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Abstract

Investigation of the effect of slip on natural convective flow and heat transfer of a
viscous incompressible fluid confined within a channel made up of a long vertical
wavy wall and a parallel flat wall is carried out in this article. It is assumed that at the
flat wall, there exists the slip condition. The coupled non-linear differential equations
governing the fluid flow subjected to the relevant boundary conditions were
perturbed and the resulting zero- and first-order set of equations were solved, using
Adomian decomposition technique with the MAPLE 18 software. A comparison
between the present study and an earlier one not involving a slip parameter and for
which a different solution technique was used is carried out and the results are
found consistent. The effects of various parameters involved in the problem viz
Grashof number, slip parameter, heat source parameter, and wavelength parameter
on the zero- and first-order temperature profile, velocity profile, skin friction, and
Nusselt number at the walls are presented graphically and discussed quantitatively.
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Introduction
Nowadays, there exists an increasing number of flow devices of various geometrics

through which fluids flow. This is perhaps, due to various new developments in science

and technology. Traditionally, the boundary condition for the velocity field of a fluid at

a solid surface of a medium through which the fluid flows is assumed equal to the vel-

ocity of the fluid at the solid surface. For instance, the value of such velocity is taken

to be zero if the solid surface is assumed stationary. Meaning that the condition at a

solid wall of the medium through which the fluid flows is referred to as the “no-slip”

boundary condition. This no-slip condition has been experimented and proven satis-

factorily only for macroscopic fluids where cohesion is weaker than adhesion. In other

words, no-slip condition holds for fluid whose particles are found near the solid sur-

faces which fail to move with the flow [1]. However, recent experiments have shown

that flow in micro-channels, for example, slip along repelling water (hydrophobic)

walls obtained by coating the original non-hydrophobic walls. In particular, slip may
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have significant physical consequences for some microscale flows such as flows in the

micro-electro-mechanical system (MEMS). Moreover, spillage at the micro-device walls

through which fluid flows may produce an appreciable effect on the heat and mass

transfer in the system. Several works which have been carried out on fluid slip phenom-

ena for flows in various micro and non-micro devices include that in [2].

Interestingly, a theoretical discussion on slip phenomena had been earlier presented by

Navier [3] who proposed a general (since it includes both no-slip and slip conditions)

boundary condition. Specifically, Navier proposed that the velocity of the fluid at the solid

wall, Ux, is linearly proportional to the shear stress at the wall i.e., Ux ¼ βð∂V∂y Þ such that β

(the slip parameter) equals to zero implies the no-slip condition, while β≠ 0 (but finite) im-

plies the occurrence of slip. Recently, Adesanya and Gbadeyan [4] used the Adomian de-

composition method to examine the steady flow of visco-elastic fluid through a planar

channel with slip condition. Halima et al. [5] investigated a fluid flow along a vertical porous

channel with heat and mass transfer flow of a viscous and radiating fluid. They observed that

the rise in the slip parameter slows down the fluid flow process. An unsteady MHD non-

Newtonian fluid flows with the influence of radiation, heat transfer, and slip effect in a por-

ous medium was investigated by Gbadeyan and Dada [6]. They found that a decrease in ei-

ther Prandtl number or radiation parameter results in an increase in the temperature field

while the velocity profile decreases as either radiation parameter N or Grashof number G de-

creases. Makinde [7] modelled an unsteady MHD flow and heat transfer with Navier slip

and Newtonian heating toward a flat plate, and the result states that unsteadiness parameter

affect the heating correspondingly while the thermal boundary layer thickness, local skin fric-

tion, and the heat transfer at the plate surface were seen to change noticeably due to the slip

parameter. Mahmoud and Waheed [8] considered a micro-polar fluid over a heated stretch-

ing sheet coupled with heat generation/absorption and slip effect on MHD mixed convective

flow. They highlighted that both velocity and temperature fields were appreciably affected by

the effect of the mixed convective parameter. This effect of the slip was also investigated by

Martin and Boyd [9] on the momentum and heat transfer in laminar boundary layer flow.

