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Abstract
Reduction of attributes in an information system (IS) is a basic step for IS analysis. The
original rough set model of Pawlak depends on an equivalence relation which is
strongly constraints. This paper aims to use similarity classes and similarity degrees to
obtain a reduction of IS and indicate an approach by using an example from
biochemistry to get a quantitative structure activity relationship (QSAR). Moreover,
signs of each attribute and degrees of memberships are computed to give a decision
by using the degree of similarity. The suggested approach gives an increase in
decision-making and decision accuracy.

Keywords: Protein energy, Rough set, Membership function, QSAR, Similarity,
Decision-making

Mathematics Subject Classification (2010): 54C08, 54D10, 54C50, 54C60

Introduction and preliminaries
The rough set theory of Pawlak [1] is a mathematical tool to analyze the uncertain data.
Pawlak classified data to a set of classes, and each class consists of objects [2]. This clas-
sification depends on an equivalence relation, and so all objects in the same class have
the same importance, but this is not true in real life for all uncertain data. The notion
of membership was studied in the view point of topological spaces in [3] and [4] via a
general binary relation. This membership was extended from the original rough mem-
bership function [5]. Allam et al. [6] and Salama [7] gave a new approach for basic rough
set concepts. They obtained some topological structures from rough sets. In [8], Yao et
al. discussed the issue of classes overlapping in rough sets and they introduced a mem-
bership of an object to a class. The approximations is used to calculate the accuracy as
in [9]. Several studies such as a chemical topology [10] have focused on the stability of
structure bonds in proteins. Also, similarity on rough sets is one of these studies which
interests in the protein energy of unfolding. Similarity based on rough sets was discussed
in [11] and [12]. In 2017, Elshenawy et al. [13] studied the similarity of data via a weighted
membership. Walczak and Massart [14] classified the data by giving range chosen. They
used lower and upper approximations to calculate the accuracy. In this case, the inter-
section of all reducts gives the core of attributes. The topology on X generated by R is a
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knowledge base for X, and indication of symptoms for a fixed disease can be seen through
the topology [15]. Different notions of a membership function based on rough sets were
introduced and studied in [16], [17], and [18]. A QSAR [19] constructs a mathematical
model interconnected in its biological activity a set of structural descriptors of a set of
chemical compounds. The main purpose of this paper is to study the reduction based
on similarity. We give a comparison between a reduction by similarity and some other
types of reduction with some different examples. An application on QSAR of AAs will
be studied. We introduce an algorithm to reduce a membership function and illustrate it
graphically. Some properties of relations and membership functions will be investigated.
A new method is introduced to study the correlation between attributes and a decision
through a similarity relation.

Definition 1 [1] The IS or approximation space is a system (U ,A, f ) where U is the
universe of finite set of objects and A is a set of attributes which is featured or variables.
Each a ∈ A defines an information function fa : U −→ Va, where Va is the set of all values
of a, say the domain of attribute a.

Definition 2 [5] For every B ⊆ A, the indiscernibility relation on B, denoted by Ind(B),
is defined to be two objects xi, xj ∈ U which are indiscernible by the sets B if b(xi) = b(xj)
for every b ∈ B. Ind(B) is the smallest indiscernible groups of objects and so the equivalence
class of Ind(B) called elementary set in B. [ xi] will denote to the equivalence class of object
xi in the relation Ind(B).

Definition 3 [5] For every B ⊆ A, a membership function of an object xi ∈ U with
respect to B is given by μB(xi) = |[xi]∩B|

|[xi]| , where |[ xi] | is the cardinality the class [ xi], in
other words, the number of objects contained in [ xi].

The IS is represented in Table 1 with a set of attributes A = {p, q, r, s} and a set of
objects U = {a, b, c, d, e}. We study the effect of attributes on decision, in other words,
the correlation between attributes and the decision in the following statements.

Original Pawlak method

In Table 1, we compare between attributes of objects. There is no similarity between
attributes of objects. So, we have the class of objects C = {{a}, {b}, {c}, {d}, {e}} and two
sets of decisions D1 = {a, d, e} and D2 = {b, c}. The Pawlak membership is given by
μA(x) = |[x]∩A|

|[x]| , for any object x and A ⊆ U . Therefore:

μD1(x) =
{
1 : x ∈ {a, d, e}
0 : x ∈ {b, c} ,

Table 1 Information system

Objects p q r s Decision

a 0.23 0.31 −0.55 254.2 8.5

b −0.48 −0.60 0.51 303.6 8.2

c −0.61 −0.77 1.20 287.9 8.2

d 0.45 1.54 −1.40 282.9 8.5

e −0.11 −0.22 0.29 335.0 8.5
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Table 2 Objects with attribute coding

Attributes 1 2 3 4

a < −0.115 [−0.115, 0.54) [0.54, 1.195) > 1.195

b < −0.18 [−0.18, 0.63) [0.63, 1.44) > 1.440

c < −1.725 [−1.725,−0.75) [−0.75, 0.225) > 0.225

d < 269.125 [269.125, 313.35) [313.35, 357.58) > 357.580

e < 2.685 [2.685, 3.708) [3.708, 4.732) > 4.732

μD2(x) =
{
1 : x ∈ {b, c}
0 : x ∈ {a, d, e}

This means any object correlates with the decision only by 0 and 1.

