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Abstract

A new family of univariate probability distributions called the T − R {Y} power series
family of probability distributions is introduced in this paper by compounding the T
− R {Y} family of distributions and the power series family of discrete distributions. A
treatment of the general mathematical properties of the new family is carried out
and some sub-families of the new family are specified to depict the broadness of the
new family. The maximum likelihood method of parameter estimation is suggested
for the estimation of the parameters of the new family of distributions. A special
member of the new family called the Gumbel–Weibull–{logistic}–Poisson (GUWELOP)
distribution is defined and found to exhibit both unimodal and bimodal shapes. The
GUWELOG distribution is further applied to a real multi-modal data set to buttress its
applicability.
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Introduction
Within the last two centuries, various methods for generating continuous univariate

distributions have been put forward in the literature. These methods include the

method based on differential equations (Pearson [1]; Burr [2]), method based on trans-

formation (Johnson [3]), method based on quantiles (Tukey [4]; Aldeni et al. [5]),

method for generating skewed distributions (Azzalini [6]), method of addition of pa-

rameter(s) and generalization (Mudholkar and Srivastava [7]; Marshall and Olkin [8];

Shaw and Buckley [9]), method of compounding the continuous univariate distribu-

tions and the discrete univariate distributions (Adamidis and Loukas [10]), method

based on generators (Eugene et al. [11]; Jones [12]; Cordeiro and de Castro [13]),

method based on the composition of densities (Cooray and Ananda [14]) and the

Transformed–Transformer method (Alzaatreh et al. [15]; Alzaatreh et al. [16]). Re-

searchers are also encouraged to see AL-Hussaini and Abdel-Hamid [17] for a survey

on the generation of distribution functions.

The transformed–transformer method previously called the T–X family of distribu-

tions (Alzaatreh [15]) and later renamed the T–R{Y} family of distributions (Alzaatreh
The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
ermits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
riginal author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
ther third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit
ine to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by
tatutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
opy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42787-020-00083-7&domain=pdf
mailto:profpato2014@gmail.com
mailto:profpato2014@gmail.com
http://creativecommons.org/licenses/by/4.0/


Osatohanmwen et al. Journal of the Egyptian Mathematical Society           (2020) 28:29 Page 2 of 18
et al. [16]) has been thought of as the largest family of univariate distributions, in that

it includes several families of univariate distributions as special cases. Alzaatreh et al.

[16] defined the T–R{Y} system using the following arguments: Suppose T, R, and Y

are random variables with respective cumulative distribution function (cdf) FT(x) =

P(T ≤ x), FR(x) = P(R ≤ x) and FY(x) = P(Y ≤ x). Let the corresponding quantile functions

be QT(p), QR(p) and QY(p), where the quantile function is defined as QW(p) = inf {w :

FW(w) ≥ p }, 0 < p < 1. Suppose the corresponding densities of T, R and Y exist and de-

note them by fT(x), fR(x) and fY(x). Assume that Tϵ(a, b) and Yϵ(c, d)for − ∞ ≤ a < b ≤ ∞

and−∞ ≤ c < d ≤ ∞ ,then the T–R{Y} family of distributions was defined by the cdf

FX xð Þ ¼
Z QY FR xð Þð Þ

a
f T tð Þdt ¼ P T ≤QY FR xð Þð Þ½ � ¼ FT QY FR xð Þð Þð Þ; x∈ℝ: ð1Þ

The corresponding probability density function (pdf) of the cdf in (1) was given by
f X xð Þ ¼ f R xð Þ � f T QY FR xð Þð Þð Þ
f Y QY FR xð Þð Þð Þ ; x∈ℝ: ð2Þ

The discrete counterpart of univariate probability distributions has also received

some attention over the years in the literature. One of the most common families of

discrete univariate distributions is the power series family of discrete univariate distri-

butions (Kosambi [18]; Noack [19]; Patil [20]; Patil [21]) defined by the probability mass

function (pmf)

P N ¼ nð Þ ¼ anθ
n

C θð Þ ; n ¼ 1; 2;… ð3Þ

where an ≥ 0 depends only on n, CðθÞ ¼ P∞
n¼1

anθ
n and θ > 0 is such that C(θ) is finite

and its first, second and third derivatives are defined and shown by C′(θ), C′′(θ), and

C′ ′ ′(θ). Observe that the pmf in (3) is truncated at zero and could be generalized to a

zero-inflated one (Patil, [21]). In Table 1, some members of the power series family of

distributions (truncated at zero) defined by (3) such as the Poisson, geometric, binomial

and logarithmic distributions are presented alongside their respective an, C(θ), C
′(θ),

C′′(θ), and C′ ′ ′(θ).

In this paper, the compounding of the T–R {Y} family of univariate distributions and

the power series family of discrete univariate distributions is carried out. We shall

present how the new family is constructed, examine the general mathematical proper-

ties of the new family, show how parameters of the new family can be estimated using

the maximum likelihood method as well as define and apply a special member of the

new family to a real data set.
Table 1 Useful quantities for some power series distributions

Distribution an C(θ) C′(θ) C′′(θ) C′ ′ ′(θ) C−1(θ) parameter space

Binomial ðmnÞ (1 + θ)m − 1 m(1 + θ)m − 1 mðm−1Þ
ð1þθÞ2−m

mðm−1Þðm−2Þ
ð1þθÞ3−m ðθ−1Þ1

�
m−1

θ ∈ (0, 1)

Geometric 1 θ(1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 6(1 − θ)−4 θ(1 + θ)−1 θ ∈ (0, 1)

Logarithmic n-1 − log(1 − θ) (1 − θ)−1 (1 − θ)−2 2(1 − θ)−3 1 − e−θ θ ∈ (0, 1)

Poisson (n!)-1 eθ-1 eθ eθ eθ log(θ+1) θ ∈ (0,∞)

Source: Morais and Barreto-Souza [22]
Note: In the table, m is the number of trials or replicas in the binomial experiment
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Construction of the T–R {Y} power series family of distributions
Let X1, X2, …, Xn be independent and identically distributed (iid) random variables con-

stituting a sample of size n from the T–R {Y} family of distributions as defined in (1).