Moreover, while the problems of viscous fluid flowing over a corrugated wall finds its ap-

plication in various areas such as cooling of re-entry vehicles, film vaporization in combus-

tion chamber, rocket boosters, transpiration, and cross-heating on ablative surfaces, relatively

few work has been carried out on the natural convective heat transfer in a viscous fluid flow

located within a channel made up of two walls both of which are spirally enhanced. The

problems of the flow of an incompressible viscous fluid through a long vertical channel made

up of corrugated and parallel non-corrugated walls were studied by Vajrarelu and Sastri [10].

The study focused on heat transfer and flow characteristics. Fasogbon in [11] studied the ef-

fects of adiabatic wall waviness on the flow properties due to action of buoyancy between

two long vertical walls, one of which is wavy and thermally insulated and the other being

non-wavy but kept at a constant temperature. It was found that waviness of one of the walls

produced a significant effect on both velocity and temperature profiles. Fasogbon and Omo-

lehin [12] examined the radiation effect on natural convection in an irregular channel. They

concluded that an increase in the magnitude of the fluid velocity of zeroth order and the

Grashof number increases across the entire channel width. Meanwhile, an analytical solution

of the two-dimensional corrugated channel was presented by Fasogbon [13] to study the

heat and mass transfer by convection. It was argued that the heat source parameter has an
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accelerated effect on the fluid temperature. Natural convection temperature-dependent heat

source in MHD and heat transfer with radiation in a porous medium between vertical wavy

walls was investigated by Dada and Disu [14]. They pointed out that velocity rises with an in-

crease in the value of porosity parameter, Grashof number, and radiation parameter, while it

decreases with a rise in the heat source and magnetic parameter.

Recently, Gbadeyan et al. [15] analyzed the free convective heat and mass transfer flow

of chemical reaction and thermal-radiation effects through an irregular vertical channel

with constant volumetric heat generation/absorption. The result shows that a rise in the

chemical reaction and radiation parameters decelerates the fluid velocity across the entire

width of the channel. Soret and Dufour effects on heat and mass transfer in chemically

reacting MHD flow through a rough channel were investigated by Gbadeyan et al. [16].

However, in all these previous studies, (except for Teneja and Jain [17], who claimed to

have studied MHD flow with slip effects and temperature-dependent heat source in a vis-

cous incompressible fluid confined between a long vertical wavy wall and a parallel flat wall.

However, no specific result about the influence of slip is presented) the effect of slip on the

wavy problem is neglected. Nevertheless, in many practical applications, the particles adja-

cent to a solid surface no longer take up the velocity of the surface. It, instead, has a finite

tangential velocity, i.e., it slips along the surface [18, 19]. Spectral relaxation method was used

by Younghae et al. [20] to investigate the Navier’s slip condition on time-dependent Darcy-

Forchheimer nanofluid where unsteadiness parameter was seen to have a significant effect

on velocity, temperature, concentration fields, the associated heat, and mass transport rates.

Therefore, the primary focus of this paper is to investigate the effect of slip at the parallel

flat wall of free convective heat transfer in a viscous incompressible fluid confined within

one wavy wall and one flat parallel wall. The non-dimensional boundary value problem gov-

erning the fluid flow was perturbed and the resulting zeroth- and first-order boundary value

problems were solved, using Adomian decomposition method with the MAPLE 18 software.

Model formulation
A channel made up of one wavy wall and one parallel flat wall was considered. The x-axis is

taken vertically upward, while the y-axis is taken perpendicular to it. The wavy wall and the

flat wall are represented by y = ϵ∗coskx and y = d respectively as shown in Fig. 1.
Fig. 1 The flow channel
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The flow is assumed to be laminar, steady, and two dimensional with slip at the par-

allel flat wall and that the wavy wall temperature is maintained at Tw, while that of the

parallel flat wall is at T1. Also, the viscous dissipation and the work done by the pres-

sure are assumed sufficiently small in comparison with both the heat flow by conduc-

tion and the wall temperatures. Furthermore, it is assumed that the wavelength of the