Pawlak method with coding

The IS in Table 1 can be coded by choosing intervals as in Table 2. The IS with coding
is given by Table 3. The class of objects in Table 3 is C = {{a}, {b, c}, {d}, {e}}. Objects
correlate with decisions D1 and D2 by:

μD1(x) =
{
1 : x ∈ {a, d, e}
0 : x ∈ {b, c} ,

μD2(x) =
{

1
2 : x ∈ {b, c}
0 : x ∈ {a, d, e}

This means that any object correlates with the decision only by 0, 12 and 1.

Similarity without degree

The similarity matrix between objects in Table 3 is given by Table 4. A binary relation R
on U is defined by xRy if and only if μ(x, y) ≤ 1

4 . Then, the class of objects is C = {U ,
{a, b, d}, {a, c, d}}, {a, d, e}. The correlation of objects with respect to decisions D1 and D2
is given by
μD1(a) = |U∩{a,b,d}∩{a,c,d}}∩{a,d,e}|

|D1| = |{a,d}|
|D1| = 2

3 , μD1(b) = 1, μD1(c) = 1, μD1(d) = 2
3 ,

μD1(e) = 1. Also, μD2(a) = 1, μD2(b) = 3
2 , μD2(c) = 3

2 , μD2(d) = 1 and μD2(e) = 3
2 .

Uncertain QSAR information system
The basic form of Pawlak depends on equivalence relation. This expands the application
circle for objects and decision rules. Because if we apply Pawlak rules for some ISs, it is
not possible to have equal attributes for two different attributes. So as in the following
problem, that we are giving a method of solving depends on a similarity relation.
Problem A modeling of the energy of unfolding of a protein (tryptophane synthase an

alpha unit of the bacteriophage T4 lysozome), where 19 coded amino acids (AAs) were

Table 3 Coded information system

Objects p q r s Decision

a 2 2 3 1 8.5

b 1 1 4 2 8.2

c 1 1 4 2 8.2

d 2 4 2 2 8.5

e 2 1 4 3 8.5
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Table 4 Similarity matrix

Objects a b c d e

a 1
4 0 0 1

4
1
4

b 0 1
4 1 1

4
1
2

c 0 1 1
4

1
4

1
2

d 1
4

1
4

1
4

1
4

1
4

e 1
4

1
2

1
2

1
4

1
4

each introduced into position 49 [20]. The AAs are described in terms of seven attributes:
a1 = PIE and a2 = PIF (two measures of the side chain lipophilicity), a3 = DGR = �G
of transfer from the protein interior with water, a4 = SAC = surface area, a5 = MR =
molecular refractivity, a6 = LAM = the side chain polarity, and a7 = Vol = molecular
volume. In [14], the authors used the form of Pawlak [1] to make decision rules. The IS
of quantitative attributes {a1, a2, a3, a4, a5, a6, a7} and a decision attribute {d} can be rep-
resented by Table 5. The condition attributes are coded into four qualitative terms, such
as very low, low, high, and very high, whereas the decision attributes is coded into three
qualitative terms, such as low, medium, and high. The qualitative terms of all attributes
are coded by integer numbers. The problem is to illustrate that there are some objects
that coded with medium energy of unfolding in [14] in respect of an attribute would be
for the high energy of unfold.

Algorithm
Step 1: Construct a similarity matrix for each attribute a by Ma =[wij] which will be
19× 19 matrix, 7 is the number of attributes, i ∈ {1, 2, 3, · · · , 19} will denote to the row of
matrix, and j ∈ {1, 2, 3, · · · , 19} will denote to the column of the matrix.
Step 2: Calculate the similarity degree of attributes through a definite relation, say R, on

the our IS which will be denoted by QSAR IS = (U ,A), where U = {x1, x2, x3, x4, x5,

