method was also established using the line search (4). For other conjugate gradient-based
projection methods, the reader is referred to [13-27].

In this paper, following the work of Abubakar and Kumam [21], Hu and Wei [11] and
that of Liu and Li [22], we propose a self adaptive spectral conjugate gradient-based
projection method for solving systems of nonlinear monotone Eq. (1). This method
is presented in the next section and the rest of the paper is organized as follows. In
“Convergence analysis” section, we show that the proposed method satisfies the descent
property Fdek < —c|lFxl> ¢ > 0, and also establish its global convergence. In
“Numerical experiments” section, we present the numerical results and lastly, conclusion

is presented in “Conclusion” section.
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Algorithm
In this section, we give the details of the proposed method. We start by briefly reviewing
the work of Abubakar and Kumam [21] and that of Liu and Li [22].

Most recently, Abubakar and Kumam [21] proposed the direction

—F, k=0,

— T _rT
di = —F + Fi We—1k—1—F) dr—1wi—1 >1,

)
max(pll i w1 lwf di1)

where u is a positive constant and

T
— Yi—15k—1
Wk—1 = yk—1 + tllFxllsk—1, ¢ =1+ [[Fcl|”" max (0, _||Sk1||2>

and sg_1 = zx_1 —%k—1 = dk_1dk_1. This method was shown to perform well numerically
and its global convergence was established using line search (4). In 2015, Liu and Li [22]
proposed a spectral DY-type projection method for nonlinear monotone system of Eq. (1)
with the search direction d as

_Fk! k= 0,
di = DY
—McFk + B di-1, k= 1,

where
T
DY ILEx 1 k-1
= K — up 1 =yr_1+tdi1,t =1+ max{0,— s Vi1 = Fyx — Fr_
B Ay M1 = 1+ tdr— + { A a1 k— Fr—1 +
T
rsg—1 with sg_; = ax — xx_1, r > 0 being a constant and Xy = % The global
k—1Vk—1
convergence of this method was established using the line search
—F(z) dy > di|)? 5
(z1) " die = oouelldil”. (5)

Motivated by the work of Abubakar and Kumam [21], Hu and Wei [11] and that of Liu
and Li [22], in this paper we present our direction as

—F, k=0,
dy = (6)
k I —)»sz + ﬂ]iwpdk_l — Sypyk_l, k>1,

where
T
/3/1("”’ _ Fk Yk—1 (7)
max{prd_yi—1, —1EF_ di—1 + melldi1 lllye-11}
and
T
5 = Fi i ®
max{exdy_yyi—1, —1F_ dir + il di—1 | 1ye-11)
. . S]Z 1Vk—1 1
with n > 0 being a constant and the parameters A} = T and pux > 3 where
k—1k—1 k

Sk—1 = ) — xk—1 and yx—1 = Fx — Fx—1 + rsx—1, r € (0,1). With dy defined by (6), (7),
and (8), we now present our algorithm.

Page 3 of 21
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Algorithm 1 Self adaptive spectral conjugate gradient-based projection method
(SASCGM)

1: Give xg, the parameters o € (0,1),«,r € (0,1), ¢ > 0and p € (0,1). Setk = 0.

2. fork=0,1,...do

3= If||[Fx]l < €, then stop. Otherwise, go to Step 4.

4. Compute dj by (6), (7) and (8).

5. Compute z; = x; + axdy where o = max{kp’ : i = 0,1,2,...} such that (5) is

satisfied.
6:  If||[F(zp)|l < |IF(x) ]|, then set xgy 1 = zg. Otherwise, compute x;, 1 using (3).
7. Setk =k + 1 and go to Step 3.
8: end for

Throughout this paper, we assume that the following assumption holds.

Assumption 1
(i) The function F(-) is monotone on R", i.e. (F(x) — F(y))T (x —y) > 0, Vx,y € R
(ii) The solution set of (1) is nonempty.

(iii) The function F(-) is Lipschitz continuous on R”, i.e. there exists a positive constant L

such that
| Fx) =FM I<Lllx—yll, VYxyeR™ 9)
Convergence analysis

In this section we present the descent property and global convergence of the proposed
method.

