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Abstract

In this paper, accelerated fitted finite difference method for solving singularly perturbed
delay differential equation with non-local boundary condition is considered. To treat the
non-local boundary condition, Simpson’s rule is applied. The stability and parameter
uniform convergence for the proposed method are proved. To validate the applicability of
the scheme, two model problems are considered for numerical experimentation and
solved for different values of the perturbation parameter ε and mesh size h. The numerical
results are tabulated in terms of maximum absolute errors and rate of convergence, and it
is observed that the present method is more accurate and ε-uniformly convergent for h≥ ε
where the classical numerical methods fails to give good result, and it also improves the
results of the methods existing in the literature.
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Introduction
A differential equation is said to be singularly perturbed delay differential equation, if it

includes at least one delay term, involving unknown functions occurring with different ar-

guments, and also, the highest derivative term is multiplied by a small parameter. Such

type of delay, differential equations play a very important role in the mathematical models

of science and engineering, such as, the human pupil light reflex with mixed delay type

[1], variational problems in control theory with small state problem [2], models of HIV

infection [3], and signal transition [4]. Any system involving a feedback control almost in-

volves time delay. The delay occurs because a finite time is required to sense the informa-

tion and then react to it. Finding the solution of singularly perturbed delay differential

equations, whose application mentioned above, is a challenging problem. In response to

these, in recent years, there has been a growing interest in numerical methods on singu-

larly perturbed delay differential equations. The authors of [5–7] have developed various
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numerical schemes on uniform meshes for singularly perturbed first and second order dif-

ferential equations with integral boundary conditions. The authors of [8–10] have proved

that the problem of differential equations with integral boundary conditions is well posed.

The authors of [11] proposed a first order uniform convergent fitted finite difference

scheme for singularly perturbed boundary value problem for a linear second order delay

differential equation with large delay in reaction term.

The standard numerical methods used for solving singularly perturbed differential

equation are sometime ill posed and fail to give analytical solution when the perturb-

ation parameter ε is small.

Therefore, it is necessary to develop suitable numerical methods which are uniformly

convergent to solve this type of differential equations. In [12–15], finite difference and

finite element methods are proposed to solve this kind of equations with large and

small shifts.

As far as the researchers’ knowledge is concerned, numerical solution of singularly

perturbed boundary value problem containing integral boundary condition via acceler-

ated exponential fitted operator method is first being considered. The basic essence of

accelerated fitted operator finite difference method is fitting an operator into a finite

difference scheme, determining the value for the operator, formulating the intended

scheme, and then applying Richardson extrapolation that can be explained as whenever

the leading term in the error for an approximation formula is known; we can combine

two approximations obtained from the formula using different values of the mesh sizes

h and 0.5h to obtain a higher order approximation, and the technique is known as

Richardson extrapolation. This procedure is a convergence acceleration technique

which consists of a linear combination of two computed approximations of a solution

(applied on two nested meshes). The linear combination turns out to be a better ap-

proximation. Therefore, the main objective of this study is to develop ε-uniformly con-

vergent and more accurate numerical method for solving singularly perturbed delay

differential equations with non-local boundary condition. Hence, in the present paper,

motivated by the works of [16], we developed a fitted operator finite difference scheme

on uniform mesh for the numerical solution for second order singularly perturbed

convection-diffusion equations with negative shift and non-local boundary condition.

The present paper is organized as follows. Statement of the problem is given in the

“Statement of the problem” section. In the “Properties of continuous solution” section,

properties of continuous solution are presented. The “Formulation of the numerical

scheme” section describes formulation of the numerical scheme. Convergence analysis

for approximate solution is given in the “Convergence analysis” section. Numerical re-

sults are given in the “Numerical examples and results” section. Discussion and conclu-

sion is given in the “Discussion and conclusion” section.

Throughout our analysis, C is a generic positive constant that is independent of the

parameter ε and number of mesh points 2N. We assume that Ω ¼ ½0; 2�;Ω ¼ ð0; 2Þ;
Ω1 ¼ ð0; 1Þ;Ω2 ¼ ð1; 2Þ . Further, Ω� ¼ Ω1∪Ω2;Ω

2N
is denoted by f0; 1; 2; :::; 2Ng;

Ω
2N
1 is denoted by f1; 2; :::;N−1g;Ω2N

2 is denoted by {N + 1,N + 2, ..., 2N − 1}.
Statement of the problem
Consider the following singularly perturbed problem:



Debela and Duressa Journal of the Egyptian Mathematical Society           (2020) 28:16 Page 3 of 16
Ly xð Þ ¼ −εy″ xð Þ þ a xð Þy0
xð Þ þ b xð Þy xð Þ þ c xð Þy x−1ð Þ ¼ f xð Þ; x∈Ω ¼ 0; 2ð Þ; ð1Þ

y xð Þ ¼ ϕ xð Þ; x∈ −1; 0½ �; ð2Þ

Ky 2ð Þ ¼ y 2ð Þ−ε
Z2
0

g xð Þy xð Þdx ¼ l; ð3Þ

where ϕ(x) is sufficiently smooth on [−1, 0]. For all x ∈Ω, it is assumed that the suffi-
cient smooth functions a(x), b(x) and c(x) satisfy a(x) > α1 > α > 0, b(x) ≥ β ≥ 0, c(x) ≤ γ ≤

0, and α + β + γ > 0. Furthermore, g(x) is non-negative and monotonic with
R2
0
gðxÞdx

< 1. The above assumptions ensure that y ∈ X =C0(Ω) ∩C1(Ω) ∩C2(Ω1 ∪Ω2) [16].

Eqs. (1)–(3) is equivalent to

Ly xð Þ ¼ F xð Þ ð4Þ

where

Ly xð Þ ¼
(
L1y xð Þ ¼ −εy″ xð Þ þ a xð Þy0

xð Þ þ b xð Þy xð Þ; x∈Ω1 ¼ 0; 1ð Þ
L2y xð Þ ¼ −εy″ xð Þ þ a xð Þy0

xð Þ þ b xð Þy xð Þ þ c xð Þy x−1ð Þ; x∈Ω2 ¼ 1; 2ð Þ
ð5Þ

F xð Þ ¼
(

f xð Þ−c xð Þϕ x−1ð Þ; x∈Ω1

f xð Þ; x∈Ω2

ð6Þ

with boundary conditions
y xð Þ ¼ ϕ xð Þ; x∈ −1; 0½ �;
y 1−ð Þ ¼ y 1þð Þ; y

0
1−ð Þ ¼ y

0
1þð Þ;

Ky 2ð Þ ¼ y 2ð Þ−ε
Z2
0

g xð Þy xð Þdx ¼ l;

)
ð7Þ

Properties of continuous solution
Lemma 1: (Maximum Principle) Let ψ(x) be any function in X such that ψ(0) ≥ 0,

Kψ(2) ≥ 0, L1ψ(x) ≥ 0, ∀ x ∈Ω1, L2ψ(x) ≥ 0, ∀ x ∈Ω2 and [ψ′](1) ≤ 0 then ψðxÞ≥0; ∀x∈Ω.

Proof: Define the test function

s xð Þ ¼

(
1
8
þ x
2
; x∈ 0; 1½ �

3
8
þ x
4
; x∈ 1; 2½ �

ð8Þ

Note that sðxÞ > 0; ∀x∈Ω; LsðxÞ > 0; ∀x∈Ω1∪Ω2; sð0Þ > 0;Ksð2Þ > 0, and [s′](1) < 0.
Let μ ¼ maxf−ψðxÞsðxÞ : x∈Ωg. Then, there exists x0∈Ω such that ψ(x0) + μs(x0) = 0 and ψ

ðxÞ þ μsðxÞ≥0; ∀x∈Ω . Therefore, the function (ψ + μs) attains its minimum at x = x0.

Suppose the theorem does not hold true, then μ > 0.

Case (i): x0 = 0; 0 < (ψ + μs)(0) = ψ(0) + μs(0) = 0, it is a contradiction.



Debela and Duressa Journal of the Egyptian Mathematical Society           (2020) 28:16 Page 4 of 16
Case (ii): x0 ∈Ω1 0 < L(ψ + μs)(x0) = − ε(ψ + μs)″(x0) + a(x0)(ψ + μs)′(x0) + b(x0)(ψ +

μs)(x0) ≤ 0, it is a contradiction.

Case (iii): x0 = 1; 0 ≤ [(ψ + μs)′](1) = [ψ′](1) + μ[s′](1) < 0, it is a contradiction.

Case (iv): x0 ∈Ω2

0 < Lðψ þ μsÞðx0Þ ¼ −εðψ þ μsÞ″ðx0Þ þ aðx0Þðψ þ μsÞ0 ðx0Þ þ bðx0Þðψ þ μsÞðx0Þ
þ cðx0Þðψ þ μsÞðx0−1Þ≤0; it is a contradiction:

Case (v): x0 = 2; 0≤Kðψ þ μsÞð2Þ ¼ ðψ þ μsÞð2Þ−ε R2
0
gðxÞðψ þ μsÞðxÞdx≤0;

it is a contradiction:

Hence, the proof of the theorem.