Table 5 QSAR information system

Objects a1 a2 a3 a4 a5 a6 a7 Decision

x1 0.23 0.31 −0.55 254.2 2.126 −0.02 82.2 8.5

x2 −0.48 −0.60 0.51 303.6 2.994 −1.24 112.3 8.2

x3 −0.61 −0.77 1.20 287.9 2.994 −1.08 103.7 8.5

x4 0.45 1.54 −1.40 282.9 2.933 −0.11 99.1 11.0

x5 −0.11 −0.22 0.29 335.0 3.458 −1.19 127.5 6.3

x6 −0.51 −0.64 0.76 311.6 3.243 −1.43 120.5 8.8

x7 0.00 0.00 0.00 224.9 1.662 0.03 65.0 7.1

x8 0.15 0.13 −0.25 337.2 3.856 −1.06 140.6 10.1

x9 1.20 1.80 −2.10 322.6 3.350 0.04 131.7 16.8

x10 1.28 1.70 −2.00 324.0 3.518 0.12 131.5 15.0

x11 −0.77 −0.99 0.78 336.6 2.933 −2.26 144.3 7.9

x12 0.90 1.23 −1.60 336.3 3.860 −0.33 132.3 13.3

x13 1.56 1.79 −2.60 336.1 4.638 −0.05 155.8 11.2

x14 0.38 0.49 −1.50 228.5 2.876 −0.31 106.7 8.2

x15 0.00 −0.04 0.09 266.7 2.279 −0.40 88.5 7.4

x16 0.17 0.26 −0.58 282.9 2.743 −0.53 105.3 8.8

x17 1.85 2.25 −2.70 401.8 5.755 −0.31 185.9 9.9

x18 0.89 0.96 −1.70 377.8 4.791 −0.84 162.7 8.8

x19 0.71 1.22 −1.60 295.1 3.054 −0.13 115.6 12.0
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x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} and A = {a1, a2, a3, a4, a5, a6, a7},
the set of attributes. So, xiRxj if and only if xi is similar to xj. The degree of similar-
ity or similarity measure between xi and xj is denoted by dega(xi, xj) = dij = 1 −
|a(xi)−a(xj)|
|amax−amin| , where amax and amin denote the minimum and maximum values of attribute
a, respectively. It is clear that R is reflexive and symmetric.
Step 3: Classify the data deduced from step 2 via xiR = {xj(dij) : xiRxj}. The value d will

be chosen by an expert. Then, there are two cases dij > d and dij < d.
Step 4: Define a membership function of every object for the similarity matrix in step

3 as follows: For any arbitrary element xkR = Ck ∈ U/R and for y ∈ Ck , the mem-

bership function of y with respect to any subset X of U, μ
Ck
X (y) =

∑
x∈Ck∩X

dij∑
x∈Ck

dij , where

k ∈ {1, 2, · · · , 19}. If Ck ∩ X = φ, then μ
Ck
X (y) = 0.

Step 5: Present functions of the least, most extreme, and normal weighted participation
for every y by:

μw
X(y) = miny∈Ck

(
μ
Ck
X (y)

)
μw
X(y) = maxy∈Ck

(
μ
Ck
X (y)

)
μw
X(y) = avgy∈Ck

(
μ
Ck
X (y)

)
Step 6: Choose a set X ⊂ U . Evaluate the rough membership μ for each object z by
determining the A = ⋂

z∈Ck

Ck and calculate μ = |A∩X|
|A| , for every object.

Step 7: Determine a maximum rough membership μ from the last column of each
classification.
Now, we apply the algorithm on the problem of QSAR.

(1) Similarity matrix for an attribute a1. Since a1(max) = 1.85 and a1(min) = −0.77,
then, a1(max) − a1(min) = 2.62, then we have the matrixMx1 . We have:

Ma1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.7 0.7 1.0 0.9 0.7 0.9 1.0 0.9 0.6 0.6 0.7 0.5 0.9 0.9 1.0 0.4 0.7 0.8
0.7 1 0.9 0.6 0.9 1.0 0.8 0.8 0.4 0.3 0.9 0.9 0.5 0.2 0.7 0.8 0.7 0.5 0.5
0.7 0.9 1 0.6 0.8 0.9 0.8 0.7 0.3 0.3 0.9 0.4 0.2 0.6 0.8 0.7 0.1 0.4 0.5
1.0 0.6 0.6 1 0.8 0.6 0.8 0.9 0.7 0.7 0.5 0.8 0.6 0.9 0.8 0.9 0.5 0.8 0.8
0.9 0.9 0.8 0.8 1 0.8 0.9 0.9 0.5 0.5 0.7 0.6 0.4 0.8 0.9 0.9 0.2 0.6 0.4
0.7 1.0 0.9 0.6 0.8 1 0.8 0.7 0.3 0.3 0.9 0.5 0.2 0.7 0.8 0.7 0.1 0.5 0.5
0.9 0.8 0.8 0.8 0.9 0.8 1 0.9 0.5 0.5 0.7 0.7 0.4 0.8 1.0 0.9 0.3 0.7 0.7
1.0 0.8 0.7 0.9 0.9 0.7 0.9 1 0.6 0.6 0.6 0.7 0.5 0.9 0.9 1.0 0.3 0.7 0.8
0.9 0.4 0.3 0.7 0.5 0.3 0.5 0.6 1 0.9 0.2 0.9 0.9 0.7 0.5 0.6 0.7 0.9 0.8
0.6 0.3 0.3 0.7 0.5 0.3 0.5 0.6 0.9 1 0.2 0.8 0.9 0.7 0.5 0.6 0.8 0.8 0.8
0.6 0.9 0.9 0.5 0.7 0.9 0.7 0.6 0.2 0.2 1 0.4 0.1 0.6 0.4 0.6 0.0 0.4 0.4
0.7 0.9 0.4 0.8 0.6 0.5 0.7 0.7 0.9 0.8 0.7 1 0.7 0.8 0.7 0.7 0.6 1.0 0.9
0.5 0.5 0.2 0.6 0.4 0.2 0.4 0.5 0.9 0.9 0.1 0.7 1 0.5 0.4 0.5 0.9 0.7 0.7
0.9 0.2 0.6 0.9 0.8 0.7 0.8 0.9 0.7 0.7 0.6 0.8 0.5 1 0.8 0.9 0.4 0.8 0.9
0.9 0.7 0.8 0.8 0.9 0.8 1.0 0.9 0.5 0.5 0.7 0.7 0.4 0.8 1 0.9 0.3 0.7 0.7
1.0 0.8 0.7 0.9 0.9 0.7 0.9 1.0 0.6 0.6 0.6 0.7 0.5 0.9 0.9 1 0.3 0.7 0.8
0.4 0.7 0.1 0.5 0.2 0.1 0.3 0.3 0.7 0.8 0.0 0.6 0.9 0.4 0.3 0.3 1 0.6 0.6
0.7 0.5 0.4 0.8 0.6 0.5 0.7 0.7 0.9 0.8 0.4 1.0 0.7 0.8 0.7 0.7 0.6 1 0.9
0.8 0.5 0.5 0.8 0.7 0.5 0.7 0.8 0.8 0.8 0.4 0.9 0.7 0.9 0.7 0.8 0.6 0.9 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(2) Take d = 0.7, we have the similarity classes.