Lemma 1 For all k > 0, we have

r< i <L+r (10)

Proof From the definition of y;_;, we get that

St-1k-1 = (Fi = Fee) T G = ) + rllsi I,
which using the monotonicity of F it follows that

St_1k-1 = sl (11)
Also, from the Lipschitz continuity we obtain that

Stok-1 = LA Dlseall, (12)
Combining (11) and (12) we get the inequality (10). This, therefore, means that A} is well
defined. O

Lemma 2 Suppose that Assumption 1 holds. Let the sequence {xi} be generated by
Algorithm 1. Then the search direction dy satisfies the descent condition

Eldy < —rllF® Yk =>o0. (13)
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Proof Since dy = —Fj, we have FOTdo = —||Foll?, which satisfies (13). For k > 1, we
have from (6) that

Fldy = =23\ Fel)> + B Fl dgy — 8" F yir. (14)
Using (7) and (8) we obtain
(Feyx—) (F¢ di1)
max { el vt —nFL s + il e
(F{ di—1) (Eyk-1)

max {uxdl_yyi1, —nFL iy + il

Fldy = =2\ Fell® +

= —A{IFel?
< —rlEd”
O
Lemma 3 For all k > 0, we have
rllExll < il < 3(L + )| Fgll. (15)
Proof From (13) and Cauchy-Schwarz inequality, we have
ldicll = 7llFll. (16)

Also, we have that

max { s i1 —nFydir + il 1l = =nFE i+l el

It then follows from (6), (7), and (8) that

Ndill < ARNFrell + | Bellldk—1 Il + 18kl llyk—1
I Eelllye—1ll | Excll g1
< MlFll + —————ldk1ll + —————— Iyl
k wicllde—1 Nlyx—1l ™ wiclldr—1 Myr—1]

" 2
= Ml Fkll + — [l Ell
1293

IA

30 Frell
3(L 4 1)1 Fill-

A

Lemma 4 Suppose Assumption 1 holds and let {xi} be generated by Algorithm 1. Then
the steplength oy is well defined and satisfies the inequality

. pr
(673 > min {K, 9([1_’_0-)(11_*_’«)2}. (17)

Proof Suppose that, at kth iteration, x is not a solution, that is, Fy # 0, and for all
i=0,1,2,.., inequality (5) fails to hold, that is

—F(ay + kp'di)Tdy < oxp || di |1 (18)
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Since F is continuous, taking limits as i — oo on both sides of (18) yields
—F(xo)dy < 0, (19)

which contradicts Lemma 2. So, the steplength «y is well defined and can be determined

within a finite number of trials. Now, we prove inequality (17). If a # «, then o = %’(

does not satisfy (5), that is
—Flox + agdi) T di < o |l di |1
Using (9), (13) and (15) we have that
rllF)* < —Fldy
= (F (x + ajdi) — F) " dy — F (mx + o) " i
< Lo |dill? + oaylldy*
= L+ o)ap ldi]?
< (L+0)arp "t B+ nIFl)>.

Thus

. pr
o > minjk, ——— .
{ 9(L+0)(L+r)2}

The following lemma shows that if the sequence {x;} is generated by Algorithm 1, and
x* is a solution of (1), i.e. F(x*) = 0, then the sequence {||x; — x*||} is decreasing and
convergent. Thus, the sequence {x;} is bounded.

Lemma 5 Suppose Assumption 1 holds and the sequence {xi} is generated by
Algorithm 1. For any x* such that F(x*) = 0, we have that

2 2 2
k41 — 2117 < llwx — 2% — loerg1 — xll (20)

and the sequence{xy} is bounded. Furthermore, either {x;} is finite and the last iterate is a
solution of (1), or {xx} is infinite and

e e]

2
D kg — &l < oo,
k=0

which means

lim [lagi1 —x]l = 0. (21)
k— 00
Proof The conclusion follows from Theorem 2.1 in [10]. O

Theorem 1 Let {x;} be the sequence generated by Algorithm 1. Then
lim inf||Fg|| = 0. (22)
k—o00
Proof Suppose that the inequality (22) is not true. Then there exists a constant €; > 0
such that

IFkll = €1, Vk = 0.
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This together with (13) implies that
ldill = rliFxll > rex >0, Yk > 0. (23)
This and (21) gives that

lim oy = 0. (24)

k— 00

On the other hand, Lemma 5 implies that

. pr
o > minjk, —— 1 > 0,
9L + o)L+ r)?

which contradicts (24). Therefore (22) is true. O

Numerical experiments
In this section, results of our proposed method SASCGM are presented together with
those of improved three-term derivative-free method (ITDM) [21], the modified Liu-
Storey conjugate gradient projection (MLS) method [11], and the spectral DY-type
projection method (SDYP) [22]. All algorithms are coded in MATLAB R2016a. In our
experiments, we set € = 1074, i.e., the algorithms are stopped whenever the inequality
|Eell < 10~ is satisfied, or the total number of iterations exceeds 1000. The method
SASCGM is implemented with the parameters 0 = 1074, p = 0.5, 7 = 1073, u; =
i + 0.1 and « = 1, while parameters for algorithms ITDM, MLS, and SDYP are set as in
respective papers.