Let X(1), X(2), …, X(N) be the corresponding order statistic of the random sample. From

the theory of order statistics, the cdf of first order statistic X(1) for a given N = n is

expressed as

ZX 1ð Þ N¼nj xð Þ ¼ 1−
Yn
i¼1

1−FTi QY FR xð Þð Þð Þ½ � ¼ 1− 1−FT QY FR xð Þð Þð Þ½ �n:

Suppose N is a discrete random variable and follows the power series distribution in

(3), the marginal cdf of X(1) can be written as

FT�R Yf g−PS xð Þ ¼
X∞
n¼1

P N ¼ nð ÞZX 1ð Þ N¼nj xð Þ ¼ 1−
C θ 1−FT QY FR xð Þð Þð Þð Þ½ �

C θð Þ :

Thus, the cdf of the T–R {Y}–power series (T–R {Y}–PS) family of distributions is

given by

FT‐R Yf g−PS xð Þ ¼ 1−
C θ 1−FT QY FR xð Þð Þð Þð Þ½ �

C θð Þ ; x∈ℝ: ð4Þ

A physical interpretation of the family of models in (4) is as follows: consider that the

failure of a system, device, product, or component occurs due to the presence of an un-

known number, say N, of initial defects of the same kind, which can be identifiable only

after causing the failure and repaired perfectly. If Xi denotes the time to the failure of

the device due to the ith defect, for i ≥ 1, such that each Xi follows the T–R {Y} distri-

bution in (1), suppose N is discrete and follows a power series distribution in (3), then

the distribution of the random variable X(1) which is the time of first failure is the dis-

tribution in (4).

The pdf corresponding to (4) is obtained by differentiating (4) w.r.t x and it is given

by

f T−R Yf g−PS xð Þ ¼ θC
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � f X xð Þ

C θð Þ ; x∈ℝ: ð5Þ

The survival and hazard functions of the T–R {Y}–PS family of distributions are given
respectively by

ST−R Yf g−PS xð Þ ¼ C θ 1−FT QY FR xð Þð Þð Þð Þ½ �
C θð Þ ; x∈ℝ; ð6Þ
hT−R Yf g−PS xð Þ ¼ θC
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � f X xð Þ
C θ 1−FT QY FR xð Þð Þð Þð Þ½ � ; x∈ℝ: ð7Þ

Some sub-families of the T–R{Y}—PS family of distributions namely: T–R {Y}—bino-
mial (T–R{Y}–B) distribution, T–R {Y}–Poisson (T–R{Y}–P) distribution, T–R {Y}—

geometric (T–R{Y}–G) distribution and the T–R {Y}–logarithmic (T–R{Y}–L) distribu-

tion are defined in Table 2 by their cdfs. In Table 3, five standardized distributions of

the random variable Y are presented alongside their various quantile functions QY(p)
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and the corresponding support of the random variable T which is needed to make (1) a

valid cdf. These standardized distributions include the standard exponential, logistic,

extreme value, log logistic, and uniform distributions. The use of standardized distribu-

tions is to reduce the number of parameters in the T–R{Y}–PS distributions. For prac-

tical purposes and when highly necessary, these standardized distributions can be

replaced with their non-standardized versions.

In Tables 4, 5, 6, and 7, different T–R{Y}–B, T–R{Y}–G, T–R{Y}–L, and T–R{Y}–P

distributions are presented respectively for different choices of QY(p) in Table 3.
General mathematical properties of the T–R {Y} power series family of
distributions
Some useful statistical properties of the new family are presented. We begin by looking

at some limiting distributions as contained in Propositions 1 and 2.

Limiting distributions and some useful representations

Proposition 1:

The T–R{Y} distribution defined by (1) is a limiting case of the T – R{Y} − PS family

of distributions defined in (4) when θ→ 0+.

Proof:

Applying CðθÞ ¼ P∞
n¼1

anθ
n, one readily obtains

FT�R Yf g−PS xð Þ ¼ 1−

X∞
n¼1

an θ 1−FT QY FR xð Þð Þð Þð Þ½ �n

X∞
n¼1

anθ
n

:

Considering θ→ 0+, we have
lim
θ→0þ

FT�R Yf g−PS xð Þ ¼ 1− lim
θ→0þ

X∞
n¼1

an θ 1−FT QY FR xð Þð Þð Þð Þ½ �n

X∞
n¼1

anθ
n

:

Evaluating using standard procedure gives
lim
θ→0þ

FT�R Yf g−PS xð Þ ¼ 1−
a1 1−FT QY FR xð Þð Þð Þð Þ

a1
¼ FT QY FR xð Þð Þð Þ;

which is the cdf of the T – R {Y} distribution defined by (1).
Table 2 Some sub-families of the T–R{Y}–PS family of distributions