C1 = x1R = {x1(1), x4(1.0), x5(0.9), x7(0, 9), x8(1.0), x9(0.9), x14(0.9), x15(0.9), x16(1.0), x19(0.8)};
C2 = x2R = {x2(1), x3(0.9), x5(0.9), x6(1.0), x7(0.8), x8(0.8), x11(0.9), x12(0.9), x16(0.8)};
C3 = x3R = {x2(0.9), x3(1), x5(0.8), x6(0.9), x7(0.8), x11(0.9), x15(0.8)};
C4 = x4R = {x1(1.0), x4(1), x5(0.8), x7(0.8), x8(0.9), x12(0.8), x14(0.9), x15(0.8), x16(0.9), x18(0.8), x19(0.8)};
C5 = x5R = {x1(0.9), x2(0.9), x3(0.8), x4(0.8), x5(1), x6(0.8), x7(0.9), x8(0.9), x14(0.8), x15(0.9), x16(0.9)};
C6 = x6R = {x2(1.0), x3(0.9), x5(0.8), x6(1), x7(0.8), x11(0.9), x15(0.8)};
C7 = x7R = {x1(0.9), x2(0.8), x3(0.8), x4(0.8), x5(0.9), x6(0.8), x7(1), x8(0.9), x14(0.8), x15(1.0), x16(0.9)};
C8 = x8R = {x1(1.0), x2(0.8), x4(0.9), x5(0.9), x7(0.9), x8(1), x14(0.9), x15(0.9), x16(1.0), x19(0.8)};
C9 = x9R = {x1(0.9), x9(1), x10(0.9), x12(0.9), x13(0.9), x18(0.9), x19(0.8)};
C10 = x10R = {x9(0.9), x10(1), x12(0.8), x13(0.9), x17(0.8), x18(0.8), x19(0.8)};
C11 = x11R = {x2(0.9), x3(0.9), x6(0.9), x11(1)};
C12 = x12R = {x2(0.9), x4(0.8), x9(0.9), x10(0.8), x12(1), x14(0.8), x18(1.0), x19(0.9)};
C13 = x13R = {x9(0.9), x10(0.9), x13(1), x17(0.9)};
C14 = x14R = {x1(0.9), x4(0.9), x5(0.8), x7(0.8), x8(0.9), x12(0.8), x14(1), x15(0.8), x16(0.9), x18(0.8), x19(0.9)};
C15 = x15R = {x1(0.9), x3(0.8), x4(0.8), x5(0.9), x6(0.8), x7(1.0), x8(0.9), x14(0.8), x15(1), x16(0.9)};
C16 = x16R = {x1(1.0), x2(0.8), x4(0.9), x5(0.9), x7(0.9), x8(1.0), x14(0.9), x15(0.9), x16(1), x19(0.8)};
C17 = x17R = {x10(0.8), x13(0.9), x17(1)};
C18 = x18R = {x4(0.8), x9(0.9), x10(0.8), x12(1.0), x14(0.8), x18(1), x19(0.9)};
C19 = x19R = {x1(0.8), x4(0.8), x8(0.8), x9(0.8), x10(0.8), x12(0.9), x14(0.9), x16(0.8), x18(0.9), x19(1)}.