Lemma 2: (Stability Result) The solution y(x) for the problems (1)–(3) satisfies the

bound

y xð Þj j≤C max y 0ð Þj j; Ky 2ð Þj j; sup
x∈Ω�

Ly xð Þj j
� �

; x∈Ω

Proof: This theorem can be proved by using Lemma 1, and the barrier functions
θ�ðxÞ ¼ CMsðxÞ � yðxÞ; x∈Ω , where M ¼ maxfjyð0Þj; jKyð2Þj; sup
x∈Ω�

jLyðxÞjg and s(x)

are the test function as in Lemma 1.

Lemma 3: Let y(x) be the solution for (1)–(3). Then we have the following bounds:

y kð Þ xð Þ�� ��
Ω� ≤Cε−k ; for k ¼ 1; 2; 3:

Proof: For the proof, refer to [16].
Lemma 4: The bound for derivative of the solution y(x) of the problems (1)–(3) when

x ∈Ω1 = (0, 1) is given by:

j y kð Þ xð Þ j ≤C 1þ ε−k exp
−α 1−x j
� �
ε

� �� �
; k ¼ 0≤k ≤4; j ¼ 1; 2; :::;N−1:

Proof: For the proof, refer to [17].
Formulation of the numerical scheme
For small values of ε, the boundary value problem, (1)–(3) exhibit strong boundary

layer at x = 2 and interior layer at x = 1 (see [16]).

The linear ordinary differential Eq. (1) cannot, in general, be solved analytically be-

cause of the dependence of a(x), b(x), and c(x) on the spatial coordinate x. We divide

the interval [0, 2] into 2N equal parts with constant mesh length h. Let 0 = x0, x2, ...,

xN = 1, xN + 1, xN + 2, ..., x2N = 2 be the mesh points. Then, we have xi = ih, i = 0, 1, 2,

...2N. If we consider, the interval x ∈ (0, 1) and the coefficients of (1) are evaluated at

the midpoint of each interval; then, we will obtain the differential equation:(
−εy″ xð Þ þ a xð Þy0

xð Þ þ b xð Þy xð Þ ¼ f xð Þ−c xð Þϕ x−1ð Þ; x∈Ω1 ¼ 0; 1ð Þ
y0 ¼ y 0ð Þ ¼ ϕ 0ð Þ

ð9Þ

Now, the domain [0, 1] is discretized into N equal number of subintervals, each of
length h. Let 0 = x0 < x1 < ... < xN = 1 be the points such that xi = ih, i = 0, 1, 2, ..., N. For
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the discretization, we apply a exponentially fitted operator finite difference method

(FOFDM).

From (9), we have

−εy″ xð Þ þ a xð Þy0 xð Þ þ b xð Þy xð Þ ¼ F xð Þ; x∈Ω1 ¼ 0; 1ð Þ ð10Þ

where F(x) = f(x) − c(x)ϕ(x − 1).

To find the numerical solution of (10), we use the theory applied in asymptotic

method for solving singularly perturbed BVPs. In the considered case, the boundary

layer is in the right side of the domain, i.e., near x = 1. From the theory of singular per-

turbations given by O’Malley [18] and using Taylor’s series expansion for a(x) about

x = 1 and restriction to their first terms, we get the asymptotic solution as follows:

y xð Þ ¼ y0 xð Þ þ θ−y0 1ð Þð Þ exp −
a 1ð Þ 1−xð Þ

ε

� �
; ð11Þ

where y0(x) is the solution of the reduced problem (obtained by setting ε = 0) of (10)
which is given by:

a(x)y′(x) + b(x)y(x) = F(x) with y0(0) = ϕ(0). (12)

Considering h is small enough, the discretized form for (11) becomes

y ihð Þ ¼ y0 ihð Þ þ θ−y0 1ð Þð Þ exp −
a 1ð Þ 1−ihð Þ

ε

� �
;

which is simplified to
y ihð Þ ¼ y0 ihð Þ þ θ−y0 1ð Þð Þ exp −a 1ð Þ 1
ε
−iρ

� �� �
; ð13Þ

where ρ ¼ h
ε ; h ¼ 1

N .

To handle the effect of the perturbation parameter, artificial viscosity (an exponen-

tially fitting factor σ(ρ)) is multiplied on the term containing the perturbation param-

eter as follows:

−εσ ρð Þy″ xð Þ þ a xð Þy0
xð Þ þ b xð Þy xð Þ ¼ F xð Þ; ð14Þ

with boundary conditions y0(0) = ϕ(0) and y(N) = θ, where y(N) is evaluated by
Runge-Kutta method from the reduced solution of (12).