wavy wall proportional to 1
k is large and that the volumetric heat source/sink term in

the energy equation is constant. Based on these assumptions, the equations governing

steady two-dimensional fluid flow and heat transfer made up of the momentum, con-

tinuity, and energy equations describing the flow are written as

Momentum equations

ρ U
∂U
∂X

þ V
∂U
∂Y

� �
¼ −

∂P�

∂X
þ μ

∂2U
∂X2 þ

∂2U
∂Y 2

� �
−ρgxβ T−Tsð Þ ð1Þ

ρ U
∂V
∂X

þ V
∂V
∂Y

� �
¼ −

∂P�

∂Y
þ μ

∂2V
∂X2 þ

∂2V
∂Y 2

� �
ð2Þ

Continuity equation
∂U
∂X

þ ∂V
∂Y

¼ 0 ð3Þ

Energy equation
ρCp U
∂T
∂X

þ V
∂T
∂Y

� �
¼ K

∂2T
∂X2 þ

∂2T
∂Y 2

� �
þ Q ð4Þ

where U and V are the velocity components, P∗ is the pressure, ρgx is the buoyancy
term in the x-direction, Q is the constant heat addition/absorption, and the other sym-

bols have their usual meanings. The boundary conditions relevant to the problem are

taken as

U ¼ 0;V ¼ 0;T ¼ Tw;Y ¼ ϵ�coskx ð5Þ

U ¼ γ
∂U
∂Y

;V ¼ 0;T ¼ T 1;Y ¼ d ð6Þ

We define the non-dimensional variables as

x ¼ X
d
; y ¼ Y

d
; u ¼ Ud

v
; v ¼ Vd

v
; θ ¼ T 1−Tsð Þ

Tw−Ts
;P ¼ P�

ρ v
d

� �2 ; ∈ ¼ ∈�

d
ð7Þ

where Ts is the fluid temperature in static condition. Using Eq. (7), we non-

dimensionalized Eqs. (1) to (4) and the boundary conditions in Eq. (5) and Eq. (6) to

obtain the following:

Momentum equation

u
∂u
∂x

þ v
∂u
∂y

¼ −
∂P
∂x

þ ∂2u
∂x2

þ ∂2u
∂y2

−ρgx
d3

ρv2
ð8Þ
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u
∂v
∂x

þ v
∂v
∂y

¼ −
∂P
∂y

þ ∂2v
∂x2

þ ∂2v
∂y2

ð9Þ

Continuity equation
∂u
∂x

þ ∂v
∂y

¼ 0 ð10Þ

Energy equation

P u
∂θ
∂x

þ v
∂θ
∂y

� �
¼ ∂2θ

∂x2
þ ∂2θ

∂y2
þ α ð11Þ

where P ¼ μC ; ρv ¼ μ and α ¼ Q:d2
k p KðTw−TsÞ
The non-dimensional boundary condition is

u ¼ 0; v ¼ 0; θ ¼ 1; y ¼ ϵ cosλx ð12Þ
u ¼ β
∂u
∂y

; v ¼ 0; θ ¼ r; y ¼ 1 ð13Þ

In the static fluid,
−
∂Ps

∂x
−
ρsgxd

3

ρμ2
¼ 0 ð14Þ

Using Eq. (14) in Eq.(8) we have

u
∂u
∂x

þ v
∂u
∂y

¼ −
∂ P−Ps
� �
∂x

þ ∂2u
∂x2

þ ∂2u
∂y2

−
ρ−ρs
� �

ρ
gxd

3

v2
ð15Þ

But the well-known Boussinesq approximation is

ρ−ρs
� �

ρ
¼ −β Tw−Tsð Þθ;G ¼ d3gxβ Tw−Tsð Þ

v2

Substituting these terms into Eq. (15), the latter becomes

u
∂u
∂x

þ v
∂u
∂y

¼ −
∂ P−Ps
� �
∂x

þ ∂2u
∂x2

þ ∂2u
∂y2

þ Gθ ð16Þ

The solution of the governing equation
Perturbation method

The flow velocity, temperature, and pressure fields are perturbed as follows:
u x; yð Þ ¼ u0 yð Þ þ ϵu1 x; yð Þ
v x; yð Þ ¼ ϵv1 x; yð Þ
P x; yð Þ ¼ P0 yð Þ þ ϵP1 x; yð Þ
θ x; yð Þ ¼ θ0 yð Þ þ ϵθ1 x; yð Þ;