(3) We choose some various sets and compare the membership classification
through the following two cases.

Case 1: Let X = {x9, x10, x12}. Then, we have:

μ
C1
X (x1) = 0.10 μ

C2
X (x2) = 0.11 μ

C2
X (x3) = 0.11 μ

C1
X (x4) = 0.10 μ

C1
X (x5) = 0.10

μ
C4
X (x1) = 0.08 μ

C3
X (x2) = 0.0 μ

C3
X (x3) = 0.0 μ

C4
X (x4) = 0.08 μ

C2
X (x5) = 0.11

μ
C5
X (x1) = 0.0 μ

C5
X (x2) = 0.0 μ

C5
X (x3) = 0.0 μ

C5
X (x4) = 0.0 μ

C3
X (x5) = 0.0

μ
C7
X (x1) = 0.0 μ

C6
X (x2) = 0.0 μ

C6
X (x3) = 0.0 μ

C7
X (x4) = 0.0 μ

C4
X (x5) = 0.08

μ
C8
X (x1) = 0.0 μ

C7
X (x2) = 0.0 μ

C7
X (x3) = 0.0 μ

C8
X (x4) = 0.0 μ

C5
X (x5) = 0.0

μ
C9
X (x1) = 0.44 μ

C8
X (x2) = 0.0 μ

C11
X (x3) = 0.0 μ

C12
X (x4) = 0.13 μ

C6
X (x5) = 0.38

μ
C14
X (x1) = 0.08 μ

C11
X (x2) = 0.0 μ

C15
X (x3) = 0.0 μ

C14
X (x4) = 0.08 μ

C7
X (x5) = 0.0

μ
C15
X (x1) = 0.0 μ

C12
X (x2) = 0.38 μ

C15
X (x4) = 0.0 μ

C8
X (x5) = 0.0

μ
C16
X (x1) = 0.0 μ

C16
X (x2) = 0.0 μ

C16
X (x4) = 0.0 μ

C14
X (x5) = 0.08

μ
C19
X (x1) = 0.30 μ

C18
X (x4) = 0.44 μ

C15
X (x5) = 0.0

μ
C19
X (x4) = 0.30 μ

C16
X (x5) = 0.0

and

μ
C2
X (x6) = 0.11 μ

C1
X (x7) = 0.10 μ

C1
X (x8) = 0.10 μ

C1
X (x9) = 0.10 μ

C9
X (x10) = 0.44

μ
C3
X (x6) = 0.0 μ

C2
X (x7) = 0.11 μ

C2
X (x8) = 0.11 μ

C9
X (x9) = 0.44 μ

C10
X (x10) = 0.45
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μ
C5
X (x6) = 0.0 μ