Distributions cdf

T–R{Y}–B 1− ð1þθð1− FT ðQY ð FRðxÞÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:

T–R{Y}–G FT ðQY ð FRðxÞÞÞ
1−θð1− FT ðQY ð FRðxÞÞÞÞ ; x∈ℝ:

T–R{Y}–L 1− logð1−θð1− FT ðQY ð FRðxÞÞÞÞÞ
logð1−θÞ ; x∈ℝ:

T–R{Y}–P 1− eθð1− FT ðQY ð FR ðxÞÞÞÞ−1
eθ−1 ; x∈ℝ:



Table 3 Some distributions of Y with corresponding QY(p) and support of T

Standardized distributions of the random variable Y The quantile function QY(p) Support of T

Exponential − log(1 − p) 0 < T <∞

Logistic log(p/(1 − p)) −∞ < T <∞

Extreme value log(− log(1 − p)) −∞ < T <∞

log logistic p/(1 − p) 0 < T <∞

uniform p 0 < T < 1

Osatohanmwen et al. Journal of the Egyptian Mathematical Society           (2020) 28:29 Page 5 of 18
Proposition 2:

For QY(FR(x)) = x and θ→ 0+, the T – R{Y} − PS family of distributions defined in (4)

reduces to the distribution of the random variable T.

Proof:

The proof follows directly and explicitly from substituting x for QY(FR(x)) in (1) and

the proof of Proposition 1.

Proposition 3:

The pdf of the T – R{Y} − PS family of distributions can be expressed as linear com-

bination of density of the first order statistic of the T – R{Y} distribution as

f T�R Yf g−PS xð Þ ¼
X∞
n¼1

P N ¼ nð Þ f Xx 1ð Þ
x; nð Þ;

where f Xxð1Þ
ðx; nÞ is the pdf of Xð1Þ ¼ minf Xigni¼1

Proof:

Observe that C
0 ðθÞ ¼P∞

i¼1
nanθ

n−1. Using (5), one readily obtains

f T�R Yf g−PS xð Þ ¼
X∞
n¼1

anθ
n

C θð Þ nf X xð Þ 1−FT QY FR xð Þð Þð Þ½ �n−1;

and f ðx; nÞ ¼ nf ðxÞ½1−F ðQ ðF ðxÞÞÞ; �n−1. Hence, the proof.
Xxð1Þ X T Y R

Quantiles and moments

The quantile function and moments of a probability distribution provide the theoretical

base upon which many statistical properties of a distribution are assessed with. The

quantile function in particular is very useful in Monte Carlo simulations since it helps

in producing simulated random variates for any distribution, especially when it is in

closed form.
Table 4 Different T–R{Y}–B distributions

Distributions cdf

T–R{exponential}–B 1− ð1þθð1− FT ð− logð1− FRðxÞÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:

T–R{logistic}–B 1− ð1þθð1− FT ð logð FRðxÞ=ð1− FRðxÞÞÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:

T–R{extreme value}–B 1− ð1þθð1− FT ð logð− logð1− FRðxÞÞÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:

T–R{log logistic}–B 1− ð1þθð1− FT ð FRðxÞ=ð1− FRðxÞÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:

T–R{uniform}–B 1− ð1þθð1− FT ð FRðxÞÞÞÞm−1
ð1þθÞm−1 ; x∈ℝ:



Table 5 Different T–R{Y}–G distributions

Distributions cdf

T–R{exponential}–G FT ð− logð1− FRðxÞÞÞ
1−θð1− FT ð− logð1− FRðxÞÞÞÞ ; x∈ℝ:

T–R{logistic}–G FT ð logð FRðxÞ=ð1− FRðxÞÞÞÞ
1−θð1− FT ð logð FRðxÞ=ð1− FRðxÞÞÞÞÞ ; x∈ℝ:

T–R{extreme value}–G FT ð logð− logð1− FRðxÞÞÞÞ
1−θð1− FT ð logð− logð1− FRðxÞÞÞÞÞ ; x∈ℝ:

T–R{log logistic}–G FT ð FRðxÞ=ð1− FRðxÞÞÞ
1−θð1− FT ð FRðxÞ=ð1− FRðxÞÞÞÞ ; x∈ℝ:

T–R{uniform}–G FT ð FRðxÞÞ
1−θð1− FT ð FRðxÞÞÞ ; x∈ℝ:
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Theorem 1:

The quantile function Q(p) of the T – R{Y} − PS family of distributions is given by

Q pð Þ ¼ QR FY QT 1−
C−1 1−pð ÞC θð Þð Þ

θ

� �� �� �
; 0 < p < 1; 8ð Þ

where C−1(.) is the inverse of C(.)
Proof:

The result in (8) is obtained by solving the equation FT – R{Y} − PS(Q(p)) = p for Q(p).

Corollary 1:

Random samples can be simulated from the T – R{Y} − PS family of distributions by

making use of the relation

X ¼ QR FY QT 1−
C−1 1−Uð ÞC θð Þð Þ

θ

� �� �� �
; 0 < U < 1; 9ð Þ

where X is a T – R{Y} − PS random variable and U, a uniform random variable on the
interval (0, 1).

Proof:

The proof follows by substituting U for p in (8), where U is a uniform random vari-

able on the interval (0, 1).