0
BB@ ð17Þ

where the perturbations u1, v1, P1, and θ1 are small compared to the mean or the

zeroth-orderer quantities

Using Eq. (17) on Eqs. (9) to (11) and (16), we obtained the set of zeroth-orderer

perturbation.
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d2u0
dy

þ Gθ0 ¼ 0

d2θ0
dy2

¼ −α

0
BB@ ð18Þ

and this set of first-order perturbation

u0
∂u1
∂x

þ v1
du0
dy

¼ −
∂P1

∂x
þ ∂2u1

∂x2
þ ∂2u1

∂y2
þ Gθ1

u0
∂v1
∂x

¼ −
∂P1

∂y
þ ∂2v1

∂x2
þ ∂2v1

∂y2
∂u1
∂x

þ ∂v1
∂y

¼ 0

P u0
∂θ1
∂x

þ v1
dθ0
dy

� �
¼ ∂2θ1

∂x2
þ ∂2θ1

∂y2

0
BBBBBBBBBBB@

ð19Þ

with boundary conditions

u0 ¼ 0; θ0 ¼ 1; y ¼ 0

u0 ¼ β
du0
dy

; θ0 ¼ r; y ¼ 1

0
@ ð20Þ
u1 ¼ u00; v1 ¼ 0; θ1 ¼ −θ00; y ¼ 0

u1 ¼ β
∂u1
∂y

; v1 ¼ 0; θ1 ¼ 0; y ¼ 1

0
@ ð21Þ

Introduction of stream function into the first-order problem

For further simplification, the stream function ψðx; yÞ defined by

u1 ¼ −
∂ψ1

∂y
; v1 ¼ ∂ψ1

∂x

is then introduced into the set of first-order perturbation Eq. (19) to obtain
Fig. 2 Zeroth-order velocity (u[0] profile, r = − 1 and β = 0)



Fig. 3 Zeroth-order velocity (u[0] profile, r = 2 and β = 0)
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u0 ψ1;xxx þ ψ1;xyy

� 	
−u000ψ1;x ¼ ψ1;xxxx þ ψ1;yyyy þ 2ψ1;xxyy−Gθ1;y ð22Þ

P u0θ1;x þ θ00ψ1;x

h i
¼ θ1;xx þ θ1;yy ð23Þ

Eqs. (22) and (23) are further simplified by the introduction of another form of solu-

tion which is wave-like due to the motion of fluid at the walls. We then assumed the

solution to be

ψ1 x; yð Þ ¼ ϵ expiλxψ yð Þ; θ1 x; yð Þ ¼ ϵ expiλxt yð Þ ð24Þ
Fig. 4 Zeroth-order velocity (u[0] profile, r = 2 and β = 1.5)



Fig. 5 Zeroth-order velocity (u[0] profile, r = 2 and β = 1.5)
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and

ψ λ; yð Þ ¼
Xα

i¼0
λiψi; t λ; yð Þ ¼

Xα

i¼0
λiti; i ¼ 0; 1; 2; ð25Þ

Using Eqs. (24) and (25) in Eqs. (22) and (23), we obtained the following set of ordin-

ary differential equations and corresponding boundary conditions for various orders of

λ.