Next, we consider the difference approximation of (9) on a uniform grid Ω
N

¼ fxigNi¼0 and denote h = xi + 1 − xi.

For any mesh function zi, define the following difference operators:

Dþzi ¼ ziþ1−zi
h

; D−zi ¼ zi−zi−1
h

; D0zi ¼ ziþ1−zi−1
2h

; DþD−zi

¼ ziþ1−2zi þ zi−1
h2

; ð15Þ
by applying the central finite difference scheme on (14) takes the form:

−εσ ρð Þ DþD−y xið Þð Þ þ a xið Þ D0y xið Þ� �þ b xið Þy xið Þ ¼ F xið Þ; ð16Þ

with the boundary conditions y0(0) = ϕ(0) and y(N) = θ.
Using operator, (10) is rewritten as follows:

Lhyi ¼ Fi ð17Þ

with the boundary conditions y0 = ϕ(0) and yN = θ.
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where

Lhyi ¼ −εσ ρð Þ yiþ1−2yi þ yi−1
h2

� �
þ a xið Þ yiþ1−yi−1

2h

	 

þ b xið Þyi ¼ Fi; ð18Þ

multiplying (18) by h and considering h is small and truncating the term h(Fi − , result
σ ρð Þ
ρ

yi−1−2yi þ yiþ1

� �þ a xið Þ
2

yi−1−yiþ1

� � ¼ 0: ð19Þ

Now, by using Taylor’s series for yi − 1 and yi + 1 up to first term and substituting the
results in (19) into (16) and simplifying, the exponential fitting factor is obtained as

follows:

σ ρð Þ ¼ ρa 1ð Þ
2

coth
ρa 1ð Þ
2

� �
: ð20Þ

2N

Assume that Ω denotes partition of [0, 2] into 2N subintervals such that 0 = x0 <

x1 < ... < xN = 1 and 1 < xN + 1 < xN + 2 < ... < x2N = 2 with xi ¼ ih; h ¼ 2
2N ¼ 1

N ; i ¼ 0; 1; 2; ::::

; 2N .

Case 1: Consider (4) on the domain Ω1 = (0, 1) which is given by:

−εy″ xð Þ þ a xð Þy0 xð Þ þ b xð Þy xð Þ ¼ f xð Þ−c xð Þϕ x−1ð Þ ð21Þ

Hence, the required finite difference scheme becomes
−εσ ρð Þ
h2

−
a xið Þ
2h

� �
yi−1 þ

2εσ ρð Þ
h2

þ b xið Þ
� �

yi þ
−εσ ρð Þ
h2

þ a xið Þ
2h

� �
yiþ1

¼ f i−ciϕ xi−Nð Þ ð22Þ

for i = 0, 1, 2, ..., N.

The numerical scheme in (22) can be written in three-term recurrence relation as

follows:

Eiyi−1 þ Fiyi þ Giyiþ1 ¼ Hi; i ¼ 1; 2; :::;N ; ð23Þ

where Ei ¼ −εσ
2 − ai ; Fi ¼ 2εσ

2 þ bi; Gi ¼ −εσ
2 þ ai ; Hi ¼ f −ciϕðxi−NÞ.
h 2h h h 2h i

Case 2: Consider (4) on the domain Ω2 = (1, 2), for right layer in the domain Ω2

using exponentially fitted finite difference method, which is given by:

−εσ ρð Þ yiþ1−2yi þ yi−1
h2

� �
þ ai

yiþ1−yi−1
2h

	 

þ biyi þ ciy xi−1ð Þ þ τ1 ¼ f i:

Similarly, this equation can be written as follows:
ciy j þ Eiyi−1 þ Fiyi þ Giyiþ1 ¼ Hi; i ¼ N þ 1;N þ 2; :::; 2N−1; ð24Þ

where y j ¼ y xi−1ð Þ; j ¼ 1; 2; :::;N

Ei ¼ −εσ

h2
−
ai
2h

; Fi ¼ 2εσ

h2
þ bi; Gi ¼ −εσ

h2
þ ai
2h

; Hi ¼ f i:

Case 3: For i = 2N, the composite Simpson’s rule approximates the integral of

g(x)y(x) by:
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Z2
0

g xð Þy xð Þdx ¼ h
3

g 0ð Þy 0ð Þ þ g 2ð Þy 2ð Þ þ 2
X2N−1

i¼1

g x2ið Þy x2ið Þ þ 4
X2N
i¼1

g x2i−1ð Þy x2i−1ð Þ
 !