An expression for the rth non-central moments of the T – R{Y} − PS family of distri-

butions random variable follows from Proposition 3. The rth non-central moments of

the T – R{Y} − PS family of distributions random variable X is given by
Table 6 Different T–R{Y}–L distributions

Distributions cdf

T–R{exponential}–L 1− logð1−θð1− FT ð− logð1− FRðxÞÞÞÞÞ
logð1−θÞ ; x∈ℝ:

T–R{logistic}–L 1− logð1−θð1− FT ð logð FRðxÞ=ð1− FRðxÞÞÞÞÞÞ
logð1−θÞ ; x∈ℝ:

T–R{extreme value}–L 1− logð1−θð1− FT ð logð− logð1− FRðxÞÞÞÞÞÞ
logð1−θÞ ; x∈ℝ:

T–R{log logistic}–L 1− logð1−θð1− FT ð FRðxÞ=ð1− FRðxÞÞÞÞÞ
logð1−θÞ ; x∈ℝ:

T–R{uniform}–L 1− logð1−θð1− FT ð FRðxÞÞÞÞ
logð1−θÞ ; x∈ℝ:



Table 7 Different T–R{Y}–P distributions

Distributions cdf

T–R{exponential}–P 1− eθð1− FT ð− logð1− FR ðxÞÞÞÞ−1
eθ−1 ; x∈ℝ:

T–R{logistic}–P 1− eθð1− FT ð logð FR ðxÞ=ð1− FR ðxÞÞÞÞÞ−1
eθ−1 ; x∈ℝ:

T–R{extreme value}–P 1− eθð1− FT ð logð− logð1− FR ðxÞÞÞÞÞ−1
eθ−1 ; x∈ℝ:

T–R{log logistic}–P 1− eθð1− FT ð FR ðxÞ=ð1− FR ðxÞÞÞÞ−1
eθ−1 ; x∈ℝ:

T–R{uniform}–P 1− eθð1− FT ð FR ðxÞÞÞ−1
eθ−1 ; x∈ℝ:
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μ
0
r ¼ E Xrð Þ ¼

Z∞
�∞

xr f T�R Yf g−PS xð Þdx ¼
X∞
n¼1

P N ¼ nð ÞE Xr
1ð Þ

	 

; 10ð Þ

where EðXr Þ is the rth non-central moment of the first order statistic of a T–R{Y} ran-
ð1Þ
dom variable. Thus the rth non-central moments of the T – R{Y} − PS family of distri-

butions can be expressed as a linear combination of the rth non-central moments of

the first order statistics of the T – R{Y} distribution.

The moment generating function (mgf) of the T – R{Y} − PS family of distributions is

defined by

MX tð Þ ¼ E etX
� �

:

Using Proposition 3, the mgf can be expressed as
MX tð Þ ¼
X∞
n¼1

P N ¼ nð ÞMX 1ð Þ tð Þ: 11ð Þ

Thus the mgf of the T – R{Y} − PS family of distributions can be expressed as a linear
combination of the mgf of the first order statistics of the T – R{Y} distribution.

Order statistics

Order statistics are among the most essential tools in non-parametric statistics and in-

ference. Their importance is highly visible in the problems of estimation and hypoth-

eses tests in a variety of ways. Their moments play an important role in quality control

testing and reliability, where an analyst needs to predict the failure of future compo-

nents or items based on the times of a few observed early failures. These predictors are

most of the time based on moments of order statistics.

Theorem 2:

Let X1, X2, …, Xm be a random sample of size m from the T – R{Y} − PS family of dis-

tributions and suppose X1 :m < X2 :m <… < Xm :m denote the corresponding order statis-

tics. The pdf of the kth order statistic can be expressed as

f T�R Yf g−PSk:m xð Þ ¼ 1
B k;m−k þ 1ð Þ

Xk−1
j¼0

X∞
n¼0

X∞
r¼0

δr;n;m;k; j f Xx 1ð Þ
x; nþmþ j−k þ r þ 1ð Þ; 12ð Þ

where B(., .) is the complete beta function.

δr;n;m;k; j ¼ k−1
j

� �
−1ð Þ j r þ 1ð Þθmþ j−kþnþrþ1amþ j−kþ1

1 brdmþ j−k;n

mþ j−k þ nþ r þ 1½ � C θð Þð Þmþ j−kþ1 ;
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dmþ j−k;0 ¼ 1;

dmþ j−k;t ¼ t−1
Xt
n¼1

n mþ j−k þ 1ð Þ−t½ �bndmþ j−k;t−n; t≥1;

b0 ¼ 1; br ¼ arþ1=a1 for r ¼ 1; 2; 3;…;

b0 ¼ 1; bn ¼ anþ1=a1 for n ¼ 1; 2; 3;…;

and f Xxð1Þ
ðx; nþmþ j−k þ r þ 1Þ denote the pdf of Xð1Þ ¼ minf Xignþmþ j−kþrþ1

i¼1 :

Proof:

From definition, the pdf of the kth order statistic of the T – R{Y} − PS family of distri-

butions can be written as

f T�R Yf g−PSk:m xð Þ ¼ 1
B k;m−k þ 1ð Þ f T�R Yf g−PS xð Þ FT�R Yf g−PS xð Þ
 �k−1

1−FT�R Yf g−PS xð Þ
 �m−k
: 13ð Þ

Using the binomial expansion formula, one readily obtains

FT�R Yf g−PS xð Þ
 �k−1 ¼ 1− 1−FT�R Yf g−PS xð Þ� �
 �k−1
¼
Xk−1
j¼0

−1ð Þ j k−1
j

� �
1−FT�R Yf g−PS xð Þ
 � j

:

Substituting into (13) gives
f T�R Yf g−PSk:m xð Þ ¼ 1
B k;m−k þ 1ð Þ f T�R Yf g−PS xð Þ

Xk−1
j¼0

−1ð Þ j k−1
j

� �
1−FT�R Yf g−PS xð Þ
 �mþ j−k

: 14ð Þ

Substituting (4) and (5) into (14) gives

f T�R Yf g−PSk:m xð Þ ¼ θC
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � f X xð Þ
B k;m−k þ 1ð ÞC θð Þ

Xk−1
j¼0

−1ð Þ j k−1
j

� �
C θ 1−FT QY FR xð Þð Þð Þð Þ½ �

C θð Þ
� �mþ j−k

: 15ð Þ

Now consider the term
C θ 1−FT QY FR xð Þð Þð Þð Þ½ �ð Þmþ j−k ¼
X∞
n¼1

anθ
n 1−FT QY FR xð Þð Þð Þð Þn

" #mþ j−k

¼ amþ j−k
1 θmþ j−k 1−FT QY FR xð Þð Þð Þð Þmþ j−k

X∞
n¼0

bnθ
n 1−FT QY FR xð Þð Þð Þð Þn

" #mþ j−k

where b0 = 1, bn = an + 1/a1 for n = 1, 2, 3, ….
Using the identity

X∞
n¼0

bnz
n

 !p

¼
X∞
n¼0

dp;nz
n;

(see. Gradshteyn and Ryzhik [23]) for a positive integer m + j − k, one can write
C θ 1−FT QY FR xð Þð Þð Þð Þ½ �ð Þmþ j−k ¼ amþ j−k
1 θmþ j−k 1−FT QY FR xð Þð Þð Þð Þmþ j−k

X∞
n¼0

dmþ j−k;nθ
n 1−FT QY FR xð Þð Þð Þð Þn:

Consequently,
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C θ 1−FT QY FR xð Þð Þð Þð Þ½ �ð Þmþ j−k ¼ amþ j−k
1

X∞
n¼0

dmþ j−k;nθ
mþ j−kþn 1−FT QY FR xð Þð Þð Þð Þmþ j−kþn 16ð Þ

where dm + j − k, 0 = 1 and the coefficients for t ≥ 1 can be obtained from the recurrence

equation

dmþ j−k;t ¼ t−1
Xt
n¼1

n mþ j−k þ 1ð Þ−t½ �bndmþ j−k;t−n:

An expression for C′[θ(1 − FT(QY(FR(x))))] can also be defined. In particular,
C
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � ¼

X∞
r¼1

rarθ
r−1 1−FT QY FR xð Þð Þð Þð Þr−1:

Thus,
C
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � ¼ a1

X∞
r¼0

r þ 1ð Þbrθr 1−FT QY FR xð Þð Þð Þð Þr; 17ð Þ

where b0 = 1, br = ar + 1/a1 for r = 1, 2, 3, … Inserting (16) and (17) in (15) gives
f T�R Yf g−PSk:m xð Þ ¼ 1
B k;m−k þ 1ð Þ

Xk−1
j¼0

X∞
n¼0

X∞
r¼0

δr;n;m;k; j mþ j−k þ nþ r þ 1½ � f X xð Þ 1−FT QY FR xð Þð Þð Þð Þ mþ j−kþnþrþ1½ �−1;

hence
f T�R Yf g−PSk:m xð Þ ¼ 1
B k;m−k þ 1ð Þ

Xk−1
j¼0

X∞
n¼0

X∞
r¼0

δr;n;m;k; j f Xx 1ð Þ
x; nþmþ j−k þ r þ 1ð Þ;

where

δr;n;m;k; j ¼ k−1
j

� �
−1ð Þ j r þ 1ð Þθmþ j−kþnþrþ1amþ j−kþ1

1 brdmþ j−k;n

mþ j−k þ nþ r þ 1½ � C θð Þð Þmþ j−kþ1 ;

and
f Xxð1Þ
ðx; nþmþ j−k þ r þ 1Þ denote the pdf of Xð1Þ ¼ minf Xignþmþ j−kþrþ1

i¼1 :

One readily observes that the pdf of the T – R{Y} − PS family order statistics is an in-

finite linear combination of the density of Xð1Þ ¼ minf Xignþmþ j−kþrþ1
i¼1 , where the

quantities δr, n, m, k, j depend only on the power series family.

The sth moment of the T – R{Y} − PS family kth order statistics is given as

E Xs
k:m

� � ¼ Z
ℝ

xsk:m f T�R Yf g−PSk:m xk:mð Þdx:

Thus,
E Xs
k:m

� � ¼ 1
B k;m−k þ 1ð Þ

Xk−1
j¼0

X∞
n¼0

X∞
r¼0

Xmþ j−kþnþr

q¼0

δr;n;m;k; jδr;n;m;k; j;q

�
Z
ℝ

xsk:m f X xk:mð Þ FT QY FR xk:mð Þð Þð Þð Þqdx; 18ð Þ

where
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δr;n;m;k; j;q ¼ −1ð Þq mþ j−k þ nþ r
q

� �
mþ j−k þ nþ r þ 1½ �:

A characterization for the new family

Following a dual concept in statistical mechanics, Shannon [24] introduced the prob-

abilistic definition of entropy. The Shannon entropy which is sometimes referred to as

a measure of uncertainty plays an essential role in information theory. To measure ran-

domness or uncertainty, the entropy of a random variable comes handy since it can be

defined in terms of its probability distribution. Suppose X is a continuous random vari-

able with density function f. Then, the Shannon entropy of X is defined by

ℍSh fð Þ ¼ −
Z
ℝ

f logfdx: 19ð Þ

Another powerful method often employed in the field of probability and statistics

and closely related to the Shannon entropy is the “maximum entropy method” pio-

neered by Jaynes [25]. The method considers a family of density functions

F ¼ f : E f T i Xð Þð Þ ¼ αi; i ¼ 0;…;m
� �

;

where T1(X), …, Tm(X) are absolutely integrable functions with respect to f, and T0(X) =
α0 = 1. In the continuous case, the maximum entropy principle suggests deriving the

unknown density function of the random variable X by the model that maximizes the

Shannon entropy (19) subject to the information constraints defined in the family F
(see. Shore and Johnson [26]). The maximum entropy method has been used for the

characterization of several standard probability distributions; see for example, Zografos

and Balakrishnan [27].

The maximum entropy distribution is the density of the family F , denoted fME, ob-

tained as the solution of the optimization problem

f ME ¼ arg fϵF
max ℍSh:

As demonstrated by Jaynes [25], the maximum entropy distribution fME determined
by the constrained maximization problem depicted above “is the only unbiased assign-

ment we can make; to use any other would amount to arbitrary assumption of informa-

tion which by hypothesis we do not have” To provide a maximum entropy

characterization for the T – R{Y} − PS family, a derivation of important constraints is

undertaken.

Proposition 4:

If X is a random variable with density (5) and Z follows a T – R{Y} distribution with

density given by (2), the following constraints hold

C1 E log C
0
θ 1−FT QY FR Xð Þð Þð Þð Þ½ �

n o
¼ θ

C θð Þ E C
0
θ 1−FT QY FR Zð Þð Þð Þð Þ½ � logC 0

θ 1−FT QY FR Zð Þð Þð Þð Þ½ �
n o

;

C2 E log f Xð Þf g ¼ θ
C θð ÞE log f Zð ÞC 0

θ 1−FT QY FR Zð Þð Þð Þð Þ½ �
n o

:

Proof:
The proof is trivial and hence it is omitted.

Theorem 3:
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The density function fT – R{Y} − PS(.) given in (5) for the random variable X following

the T – R{Y} − PS family of distributions, is the unique solution of the optimization

problem

f T�R Yf g−PS ¼ arg hϵF
max ℍSh hð Þ

under the constraints C1 and C2 given in Proposition 4.
Proof:

Suppose v(.) is a pdf which satisfies the constraints C1 and C2. The Kullback-Leibler

divergence between the densities v and fT – R{Y} − PS is

D v; f T�R Yf g−PS
	 


¼
Z
ℝ

v log
v

f T�R Yf g−PS

 !
dx:

Following Cover and Thomas [28], one obtains

0≤D v; f T�R Yf g−PS
	 


¼
Z
ℝ

v logvdx−
Z
ℝ

v log f T�R Yf g−PSdx

¼ −ℍ Sh vð Þ−
Z
ℝ

v log f T�R Yf g−PSdx:

Let Z have the pdf given by (2). From the definition of fT – R{Y} − PS and based on the
constraints C1 and C2, the following result holds:
Z
ℝ

v log f T�R Yf g−PSdx ¼
Z
ℝ

θ
C θð ÞC

0
θ 1−FT QY FR zð Þð Þð Þð Þ½ � f zð Þ log θ

C θð ÞC
0
θ 1−FT QY FR zð Þð Þð Þð Þ½ � f zð Þ

� �
dz

Since the density v satisfies the constraints C1 and C2.

Z
ℝ

υ log f T‐R Yf g−PS dx ¼ θ
C θð Þ

Z
ℝ

C
0
θ 1−FT QY FR zð Þð Þð Þð Þ½ � f zð Þ logθ þ log C

0
θ 1−FT QY FR zð Þð Þð Þð Þ½ � f zð Þ

n o
− logC θð Þ

n o
dz

¼ logθ− logC θð Þ þ θ
C θð Þ E C

0
θ 1−FT QY FR Zð Þð Þð Þð Þ½ � logC 0

θ 1−FT QY FR Zð Þð Þð Þð Þ½ �
n o

þ θ
C θð ÞE log f Zð ÞC 0

θ 1−FT QY FR Zð Þð Þð Þð Þ½ �
n o

¼ −ℍSh f T−R Yf g−PS
	 


ð20Þ

Thus,
0≤ℍ Sh f T�R Yf g−PS
	 


−ℍ Sh vð Þ;

hence,
ℍ Sh vð Þ≤ℍ Sh f T�R Yf g−PS
	 


;

with equality if and only if v(x) = fT – R{Y} − PS(x) for all x except for a null measure set.
This proves Theorem 3.

Corollary 2:

The Shannon entropy of the T – R{Y} − PS family of distributions is given by

Ηsh ¼ f T‐R Yf g−PS
	 


¼ logC θð Þ− logθ−
θ

C θð Þ E C
0
θ 1−FT QY FR Zð Þð Þð Þð Þ½ � logC 0

θ 1−FT QY FR Zð Þð Þð Þð Þ½ �
n o

−
θ

C θð ÞE log f Zð ÞC 0
θ 1−FT QY FR Zð Þð Þð Þð Þ½ �

n o
:

ð21Þ

Proof:
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The result follows from (20).