The methods are compared using number of iterations, number of function evaluations
and CPU time taken for each method to reach the optimal value or termination. We test
the algorithms on ten (10) test problems with their dimensions varied from 5000 to 20000,

and with four (4) different starting points xo = (%, %, R %)T, x1 = (-1,-1,..., —l)T,
%2 = (0.5,0.5,...,0.5) T and x3 = (—0.5,—0.5,...,—0.5)T. The test functions are listed
as follows:

Problem 1. Sun and Liu [19] The mapping F is given by
F(x) = Ax + g(x),

where

-1 2

and g(x) = (2" — 1,32 — 1,...,3¢1 —1,2¢* — )T,
Problem 2. Liu and Li [22] Let F be defined by

F(x) = Ax + g(x),
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where g(x) = (¢ — 1,¢ —1,...,¢” —1)T and

2 -1
-1 2 -1

g
-1 2
Problem 3. Liu and Feng [18] The mapping F is given by
Fi1(x) =343 4+ 2xy — 5 + sin(x; — x2) sin(x; + x2),
Fix) = — xi- 1™ 7 4 (4 + 3x7) + 2041
+ sin(x; — xj1) sin(x; +x;41) —8, i=2,3,...,n—1,
Fo(x) = — x,_1e%n—17%0) 4 4y, — 3.
Problem 4. Liu and Li [20] The mapping F is given by
Fi(x) =2x1 —xy + " — 1,
Fi(x) = —xj_1+2x; — %1+ -1, i=23,...,n—1,
Fy(x) = —xp—1 + 2%, + € — 1.
Problem 5. Abubakar and Kumam [21] The mapping F is given by
Fix)=¢€"—-1, i=12,3,...,n
Problem 6. Hu and Wei [11] The mapping F is given by
Fi(x) =25x1 +x9 — 1,
EFi(x) = a1 4+ 250 +xi41 — 1, i=2,3,...,n—1,
Fy(x) = xp—1 + 2.5, — 1.
Problem 7. Hu and Wei [11] The mapping F is given by
Fi(x) =2x1 + 0.5h2(x1 + h)?’ — X2,
Fi(x) = 2x; + 0.50% (w; + hi)® —wi 1 + %01, i=2,3,..,n—1,
F(x) = 2%, + 0.51% (0 + hn)® — w1,
1

where 1 = T

Problem 8. Wang and Guan [25] The mapping F is given by
Fi(x) =2x; —sin|x; — 1|, i=1,2,3,..., 1.

Problem 9. Wang and Guan [25] The mapping F is given by
Fix)=¢€"-2, i=1,2,3,..,n

Problem 10. Gao and He [24] The mapping F is given by
Fi(x) = x; —sin(|x;| — 1), i=1,2,3,..,n

The numerical results are reported in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, where “SP”
represents the starting point (initial point), “DIM” denotes the dimension of the problem,
“NI” refers to the number of iterations, “NFE” stands for the number of function evalua-
tions, and “CPU” is the CPU time in seconds. In Table 3, “*” indicates that the algorithm
did not converge within the maximum number of iterations. From the tables, we observe
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Fig. 1 Iterations performance profile

that the proposed method performs better than the other methods in Problems 2, 3, 4,
6, 9, and 10. The proposed method performs slightly lower in Problems 1, 5, 7, and 8.
However, overall, the proposed method shows that it is very competitive with the other
methods and can be a good addition to the existing methods in the literature.

The performance of the three methods is further presented graphically in Figs. 1,2, and
3 based on the number of iterations (NI), number of function evaluations (NFE), and the
CPU time, respectively, using the performance profile of Dolan and Moré [28]. That is, we

‘ T
———
53 V 7
s - -
—sAscGM| |
====TDM
CLLTLITT MLS m
= = SDYP
1 1 1
1.5 2 25 3
T
Fig. 2 Function evaluations performance profile
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Fig. 3 Cpu time performance profile

plot the probability ps(t) of the test problems for which each of the three methods was
within a factor 7. Figures 1, 2, and 3 clearly show the efficiency of the proposed SASCGM
method as compared to the other three methods.

Conclusion

In this paper, we proposed a self adaptive spectral conjugate gradient-based projection
(SASCGM) method for solving systems of large-scale nonlinear monotone equations.
The proposed method is free from derivative evaluations and also satisfies the descent
condition FkT di < —c||F¢]|?>,c > 0, independent of any line search. The global conver-
gence of the proposed method was also established. The proposed algorithm was tested
on some benchmark problems with different initial points and different dimensions and
the numerical results show that the method is competitive.
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