:

ð25Þ

Substituting (25) into (3) gives:

y 2ð Þ− εh
3

g 0ð Þy 0ð Þ þ g 2ð Þy 2ð Þ þ 2
X2N−1

i¼1

g x2ið Þy x2ið Þ þ 4
X2N
i¼1

g x2i−1ð Þy x2i−1ð Þ
 !

¼ L

Since y(0) = ϕ(0), from (2), this equation can be re-written as follows:
−
4εh
3

X2N
i¼1

g x2i−1ð Þy x2i−1ð Þ− 2εh
3

X2N−1

i¼1

g x2ið Þy x2ið Þ þ 1−
εh
3
g 2ð Þ

� �
y 2ð Þ ¼ Lþ εh

3
g 0ð Þy 0ð Þ:

ð26Þ

Therefore, on the whole domain Ω ¼ ½0; 2�, the basic schemes to solve (1)–(3) are the
schemes given in (23), (24), and (26) together with the local truncation error of τ1.

Convergence analysis
The discrete scheme corresponding to the original problem (1)–(3) is as follows:

For i ¼ 1; 2; :::;N−1; LN1 Y i ¼ f i−biϕi−N ; ð27Þ

For i ¼ N þ 1; :::; 2N−1; LN2 Y i ¼ f i; ð28Þ

subject to the boundary conditions is as follows:
Y i ¼ ϕi; i ¼ −N ;−N þ 1; :::; 0; ð29Þ

KNY 2N ¼ Y 2N−
X2N
i¼1

gi−1Y i−1 þ 4giY i þ giþ1Y iþ1

3
hi; ð30Þ

and
D−YN ¼ DþYN ;

where
LN1 Y i ¼ −εδ2Y xið Þ þ a xið ÞD0Y xið Þ þ b xið ÞY xið Þ
LN2 Y i ¼ −εδ2Y xið Þ þ a xið ÞD0Y xið Þ þ b xið ÞY xið Þ þ c xið ÞY xi−Nð Þ :

Lemma 5: (Discrete Maximum Principle) Assume that

X2N
i¼1

gi−1 þ 4gi þ giþ1

3
hi ¼ ρ < 1

and mesh function ψ(xi) satisfy ψ(x0) ≥ 0 and KNψ(x2N) ≥ 0. Then, LN1 ψðxiÞ≥0;∀xi∈Ω2N
1 ;

LN2 ψðxiÞ≥0; ∀xi∈Ω2N
2 and D+(ψ(xN)) −D−(ψ(xN)) ≤ 0 imply that ψðxiÞ≥0; ∀xi∈Ω2N

.

Proof: Define
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s xið Þ ¼
( 1
8
þ xi

2
; xi∈ 0; 1½ �∩Ω2N

;

3
8
þ xi

4
; xi∈ 1; 2½ �∩Ω2N

;

Note that sðxiÞ > 0; ∀xi∈Ω
2N
; LsðxiÞ > 0;∀xi∈Ω2N

1 ∪Ω2N
2 ; sð0Þ > 0;Ksðx2N Þ > 0 ,

and[s′](xN) < 0.

Let μ ¼ maxf−ψðxiÞsðxiÞ : xi∈Ω
2Ng. Then, there exists xk∈Ω

2N
such that ψ(xk) + μs(xk) = 0

and ψðxiÞ þ μsðxiÞ≥0;∀xi∈Ω2N
. Therefore, the function (ψ + μs) attains its minimum at

x = xk. Suppose the theorem does not hold true, then, μ > 0.

Case (i): xk = x0, 0 < (ψ + μs)(x0) = 0, it is a contradiction.

Case (ii): xk∈Ω2N
1 , 0 < LN1 ðψ þ μsÞðxkÞ≤0, it is a contradiction.

Case (iii): xk = xN, 0 ≤ [D(ψ + μs)′](xN) < 0, it is a contradiction.

Case (iv): xk∈Ω2N
2 , 0 < LN2 ðψ þ μsÞðxkÞ≤0, it is a contradiction.

Case (v): xk = x2N

0 < KN ψ þ μsð Þx2N
¼ ψ þ μsð Þx2N−

X2N
i¼1

gi−1 ψ þ μsð Þxi−1 þ 4gi ψ þ μsð Þxi þ giþ1 ψ þ μsð Þxiþ1

3
hi≤0

It is a contradiction. Hence the proof of the theorem.

Lemma 6: Let ψ(xi) be any mesh function then for 0 ≤ i ≤ 2N,

ψ xið Þj j≤C max ψ xoð Þj j; KNψ x2Nð Þ�� ��; max
i∈Ω2N

1 ∪Ω2N
2

LNψ xið Þ�� ��( )
:

Proof: For the proof, refer to [16].
The following theorem shows the parameter uniform convergence of the scheme

developed.