Order of λ0 we have

ψiv
0 yð Þ ¼ Gt00 yð Þ

t000 yð Þ ¼ 0

�
ð26Þ
Fig. 6 Zeroth-order skin friction (s[0] when β = 0)



Fig. 7 Zeroth-order skin friction (s[0] when β = 1.5)
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Order of λ1
ψiv
1 yð Þ þ iu000 yð Þψ0 yð Þ−iu0 yð Þψ00

0 yð Þ ¼ Gt01 yð Þ
t001 yð Þ ¼ Pi u0 yð Þt0 yð Þ þ θ00 yð Þψ0 yð Þ½ �

�
ð27Þ

Order of λ2
ψiv
2 yð Þ þ iu000 yð Þψ1 yð Þ−iu0 yð Þψ00

1 yð Þ−2ψ00
0 yð Þ ¼ Gt02 yð Þ

t002 yð Þ ¼ Pi u0 yð Þt1 yð Þ þ θ00 yð Þψ1 yð Þ½ � þ t0 yð Þ
�

ð28Þ

and boundary conditions
Fig. 8 Zeroth-order temperature (θ[0] profile, r = − 1, and β = 0)



Fig. 9 Zeroth-order temperature (θ[0] profile, r = 2, and β = 0)
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ψ
0
0 yð Þ ¼ u

0
0;ψ0 yð Þ ¼ 0; t0 yð Þ ¼ −θ

0
0 on y ¼ 0

ψ
0
0 yð Þ ¼ βψ

0 0
0;ψ0 yð Þ ¼ 0; t0 yð Þ ¼ 0 on y ¼ 0

�
ð29Þ
ψ
0
i yð Þ ¼ 0;ψi yð Þ ¼ 0; ti yð Þ ¼ 0 on y ¼ 0

ψ
0
i yð Þ ¼ βψ

0 0
i;ψi yð Þ ¼ 0; ti yð Þ ¼ 0 on y ¼ 1; ∀i≥1

�
ð30Þ

The Adomian decomposition method is then used to solve the zeroth-order (Eq.

(18)) with boundary condition introduced in Eq. (20) and the first-order Eqs. (26), (27),

and (28) with boundary conditions presented in Eqs. (29) and (30) using the Chen and

Lu [21] program with Maple 18 to obtain the following expressions of u0 and θ0
respectively,
Fig. 10 Zeroth-order Nusset number (Nu[0] when β = 0)



Fig. 11 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 0)
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u0 ¼ 1
24

G 2βαþ 12βr þ 12β−8−α−4rð Þy
β−1

þ 1
24

Gαy4−
1
6
G r−1þ 1

2
α

� �
y3−

1
2
Gy2 ð31Þ
θ0 ¼ 1þ r−1þ 1
2
α

� �
y−

1
2
αy2 ð32Þ

The expressions obtained for u1, v1, and θ1 are lengthy and are not presented here

for brevity sake.

The zeroth-order skin friction and Nusselt number are expressed as

τ0 ¼ u
0
0 yð Þ y ¼ 0 ð33Þ

and
Fig. 12 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 7, and β = 0)



Fig. 13 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 1.5)
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Nu0 ¼ θ
0
0 yð Þ y ¼ 0 ð34Þ

While the first-order skin friction and Nusselt number are expressed as

τ1 ¼ ϵ ψ00
i yð Þ sinλx−ψ00

r yð Þ cosλx½ �−λ2ϵ ψr cosλx−ψi yð Þ sinλx½ � ð35Þ

and

Nu1 ¼ ϵ t0r yð Þ cosλx−t0i yð Þ sinλx½ � ð36Þ

Discussions of results
The main interest of the present work is to examine the influence of Navier slip β,

in the presence of the parameters Grashof number G, heat source α, and frequency

λ, on the steady natural convective flow and heat transfer of viscous incompressible

fluid confined within a spirally enhance channel. Hence, the velocity and
Fig. 14 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 7, and β = 1.5)



Fig. 15 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = − 5, and λ = 0.01)
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temperature profiles, as well as the skin friction and Nusselt number, were ob-

tained by assigning physically realistic values to various parameters involved in the

problem. For example, the Prandtl number (P) is taken to be either 0.71 (air) or 7

(water), α = 0 signifies the absence of heat source, α < 0 denotes heat sink, while

α > 0 represents the heat source. The positive value of G corresponds to either

cooling of the wall or heating of the fluid by natural convection currents. From a

practical point of view, the wall temperature ratio (r) takes on the value − 1 and 2.