C3
X (x7) = 0.0 μ

C4
X (x8) = 0.08 μ

C10
X (x9) = 0.45 μ

C12
X (x10) = 0.38

μ
C6
X (x6) = 0.0 μ

C4
X (x7) = 0.08 μ

C5
X (x8) = 0.0 μ

C12
X (x9) = 0.38 μ

C13
X (x10) = 0.49

μ
C7
X (x6) = 0.0 μ

C5
X (x7) = 0.0 μ

C7
X (x8) = 0.0 μ

C13
X (x9) = 0.49 μ

C17
X (x10) = 0.30

μ
C11
X (x6) = 0.0 μ

C6
X (x7) = 0.0 μ

C8
X (x8) = 0.0 μ

C18
X (x9) = 0.44 μ

C18
X (x10) = 0.44

μ
C15
X (x6) = 0.0 μ

C7
X (x7) = 0.0 μ

C14
X (x8) = 0.08 μ

C19
X (x9) = 0.30 μ

C19
X (x10) = 0.30

μ
C8
X (x7) = 0.0 μ

C15
X (x8) = 0.0

μ
C14
X (x7) = 0.08 μ

C16
X (x8) = 0.0

μ
C15
X (x7) = 0.0 μ

C19
X (x8) = 0.30

μ
C16
X (x7) = 0.0

and

μ
C2
X (x11) = 0.11 μ

C2
X (x12) = 0.11 μ

C9
X (x13) = 0.44 μ

C1
X (x14) = 0.10 μ

C1
X (x15) = 0.10

μ
C3
X (x11) = 0.0 μ

C4
X (x12) = 0.08 μ

C10
X (x13) = 0.45 μ

C4
X (x14) = 0.08 μ

C3
X (x15) = 0.0

μ
C6
X (x11) = 0.0 μ

C9
X (x12) = 0.44 μ

C13
X (x13) = 0.49 μ

C5
X (x14) = 0.0 μ

C4
X (x15) = 0.08

μ
C11
X (x11) = 0.0 μ

C10
X (x12) = 0.45 μ

C17
X (x13) = 0.30 μ

C7
X (x14) = 0.0 μ

C5
X (x15) = 0.0

μ
C12
X (x12) = 0.38 μ

C8
X (x14) = 0.0 μ

C6
X (x15) = 0.0

μ
C14
X (x12) = 0.08 μ

C12
X (x14) = 0.38 μ

C7
X (x15) = 0.0

μ
C18
X (x12) = 0.44 μ

C14
X (x14) = 0.08 μ

C8
X (x15) = 0.0

μ
C19
X (x12) = 0.30 μ

C15
X (x14) = 0.0 μ

C14
X (x15) = 0.08

μ
C16
X (x14) = 0.0 μ

C15
X (x15) = 0.0

μ
C18
X (x14) = 0.44 μ

C16
X (x15) = 0.0

μ
C19
X (x14) = 0.30

and

μ
C1
X (x16) = 0.10 μ

C10
X (x17) = 0.45 μ

C4
X (x18) = 0.08 μ

C1
X (x19) = 0.10

μ
C2
X (x16) = 0.11 μ

C13
X (x17) = 0.49 μ

C9
X (x18) = 0.44 μ

C4
X (x19) = 0.08

μ
C4
X (x16) = 0.08 μ

C17
X (x17) = 0.30 μ

C10
X (x18) = 0.45 μ

C8
X (x19) = 0.0

μ
C5
X (x16) = 0.0 μ

C12
X (x18) = 0.38 μ

C9
X (x19) = 0.44

μ
C7
X (x16) = 0.0 μ

C14
X (x18) = 0.08 μ

C10
X (x19) = 0.45

μ
C8
X (x16) = 0.0 μ

C18
X (x18) = 0.44 μ

C12
X (x19) = 0.38

μ
C14
X (x16) = 0.08 μ

C19
X (x18) = 0.30 μ

C14
X (x19) = 0.08

μ
C15
X (x16) = 0.0 μ

C16
X (x19) = 0.0

μ
C16
X (x16) = 0.0 μ

C18
X (x19) = 0.44

μ
C19
X (x16) = 0.30 μ

C19
X (x19) = 0.30

Now, we evaluate the rough membership for each object which gives a preferable
value for the data. The object belongs to more than one class, so it has three
membership minimum, maximum, and average. This can be shown in Table 6
and Fig. 1.
In [14], the decision rules are coded into three qualitative terms, such as low,
medium, and high. X is the set of objects that protein has high energy of
unfolding.
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Table 6Weighed rough membership for X

Objects Minimum Maximum Average Rough membership μ

x1 0.0 0.44 0.22 0

x2 0.0 0.38 0.19 0

x3 0.0 0.11 0.055 0

x4 0.0 0.44 0.22 0

x5 0.0 0.38 0.19 0

x6 0.0 0.11 0.055 0

x7 0.0 0.11 0.055 0

x8 0.0 0.30 0.15 0

x9 0.10 0.49 0.295 1

x10 0.30 0.49 0.395 1

x11 0.0 0.11 0.055 0

x12 0.08 0.45 0.265 1

x13 0.30 0.49 0.395 1
2

x14 0.0 0.44 0.22 0

x15 0.0 0.10 0.05 0

x16 0.0 0.30 0.15 0

x17 0.30 0.49 0.395 1
3

x18 0.08 0.45 0.265 1
3

x19 0.0 0.45 0.225 0

Case 2: Let Y = {x4, x8, x13, x17, x19}. Then, we have:
μ
C1
Y (x1) = 0.30 μ

C2
Y (x2) = 0.10 μ

C2
Y (x3) = 0.10 μ

C1
Y (x4) = 0.30 μ

C1
Y (x5) = 0.30

μ
C4
Y (x1) = 0.28 μ

C3
Y (x2) = 0.0 μ

C3
Y (x3) = 0.0 μ

C4
Y (x4) = 0.28 μ

C2
Y (x5) = 0.10

μ
C5
Y (x1) = 0.18 μ

C5
Y (x2) = 0.18 μ

C5
Y (x3) = 0.18 μ

C5
Y (x4) = 0.18 μ

C3
Y (x5) = 0.0

μ
C7
Y (x1) = 0.18 μ

C6
Y (x2) = 0.0 μ

C6
Y (x3) = 0.0 μ

C7
Y (x4) = 0.18 μ

C4
Y (x5) = 0.28

μ
C8
Y (x1) = 0.30 μ

C7
Y (x2) = 0.18 μ

C7
Y (x3) = 0.18 μ

C8
Y (x4) = 0.30 μ

C5
Y (x5) = 0.18

μ
C9
Y (x1) = 0.27 μ

C8
Y (x2) = 0.30 μ

C11
Y (x3) = 0.0 μ

C12
Y (x4) = 0.24 μ

C6
Y (x5) = 0.0

μ
C14
Y (x1) = 0.28 μ

C11
Y (x2) = 0.0 μ

C15
Y (x3) = 0.19 μ

C14
Y (x4) = 0.28 μ

C7
Y (x5) = 0.18

Fig. 1 Rough membership for X = {x9, x10, x12}
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μ
C15
Y (x1) = 0.19 μ