Theorem 1: Let y(xi) and yi be respectively the exact solution of (1)–(3) and numerical

solutions of (17). Then, for sufficiently large N, the following parameter uniform error

estimate holds:

sup
0<ε≤1

‖y xið Þ−yi‖≤CN−2 ð32Þ

Proof: Let us consider the local truncation error defined as follows:
Lh y xið Þ−yið Þ ¼ −εσ ρð Þ d2

dx2
−DþD−

� �
y xið Þ þ a xið Þ d

dx
−D0

� �
y xið Þ; ð33Þ

where εσðρÞ ¼ að1Þ N−1
cothðað1Þ N−1Þ since ρ ¼ N−1

. In our assumption, ε ≤ h =N−1.
2 2ε ε

By considering N is fixed and taking the limit for ε→ 0, we obtain the following:

lim
ε→0

εσ ρð Þ ¼ lim
ε→0

a 1ð ÞN
−1

2
coth a 1ð ÞN

−1

2ε

� �
¼ CN−1:

From Taylor’s series expansion, the bound for the difference becomes:
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( ‖
d2

dx2
−DþD−

� �
y xið Þ‖≤CN−3‖

d4 y xið Þð Þ
dx4

‖

‖
d
dx

−D0

� �
y xið Þ‖≤CN−2‖

d3 y xið Þð Þ
dx3

‖

;

k dkyðxiÞ
where ‖ d ðyðxiÞÞ
dxk ‖ ¼ sup

xi∈ðx0;xN Þ
ð

dxk
Þ; k ¼ 3; 4.

Now, using the bounds and the assumption ε ≤N−1, (33) reduces to:

‖Lh y xið Þ−yið Þ‖ ¼ ‖−εσ ρð Þ d2

dx2
−DþD−

� �
y xið Þ þ a xið Þ d

dx
−D0

� �
y xið Þ‖

≤‖−εσ ρð Þ d2

dx2
−DþD−

� �
y xið Þ‖þ ‖a xið Þ d

dx
−D0

� �
y xið Þ‖

≤CN−3‖
d4 y xið Þð Þ

dx4
‖þ CN−2‖

d3 y xið Þð Þ
dx3

‖

: ð34Þ

Here, the target is to show the scheme convergence independent on the number of
mesh points.

By using the bounds for the derivatives of the solution in Lemma 4, we obtain:

‖Lh y xið Þ−yið Þ‖≤CN−3‖
d4 y xið Þð Þ

dx4
‖þ CN−2‖

d3 y xið Þð Þ
dx3

‖

≤CN−3 1þ ε−4 exp
−α 1−x j
� �
ε

� �� �
þ CN−2 1þ ε−3 exp

−α 1−x j
� �
ε

� �� �

≤CN−2 1þ ε−4 exp
−α 1−x j
� �
ε

� �� �
; since ε−4≥ε−3

:

ð35Þ

Lemma 7: For a fixed mesh and for ε→ 0, it holds:
lim
ε→0

max
1≤ j≤N−1

exp
−α 1−x j
� �
ε

� �
εm

¼ 0; m ¼ 1; 2; 3; ::: ð36Þ

Proof: Refer to [19].

By using Lemma 7 into (35), results to

‖Lh y xið Þ−yið Þ‖≤CN−2 ð37Þ

Hence, by discrete maximum principle, we obtain:
‖y xið Þ−yi‖≤CN−2: ð38Þ

Thus, result of (38) shows (32). Hence, the proof.

Remark: A similar analysis for convergence may be carried out for the finite differ-

ence scheme (24).

Richardson Extrapolation

This technique is acceleration technique which involves combination of two computed

approximations of a solution. The combination goes out to be an improved approxima-

tion. From the local truncation term, we have:
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j y xið Þ−yi j ≤C hð Þ ð39Þ

where y(xi) and yi are exact and approximate solutions respectively, and C is constant

free from mesh size h.

Let Ω4N be the mesh found by dividing each mesh interval in Ω2N and symbolize the

calculation of the solution on Ω4N by yi . Consider (39) works for any h ≠ 0, which

implies:

y xið Þ−yi≤C hð Þ þ R2N ; xi∈Ω
2N ð40Þ

So that it works for any h
2 ≠0 yields:

y xið Þ−yi≤C
h
2

� �
þ R4N ; xi∈Ω

4N ð41Þ

where the remainders R2N and R4N are O(h2). Combination of inequalities in (40) and

(41) leads to yðxiÞ−ð2yi−yiÞ ≈ Oðh2Þ which proposes that

yið Þext ¼ 2yi−yi ð42Þ

is also a rough calculation of y(xi). By means of this approximation to estimate the

truncation error, we obtain:

j y xið Þ− yið Þext j ≤C h2
� � ð43Þ

where C is free of mesh size h. Thus, using Richardson extrapolation first order conver-

gent method is accelerated into second order convergent as provided in (43). Thus, we

can say that the proposed method is second order convergent.