The mode of the family

The mode(s) of the T – R{Y} − PS family of distributions can be obtained as the solution

of the equation

f
0
T�R Yf g−PS xð Þ ¼ 0

for x. It follows that the mode(s) of a T – R{Y} − PS distribution can be obtained by

solving for x in the equation

C
0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � f 0 0

X xð Þ−θC 0
θ 1−FT QY FR xð Þð Þð Þð Þ½ � f X xð Þð Þ2

h i
¼ 0: 22ð Þ

Mean deviations of the family

The dispersion and the spread in a population from the center are often measured by

the deviation from the mean, and the deviation from the median. The mean absolute

deviation about the mean, D(μ), and the mean absolute deviation about the median,

D(M), for the new family are defined as

D μð Þ ¼
Z ∞

−∞
x−μj j f T�R Yf g−PS xð Þ dx;

and
D Mð Þ ¼
Z ∞

−∞
x−Mj j f T�R Yf g−PS xð Þ dx;

respectively, where μ = E(X) and M =Q(0.5). Consequently,
D μð Þ ¼
Z ∞

−∞
x−μj j f T�R Yf g−PS xð Þdx ¼

Z μ

−∞
μ−xð Þ f T�R Yf g−PS xð Þdx

þ
Z ∞

μ
x−μð Þ f T�R Yf g−PS xð Þdx:

Thus,
D μð Þ ¼ 2μFT�R Yf g−PS μð Þ−2μþ 2
Z ∞

μ
xf T�R Yf g−PS xð Þdx: 23ð Þ

Also,
D Mð Þ ¼
Z ∞

−∞
x−Mj j f T�R Yf g−PS xð Þdx ¼

Z M

−∞
M−xð Þ f T�R Yf g−PS xð Þdx

þ
Z ∞

M
x−Mð Þ f T�R Yf g−PS xð Þdx

Thus,
D Mð Þ ¼ −μþ 2
Z ∞

M
xf T�R Yf g−PS xð Þdx: 24ð Þ

Remark: Many results obtained so far can be determined numerically by employing
any symbolic computing software such as MATLAB, MATHEMATICA, and R. The in-

finity limit in the sums can be substituted by a large number for applied purposes.
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Maximum likelihood estimation of the parameters of the new family
Suppose ξ is a p × 1 vector containing all the parameters of the T – R{Y} distribution,

for a complete random sample x1, x2, …, xn of size n from the T – R{Y} − PS family, the

total log-likelihood function is given by

ℓ ¼ n log θð Þ−n log C θð Þð Þ þ
Xn
i¼1

log C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �

	 


þ
Xn
i¼1

log f X xi; ξð Þð Þ: 25ð Þ

Let Θ = (θ ξ)T be the unknown parameter vector of the T – R{Y} − PS family, the asso-
ciated score function is given by

U Θð Þ ¼ ∂ℓ
∂θ

∂ℓ
∂ξ

� �T

;

where ∂ℓ
∂θ and ∂ℓ

∂ξ are given by

Uθ ¼ ∂ℓ
∂θ

¼ n
θ
−
n C

0
θð Þ

C θð Þ þ
Xn
i¼1

∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂θ

C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ � ;

Uξk ¼
∂ℓ
∂ξk

¼
Xn
i¼1

∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂ξk
C

0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ � þ

Xn
i¼1

∂ f X xi; ξð Þð Þ=∂ξk
f X xi; ξð Þ :

The maximum likelihood estimate of Θ, Θ̂; can be obtained by solving the non-linear

systems of equations, U(Θ) = 0. Since the resulting systems of equations are not in

closed form, the solutions can be found numerically using some specialized numerical

iterative scheme such as the Newton-Raphson type algorithms, which can be imple-

mented on several computing software like R, SAS, MATHEMATICA, and MATLAB.

For interval estimation of the parameters of the T – R{Y} − PS family, one would re-

quire the Fisher information matrix (FIM) given by the (1 + p) × (1 + p) symmetric

matrix

I Θð Þ ¼ −EΘ

Uθθ j UT
θξ

−− −− −−
Uθξ j Uξξ

0
@

1
A;

where p is the number of parameter(s) in the T – R{Y} distribution and
Uθθ ¼ −
n

θ2
−n

C θð ÞC 0 0 θð Þ− C
0
θð Þ
 �2

C θð Þ½ �2
( )

þ
Xn
i¼1

∂2 C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂θ2

C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �

−
Xn
i¼1

∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂θ
� �2

C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �2 ;

Uθξk ¼
Xn
i¼1

∂2 C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂θ∂ξk
C

0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �

−
Xn
i¼1

∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂ξk∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂θ

C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �2 ;
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Uξkξ l ¼
Xn
i¼1

∂2 C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂ξk∂ξ l
C

0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �

−
Xn
i¼1

∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂ξk∂ C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �

=∂ξ l

C
0
θ 1−FT QY FR xi; ξð Þð Þð Þð Þ½ �� �2

þ
Xn
i¼1

∂2 f X xi; ξð Þð Þ=∂ξk∂ξ l
f X xi; ξð Þ −

Xn
i¼1

∂ f X xi; ξð Þð Þ=∂ξk∂ f X xi; ξð Þð Þ=∂ξ l
f X xi; ξð Þð Þ2 :

The total FIM, I(Θ), can be approximated by
J Θ̂
� �

≈ −
∂2ℓ

∂Θi∂Θ j

����
Θ¼Θ̂

� �
1þpð Þ� 1þpð Þ

:

For real data, JðΘ̂Þ is obtained after the maximum likelihood estimate of Θ is gotten,
which implies the convergence of the iterative numerical procedure involved in finding

such estimate.