Physically, r = -1 means that the average temperature of the two walls equals to

that of the static fluid, while r = 2 means the wall temperatures are unequal. Geo-

metrically, the spirality of the channel is denoted by the parameter ϵ > 0 which is

however assumed small in this analysis. Specifically, ϵ = 0.23, while λ = 0.001,

0.002 . All these values are obtained following [13, 16].
Fig. 16 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 0, and λ = 0.01)



Fig. 17 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 5, and λ = 0.01)
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Discussion of zeroth-order results

Velocity profile

In this subsection, the influence of the various parameters (G, α, λ, and β) on the

zeroth-order velocity u0 of the fluid is discussed. This is carried out by starting with the

comparison of the present result with the previous ones. To accomplish this, the new

parameter (slip β) is set to zero.

The results in Figs. 2 and 3 show the velocity distribution profiles for β = 0 (i.e., no-

slip condition) and when the wall temperature ratio (r) is − 1 and 2 respectively (i.e.,

r = − 1). From Fig. 2, it is observed that increasing the Grashof number (G) increases

the fluid velocity when there is heat source (i.e., α > 0, see curves III and VI). This

maybe due to the fact that an increase in thermal boyancy means a temperature
Fig. 18 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 5, and G = 5)



Fig. 19 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 0, and G = 5)
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difference in the flow, which enhances fluid velocity. Also when there is heat sink (i.e.,

α < 0), the velocity decreases with an increase in Grashof number (G) (see curves I and

IV).

In the absence of heat source (i.e., α = 0 curves II and V) increase in Grashof number

(G), it increases the velocity of the fluid to half part of the channel then decreases.

However, on fixing G and varying the heat source parameter (α) from α = − 5 to α = 0

and then to α = 5, it is seen that there is a significant increase on the fluid velocity (see

curves I, II, and III) when r = − 1.

Figure 3 depicts the velocity distribution profile when r = 2 and β = 0 (i.e., no-slip

condition); the fluid velocity u0 increases generally as Grashof number increases for all

values of α. It is also observed that when G is fixed and the heat source parameter α is

increased from − 5 to 5, the velocity u0 of the fluid increases generally across the chan-

nel width. For completeness sake, it is being remarked here that these results are in

agreement with those in Vajravelu and Sastri [10].
Fig. 20 First-order velocity (u[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = − 5, and G = 5)



Fig. 21 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 0)

Gbadeyan et al. Journal of the Egyptian Mathematical Society           (2020) 28:32 Page 16 of 24
Figures 4 and 5 illustrate the effect of slip (β) on the velocity distribution. It is ob-

served from Fig. 4 that when β = 1.5 and r = − 1, the fluid velocity linearly decreases

when Grashof number (G) increases for α ≤ 0 (see curves I and IV, II and V) and it in-

creases for α > 0 (see curves III and VI). Also, when G is fixed and the heat source par-

ameter (α) is varied from − 5, 0, and 5, the fluid velocity increases linearly (see curves I,

II, and III). While it is seen from Fig. 5 that when β = 1.5 and r = 2, the fluid velocity

linearly increases as the Grashof number (G) increases in all cases.

The zeroth-order skin friction at slip (β = 0) is shown in Fig. 6 and it is seen that at

either wall is a linear function of the heat source parameter α. The skin friction at the

wavy wall y = 0 increases as the heat source parameter α increases, and at the flat wall

y = 1, it decreases as the α increases. It is also, observed that the skin friction increases

generally at y = 0 as G increases, while at y = 1, it decreases as G increases, for any value

of wall temperature ratio r. While Fig. 7 depicts zeroth-order skin friction when slip

(β) = 1.5, it shows that the skin friction increases linearly as the heat source parameter
Fig. 22 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 7, and β = 0)



Fig. 23 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 1.5)
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(α) increases on both walls. When r = − 1 and Grashof number G are increased from 5

to 10, the skin friction decreases linearly as α increases from − 5 to the value α = 3, then

it increases again. While at r = 1, the skin friction increases linearly and significantly as