C12
Y (x2) = 0.24 μ

C15
Y (x4) = 0.19 μ

C8
Y (x5) = 0.30

μ
C16
Y (x1) = 0.30 μ

C16
Y (x2) = 0.30 μ

C16
Y (x4) = 0.30 μ

C14
Y (x5) = 0.28

μ
C19
Y (x1) = 0.31 μ

C18
Y (x4) = 0.27 μ

C15
Y (x5) = 0.19

μ
C19
Y (x4) = 0.31 μ

C16
Y (x5) = 0.30

and

μ
C2
Y (x6) = 0.10 μ

C1
Y (x7) = 0.30 μ

C1
Y (x8) = 0.30 μ

C1
Y (x9) = 0.30 μ

C9
Y (x10) = 0.27

μ
C3
Y (x6) = 0.0 μ

C2
Y (x7) = 0.10 μ

C2
Y (x8) = 0.10 μ

C9
Y (x9) = 0.27 μ

C10
Y (x10) = 0.42

μ
C5
Y (x6) = 0.18 μ

C3
Y (x7) = 0.0 μ

C4
Y (x8) = 0.28 μ

C10
Y (x9) = 0.42 μ

C12
Y (x10) = 0.24

μ
C6
Y (x6) = 0.0 μ

C4
Y (x7) = 0.28 μ

C5
Y (x8) = 0.18 μ

C12
Y (x9) = 0.24 μ

C13
Y (x10) = 0.51

μ
C7
Y (x6) = 0.18 μ

C5
Y (x7) = 0.18 μ

C7
Y (x8) = 0.18 μ

C13
Y (x9) = 0.51 μ

C17
Y (x10) = 0.70

μ
C11
Y (x6) = 0.0 μ

C6
Y (x7) = 0.0 μ

C8
Y (x8) = 0.30 μ

C18
Y (x9) = 0.27 μ

C18
Y (x10) = 0.27

μ
C15
Y (x6) = 0.19 μ

C7
Y (x7) = 0.18 μ

C14
Y (x8) = 0.28 μ

C19
Y (x9) = 0.31 μ

C19
Y (x10) = 0.31

μ
C8
Y (x7) = 0.30 μ

C15
Y (x8) = 0.19

μ
C14
Y (x7) = 0.28 μ

C16
Y (x8) = 0.30

μ
C15
Y (x7) = 0.19 μ

C19
Y (x8) = 0.31

μ
C16
Y (x7) = 0.30

and

μ
C2
Y (x11) = 0.10 μ

C2
Y (x12) = 0.10 μ

C9
Y (x13) = 0.27 μ

C1
Y (x14) = 0.30 μ

C1
Y (x15) = 0.30

μ
C3
Y (x11) = 0.0 μ

C4
Y (x12) = 0.28 μ

C10
Y (x13) = 0.42 μ

C4
Y (x14) = 0.28 μ

C3
Y (x15) = 0.0

μ
C6
Y (x11) = 0.0 μ

C9
Y (x12) = 0.27 μ

C13
Y (x13) = 0.51 μ

C5
Y (x14) = 0.18 μ

C4
Y (x15) = 0.28

μ
C11
Y (x11) = 0.0 μ

C10
Y (x12) = 0.42 μ

C17
Y (x13) = 0.70 μ

C7
Y (x14) = 0.18 μ

C5
Y (x15) = 0.18

μ
C12
Y (x12) = 0.24 μ

C8
Y (x14) = 0.30 μ

C6
Y (x15) = 0.0

μ
C14
Y (x12) = 0.28 μ

C12
Y (x14) = 0.24 μ

C7
Y (x15) = 0.18

μ
C18
Y (x12) = 0.27 μ

C14
Y (x14) = 0.28 μ

C8
Y (x15) = 0.30

μ
C19
Y (x12) = 0.31 μ

C15
Y (x14) = 0.19 μ

C14
Y (x15) = 0.28

μ
C16
Y (x14) = 0.30 μ

C15
Y (x15) = 0.19

μ
C18
Y (x14) = 0.27 μ

C16
Y (x15) = 0.30

μ
C19
Y (x14) = 0.31

and

μ
C1
Y (x16) = 0.30 μ

C10
Y (x17) = 0.42 μ

C4
Y (x18) = 0.28 μ

C1
Y (x19) = 0.30

μ
C2
Y (x16) = 0.10 μ

C13
Y (x17) = 0.51 μ

C9
Y (x18) = 0.27 μ

C4
Y (x19) = 0.28

μ
C4
Y (x16) = 0.28 μ

C17
Y (x17) = 0.70 μ

C10
Y (x18) = 0.42 μ

C8
Y (x19) = 0.30

μ
C5
Y (x16) = 0.18 μ

C12
Y (x18) = 0.24 μ

C9
Y (x19) = 0.27

μ
C7
Y (x16) = 0.18 μ

C14
Y (x18) = 0.28 μ

C10
Y (x19) = 0.42

μ
C8
Y (x16) = 0.30 μ

C18
Y (x18) = 0.27 μ

C12
Y (x19) = 0.24

μ
C14
Y (x16) = 0.28 μ

C19
Y (x18) = 0.31 μ

C14
Y (x19) = 0.28

μ
C15
Y (x16) = 0.19 μ

C16
Y (x19) = 0.30

μ
C16
Y (x16) = 0.30 μ

C18
Y (x19) = 0.27

μ
C19
Y (x16) = 0.31 μ

C19
Y (x19) = 0.31

Now, we evaluate the rough membership for each object which gives a preferable
value for the data. This value will be evaluated via minimum, maximum, average,
and weighed membership. This can be shown in Table 6 and Fig. 2.
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Fig. 2 Rough membership for Y = {x4, x8, x13, x17, x19}

Y is the set of objects that protein has a medium energy of unfolding. From
Table 7, one can show that the objects x9, x10, x12 have a rough membership
value 1; this means that a protein has high energy of unfolding. The object x19 in
Pawlak reduction had a medium energy of unfolding [14], while from our