Numerical examples and results

In this section, two examples are considered to illustrate the applicability of the numer-

ical method discussed above. The exact solutions of these test problems are not known.

Therefore, double mesh principle is used to estimate the errors and compute the nu-

merical rate of convergence to the computed solution. The double mesh formula to de-

termine maximum absolute error is defined as follows:

Eh
ε ¼ max

0≤ i≤2N
j YN

i −Y
2N
2i j

where YN and Y 2N are the ith components of the numerical solutions for N and 2N, re-
i 2i

spectively. We compute the uniform error and the rate of convergence using the

formula:

Eh ¼ max
ε

Eh
ε andR

h ¼ log2
EN

E2N

� �

The numerical results are presented for the values of the perturbation parameter
ε ∈ {10−4, 10−8, ..., 10−20}.

Example 1:



Table 2 Comparison of maximum absolute errors for Example 1 at number of mesh points 2N

ε ↓ N→ 32 64 128 256 512

Present method

2−10 6.8161e−06 1.7253e−06 6.3777e−06 5.5050e−05 6.1658e−05

2−11 6.8161e−06 1.7125e−06 4.3561e−07 1.1065e−07 1.6001e−06

2−12 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−13 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−14 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−15 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−16 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−17 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−18 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−19 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

2−20 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

EN 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6874e−08

RN 1.9821 1.9964 1.9982 1.9991

Result in [16]

2−10 5.0010e−03 2.3755e−03 1.1275e−03 5.3851e−04 2.6147e−04

2−11 5.3378e−03 2.5881e−03 1.2538e−03 6.0996e−04 2.9986e−04

2−12 5.5738e−03 2.7367e−03 1.3418e−03 6.5956e−04 3.2641e−04

2−13 5.7397e−03 2.8409e−03 1.4034e−03 6.9419e−04 3.4487e−04

2−14 5.8565e−03 2.9141e−03 1.4466e−03 7.1844e−04 3.5778e−04

2−15 5.9389e−03 2.9657e−03 1.4770e−03 7.3548e−04 3.6683e−04

2−16 5.9970e−03 3.0021e−03 1.4985e−03 7.4747e−04 3.7319e−04

2−17 6.0380e−03 3.0278e−03 1.5136e−03 7.5592e−04 3.7767e−04

2−18 6.0670e−03 3.0459e−03 1.5242e−03 7.6189e−04 3.8083e−04

2−19 6.0875e−03 3.0587e−03 1.5318e−03 7.6610e−04 3.8306e−04

2−20 6.1020e−03 3.0678e−03 1.5371e−03 7.6907e−04 3.8464e−04

EN 6.1020e−03 3.0678e−03 1.5371e−03 7.6907e−04 3.8464e−04

RN 0.99207 0.99697 0.99904 0.99960

Table 1 Maximum absolute errors for Example 1 at number of mesh points 2N

ε N = 32 N = 64 N = 128 N = 256 N = 512

10−4 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6988e−08

1.9928 1.9964 1.9982 1.9930

10−8 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6988e−08

1.9928 1.9964 1.9982 1.9930

10−12 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6988e−08

1.9928 1.9964 1.9982 1.9930

10−16 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6988e−08

1.9928 1.9964 1.9982 1.9930

10−20 6.8161e−06 1.7125e−06 4.2918e−07 1.0743e−07 2.6988e−08

1.9928 1.9964 1.9982 1.9930
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Table 4 Comparison of maximum absolute errors for Example 2 at number of mesh points 2N

ε ↓ N→ 32 64 128 256 512

Present method

2−10 3.5556e−05 8.7577e−06 2.2227e−06 4.1781e−06 1.9844e−05

2−11 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.4748e−07

2−12 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−13 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−14 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−15 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−16 3.5556e−05 8.7577e−06 2.2227e−06 5.4134e−07 1.3509e−07

2−17 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−18 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−19 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2−20 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

EN 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

RN 2.0215 2.0107 2.0053 2.0026

Result in [16]