Grashof number G increases on both walls.
Temperature profile

The behavior of the fluid temperature with changes in α is presented for r = − 1 and

r = 2 respectively in Figs. 8 and 9. It is observed that the slip coefficient β does not

affect the zeroth-order temperature profile which gives results similar to that earlier ob-

tained in Vajravelu and Sastri [10].
Fig. 24 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 7, and β = 1.5)



Fig. 25 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 5, and λ = 0.01)
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Also, the heat-transfer coefficient Nu0 is presented in Fig. 10. It can be seen that as α

increases the heat transfer decreases on the wavy wall y = 0 and the reversed holds on

the flat wall (y = 1).
Discussion of the first-order results

Figures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,

and 33 illustrate the behavior of the perturbed quantities (first-order solution) u1, v1,

and θ1, when m = − 1 and Prandtl number (P) is 0.71 (air) and 7 (water).
Velocity profile

Figure 11 presents the behavior of perturbed velocity u(1) when r = 1 and the embed-

ded slip parameter β = 0. It is noticed that in the presence of heat sinks α < 0, the
Fig. 26 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = 0, and λ = 0.01)



Fig. 27 First-order velocity (v[1] profile, r = − 1, ϵ = 0.25, P = 0.71 α = − 5, and λ = 0.01)
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velocity u(1) increases to a particular point of y (y = 0.55) and then decreases with con-

stant G and λ (see curves I and II, VII and VIII). It is observed that there exists an in-

crease in the velocity u(1) up to y = 0.3, followed by a decrease up to y = 0.7 and finally

increase for y > 0.7 when α ≥ 0 (see curves II and III, XIII and IX). It is also realized that

an increase in Grashof number G or frequency parameter λ, the velocity increases close

to the walls of the channel and decreases between the wall (see curves I and VII, II and

XIII, III and IX) or (see curves I and IV, II and V, III and XI). However, it is observed

that when Prandtl number P = 7 (water), the behavior of the fluid velocity is the same

for all cases of heat source α (see Fig. 12). Figures 13 and 14 show the behavior of the

fluid velocity u1 when there is a slip for both cases of P = 0.71 (air) and P = 7(water). It

is seen that the amplitude of the fluid velocity u1 increases as the frequency parameter

λ or Grashof number G increases. but the increase is more significant when α = − 5

than when α ≥ 0(see curves I, IV, VII, and II, V, VIII, and III, VI, IX) on both figures.

Physically, this indicates that higher values of G enhance buoyancy force which
Fig. 28 First-order temperature (θ[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 0)



Fig. 29 First-order temperature (θ[1] profile, r = − 1, ϵ = 0.25, P = 0.71, and β = 1.5)

Gbadeyan et al. Journal of the Egyptian Mathematical Society           (2020) 28:32 Page 20 of 24
consequently within the channel, increases hydrodynamics. It is acknowledged that the

positive value of G corresponds to cooling the walls or heating the fluid by free convec-

tion current. Also, an increase in P makes the thermal conductivity of the fluid to de-

crease. Thus at higher P, the rate at which the diffusion of heat takes place at the

heated surface is more rapid.

Figures 15, 16, and 17 depict the effect of slip on the fluid velocity u1 as the Grashof

number G varies between 5 and 10. It is observed that as the slip (β) increases, the fluid

velocity decreases and as the Grashof number G increases, the amplitude of fluid u1 in-

creases. Physically, this means that when there is an increase in the slip condition (β),

the fluid becomes more viscous and resulted in a reduction in fluid velocity. However,

the momentum boundary layer thickness decreases as (β) increases.