procedure, x19 has a high energy of unfolding. In the same manner, we can take a
set Z of a protein, which has a low energy of unfolding. Through the correlation
between objects and decision, there is at least one object in Z which has the
medium or the high energy of unfolding. Therefore, the significance of each

Table 7Weighed rough membership for Y

Objects Minimum Maximum Average Rough membership μ

x1 0.18 0.31 0.245 0

x2 0.0 0.30 0.15 0

x3 0.0 0.19 0.095 0

x4 0.18 0.31 0.245 1
2

x5 0.0 0.30 0.15 0

x6 0.0 0.19 0.095 0

x7 0.0 0.30 0.15 0

x8 0.10 0.31 0.205 2
3

x9 0.24 0.51 0.375 0

x10 0.24 0.71 0.47 0

x11 0.0 0.10 0.05 0

x12 0.10 0.42 0.26 0

x13 0.27 0.70 0.485 1
2

x14 0.18 0.31 0.245 1
2

x15 0.0 0.30 0.15 0

x16 0.10 0.31 0.205 1
2

x17 0.42 0.70 0.56 2
3

x18 0.24 0.42 0.33 1
3

x19 0.24 0.42 0.33 1
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attribute and degrees of memberships is more precise from Pawlak’s reduction.
We can evaluate analogously the quantitative for attributes {a2, a3, a4, a5, a6, a7}.

Some properties on a similarity relation
The given algorithm depends on a similarity matrix, general binary relation, and rough
membership. So, we study some properties of these notions.

Proposition 1 If R1 and R2 are two different relations, then the degree of similarity is
the same.

Proof A similarity measure between xi and xj is given by dega(xi, xj) = 1 − |a(xi)−a(xj)|
|amax−amin| .

Since each of R1 and R2 depends on d, then |xiR1| = ∑
xk∈Ck

dij = |xiR2|. Therefore, the
degree of similarity is the same.

Proposition 2 If R1 ⊆ R2, then degR1(xi, xj) ≤ degR2(xi, xj), where deg is the degree of
similarity relation.

Proof Since R1 ⊆ R2, then |xiR1| = ∑
xk∈Ck

dij ≤ ∑
xk∈Ck

d′
ij = |xiR2|, where dij and d′

ij are

the similarity degrees with respect to R1 and R2, respectively.

Proposition 3 For an IS (U ,A), where U is the set of objects and A is the sets of attributes.
Then, μCk

X (x) = μ
Ck
X (y), for every two different objects x, y ∈ A, every class Ck, and every

nonempty set X ⊆ U.

Proof Directly from μ
Ck
X (x) =

∑
x∈Ck∩X

dij∑
x∈Ck

dij = μ
Ck
X (y)

Remark 1 For an attribute a ∈ A in an IS (U ,A). If μCk
X (x) = μ

Cm
X (x), k 	= m, it is not

necessary that Ck = Cm. This is obvious in the problem of our study.

Conclusion and discussion
Chemical data sets have been analyzed using similarity relations. The results are more
precise in comparison with the original rough set theory. The description of objects is
different from the study in [14]. For example, the decision concerning element x19 in our
study has the high energy of unfolding, of which in [14], the energy was the medium of
unfolding. This opened the way for applying similarity models in IS which give discrete
structure and coincide with the classical case. The model of QSAR of similarity reduction
can be applied to a finite set of objects. The approach used here can be applied in any IS
with quantitative or qualitative data. Consequently, they are very significant in decision-
making [21–24]. The introduced techniques are very useful in application because they
open a way for more topological applications from real-life problems.
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