2−10 1.5023e−03 8.2944e−04 4.2515e−04 2.1093e−04 1.0303e−04

2−11 1.5379e−03 8.6376e−04 4.4918e−04 2.2591e−04 1.1186e−04

2−12 1.5610e−03 8.8702e−04 4.6570e−04 2.3629e−04 1.1800e−04

2−13 1.5763e−03 9.0297e−04 4.7715e−04 2.4351e−04 1.2228e−04

2−14 1.5865e−03 9.1398e−04 4.8511e−04 2.4855e−04 1.2528e−04

2−15 1.5935e−03 9.2163e−04 4.9067e−04 2.5209e−04 1.2738e−04

2−16 1.5983e−03 9.2698e−04 4.9458e−04 2.5457e−04 1.2885e−04

2−17 1.6016e−03 9.3072e−04 4.9732e−04 2.5631e−04 1.2989e−04

2−18 1.6039e−03 9.3336e−04 4.9925e−04 2.5754e−04 1.3063e−04

2−19 1.6055e−03 9.3521e−04 5.0061e−04 2.5841e−04 1.3114e−04

2−20 1.6067e−03 9.3652e−04 5.0157e−04 2.5902e−04 1.3151e−04

EN 1.6067e−03 9.3652e−04 5.0157e−04 2.5902e−04 1.3151e−04

RN 1.0602 1.0317 1.0162 1.0082

Table 3 Maximum absolute errors for Example 2 at number of mesh points 2N

ε N = 32 N = 64 N = 128 N = 256 N = 512

10−4 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2.0215 2.0107 2.0053 2.0026

10−8 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2.0215 2.0107 2.0053 2.0026

10−12 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2.0215 2.0107 2.0053 2.0026

10−16 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2.0215 2.0107 2.0053 2.0026

10−20 3.5556e−05 8.7577e−06 2.1733e−06 5.4134e−07 1.3509e−07

2.0215 2.0107 2.0053 2.0026
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Fig. 1 The behavior of the numerical solution for Example 1 at ε = 10−12 and N = 32
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−εy″ xð Þ þ 3y
0
xð Þ þ y xð Þ−y x−1ð Þ ¼ 1; x∈ 0; 1ð Þ∪ 1; 2ð Þ

y xð Þ ¼ 1; x∈ −1; 0½ �

y 2ð Þ−ε
Z2
0

x
3
y xð Þdx ¼ 2

Example 2:
−εy″ xð Þ þ 5y
0
xð Þ þ xþ 1ð Þy xð Þ−y x−1ð Þ ¼ x2; x∈ 0; 1ð Þ∪ 1; 2ð Þ

y xð Þ ¼ 1; x∈ −1; 0½ �

y 2ð Þ−ε
Z2
0

x
3
y xð Þdx ¼ 2
Fig. 2 The behavior of the numerical solution for Example 2 at ε = 10−12 and N = 32



Fig. 3 Point wise absolute error of Example 1 at ε = 10−12 with different mesh points N
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Discussion and conclusion
This study introduces accelerated fitted operator numerical method for solving singu-

larly perturbed delay differential equations with integral boundary condition. The be-

havior of the continuous solution of the problem is studied and shown that it satisfies

the continuous stability estimate, and the derivatives of the solution are also bounded.

The numerical scheme is developed on uniform mesh using fitted operator finite differ-

ence method in the given differential equation. The integral boundary condition is

treated by using Simpson’s rule. The stability of the developed numerical method is

established, and its uniform convergence is proved. To validate the applicability of the

method, two model problems are considered for numerical experimentation for differ-

ent values of the perturbation parameter and mesh points. The numerical results are

tabulated in terms of maximum absolute errors, numerical rate of convergence, and

uniform errors (see Tables 1, 2, 3 and 4). Further, Figs. 1 and 2 show that for small

values of ε, the solution of the problem under consideration exhibits strong boundary
Fig. 4 Point wise absolute error of Example 2 at ε = 10−12 with different mesh points N



Fig. 5 ε-uniform convergence with fitted operator in log-log scale for Example 1
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layer at x = 2, and interior layer at x = 1. Figures 3 and 4 show that as the mesh size de-

crease or as the number of mesh point increase, the absolute error decreases. The log-

log scale plot in Figs. 5 and 6 depicted the ε-uniformly convergence of the method for

h ≥ ε where the classical numerical methods fail to converge. The method is shown to

be ε-uniformly convergent with order of convergence O(h2). The performance of the

proposed scheme is investigated by comparing with prior study (Tables 2 and 4). The

proposed method is stable, more accurate, and convergent independent of the values of

the perturbation parameter and the mesh size. The authors suggested that one can ex-

tend the work or solve the problem under consideration by applying higher order fitted

operator numerical methods or Bakhavlov-type fitted mesh numerical method to obtain

more accurate numerical results.
Fig. 6 ε-uniform convergence with fitted operator in log-log scale for Example 2
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