Figures 18, 19, and 20 illustrate the effect of slip β on the fluid velocity as the fre-

quency (λ) varies between 0.01 and 0.02. It clearly shows that as β increases, the vel-

ocity u1 decreases at the flat wall. And as λ increases, the velocity at the flat wall
Fig. 30 First-order skin friction (S[1] profile, r = − 1, ϵ = 0.25, P = 0.71, λ = 0.01, and y = 0)



Fig. 31 First-order skin friction (S[1] profile, r = − 1, ϵ = 0.25, P = 0.71, λ = 0.01, and y = 1)
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increases. Figures 21 and 22 show the behavior of the fluid velocity v1 perpendicular to

the channel length, when β = 0 (i.e., no-slip condition). It is seen that as the heat source

parameter α increases from − 5 to 5, the fluid velocity v1 decreases significantly (see

curves I, II, and III of Figs. 21 and 22). It is also noticed that with an increase of the

Grashof number G from 5 to 10, the velocity is unaffected but with an increase in the

frequency parameter λ from 0.01 to 0.02, there is an increase in the magnitude of the

fluid velocity v1. Figures 23 and 24 depict the effect of slip β on the fluid velocity v1
with the variation of the heat source (α), frequency (λ), and Grashof number G respect-

ively. An increase in λ gives a significant increase in the magnitude of the fluid velocity

(v1), while an increase in the α reduces the fluid velocity (v1) profile. Physically, this im-

plies that the presence of heat absorption coefficient (α) is capable of reducing the

temperature, as a result, the thermal buoyancy effect decreases leading to a net reduc-

tion in fluid velocity.
Fig. 32 First-order Nusselt number (Nu[1] profile, r = − 1, ϵ = 0.25, P = 0.71, λ = 0.01, and y = 0)



Fig. 33 First-order Nusselt number (Nu[1] profile, r = − 1, ϵ = 0.25, P = 0.71, λ = 0.01, and y = 1)
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Figures 25, 26, and 27 illustrate the effect of slip (β) with variation of heat source par-

ameter (α) and Grashof number G. It is observed that increasing the slip (β), the magni-

tude of the velocity of the fluid reduces in all the cases.

Figures 28 and 29 show the behavior of the fluid temperature θ1 when β = 0 and β =

1.5 respectively. It is observed that the slip (β) increases the magnitude of the

temperature θ1 of the fluid comparing the two figures and by close observation it shows

that the slip decreases the temperature of the fluid

Figures 30 and 31 show the effect of slip (β) on skin friction at the walls of the chan-

nel. At the way wall (y = 0), the skin friction is an increasing function of α, while at the

flat wall (y = 1) is a decreasing function of α. Also, at the wavy wall (y = 0), as the slip

(β) increases, the skin friction increases, while at the flat wall (y = 1), the reverse holds.

Figures 32 and 33 illustrate the effect of slip (β) on the Nusselt number (Nu1), at the

wavy wall (Fig. 32), the rate of heat transfer is parabolic and is an increasing function

of α. Also, when the slip (β) increases, the rate of heat transfer at the wavy wall in-

creases. From Fig. 33 which presents the heat transfer behavior at the flat wall. It is

seen that the behavior is the reverse of the wavy wall.
Conclusion
An analysis is carried out on the effects of Navier slip on a steady flow of an incom-

pressible viscous fluid confined within a spirally enhanced channel. The solution to the

dimensionless governing equations was obtained using the Adomian decomposition

method with the MAPLE 18 software. The effects of various parameters (such as G, β,

λ ) on fluid physical properties (i.e., velocity and temperature) were examined and illus-

trated graphically. The study brings out the following results of physical interest:

� The zeroth-order velocity u0 increases linearly with an increase in Grashof number

G or heat source/sink parameter α (i.e., the velocity is directly proportional to G or

α) when slip condition parameter β = 1.5 for both cases of temperature ratio r.

� An increase in Grashof number G or frequency parameter λ leads to an increase in

velocity v1 profiles while the reverse is the case for an increase in slip parameter β.
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� The velocity v1 profiles have an increasing influence on the frequency parameter λ

while an increase in heat source parameter α reduces the fluid velocity for β = 1.5.

� The slip condition parameter β does not have any effect on zeroth-order

temperature θ0 while it increases the amplitude of the first-order temperature θ1
profiles.

� At the wavy wall y = 0, the skin friction is an increasing function of α while a

decrease is noticed at the flat wall y = 1.

� The rate of heat transfer Nu1 at the wavy wall increases with an increase in the slip

parameter β, but a decrease at the flat wall.
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