Given that Θ̂ is the maximum likelihood estimate of Θ and under the conditions that

are fulfilled for the parameters Θ in the interior of the parameter space but not on the

boundary, it follows that
ffiffiffi
n

p ðΘ̂−ΘÞ→d N1þpð0; I−1ðΘÞÞ; where I−1(Θ) is the inverse of

the expected FIM. The asymptotic behavior is still valid if I−1(Θ) is replaced by J−1ðΘ̂Þ.
The multivariate normal distribution with zero mean vector 0 and covariance

matrix I−1(Θ) is used to construct confidence intervals for the T – R{Y} − PS family pa-

rameters. The approximate 100(1 − α)% two-sided confidence interval for the parame-

ters θ and ξ are given by

θ̂ � Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I−1θθ Θ̂
� �q

; ξ̂ � Zα=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I−1ξξ Θ̂
� �q

;

respectively, where I−1ðΘ̂Þ and I−1ðΘ̂Þ are diagonal elements of I−1ðΘ̂Þ and Z is the
θθ ξξ α/2

upper (α/2)th percentile of a standard normal distribution.

A specific member from the new family: the Gumbel–Weibull {logistic}–
Poisson (GUWELOP) distribution
Taking T, R, and Y as random variables following the Gumbel, Weibull and logistic dis-

tributions, respectively, Al-Aqtash et al. [29] defined the Gumbel–Weibull {logistics}

(GW) distribution by the cdf and pdf expressed respectively as

FGW xð Þ ¼ exp −β e
x
λð Þα−1

	 
−1=γ� �
; 26ð Þ

f GW xð Þ ¼ αβ
λγ

x
λ

	 
α−1
e

x
λð Þα e

x
λð Þα−1

	 
−1−1=γ
exp −β e

x
λð Þα−1

	 
−1=γ� �
; 27ð Þ

x > 0; α; β; λ; γ > 0:

Taking the power series distribution as the Poisson distribution with properties as

specified in Table 1 and substituting (26) and (27) into (4) and (5), we define the Gum-

bel – Weibull {logistic} Poisson (GUWELOP) distribution by the cdf and pdf given re-

spectively by



Fig. 1 GUWELOP density for varying parameter values (λ = 1, γ = 6)
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FGUWELOP xð Þ ¼ 1−
exp θ 1− exp −β e

x
λð Þα−1

	 
−1
γ

� �� �� �
−1

eθ−1
; 28ð Þ

f GUWELOP xð Þ ¼ αβθ
λγ eθ−1ð Þ

x
λ

	 
α−1
e

x
λð Þα e

x
λð Þα−1

	 
−1−1
γ
exp −β e

x
λð Þα−1

	 
−1
γ

� �
�

exp θ 1− exp −β e
x
λð Þα−1

	 
−1=γ� �� �� �
; 29ð Þ

x > 0; α; β; λ; γ > 0; θϵℝ:

A graph of the pdf of the GUWELOP distribution is shown in Fig. 1. The graph of

the pdf reveals that the GUWELOP density can be right-skewed, left-skewed, almost

symmetric, and bimodal. To buttress the applicability of members of the new family in

modeling complex real life data, the GUWELOP distribution is used to fit a multi-

modal data set. The data set represents Kevlar 49/epoxy strands failure times data

(pressure at 70%) reported in Al-Aqtash et al. [29] The data are multimodal, platykur-

tic, and approximately symmetric. (Skewness = 0.1, kurtosis = − 0.79). The data set is

given in Table 8. The maximum likelihood method is used to fit the GUWELOP distribu-

tion, GW distribution, and the beta-normal (BN) distribution (Eugene et al. [11] to the

data set. The results of the fit and other summary statistics are presented in Table 9. The

graph of the fitted densities alongside the histogram of the data set is shown in Fig. 2.

Results from Table 9 show that the three distributions provided good fits to the data

set since all the distributions have high p values of the K–S statistics. However, The

GUWELOP distribution has the highest p value and hence provided the best fit to the

data. This application suggests the adequacy of the GUWELOP distribution in fitting

multi-modal data sets.
Table 8 Kevlar 49/epoxy strands failure times data (pressure at 70%)

1051, 1337, 1389, 1921, 1942, 2322, 3629, 4006, 4012, 4063, 4921, 5445, 5620, 5817, 5905, 5956, 6068, 6121, 6473,
7501, 7886, 8108, 8546, 8666, 8831, 9106, 9711, 9806, 10205, 10396, 10861, 11026, 11214, 11362, 11604, 11608,
11745, 11762, 11895, 12044, 13520, 13670, 14110, 14496, 15395, 16179, 17092, 17568, 17568



Table 9 Maximum likelihood estimates for Kevlar 49/epoxy strands failure times data (pressure at
70%)

Distribution GW* BN* GUWELOP

Parameter estimates α̂ ¼ 2:6948
(0.8101)

γ̂ ¼ 4:11091
(1.0456)

β̂ ¼ 1:3118
(0.5144)

λ̂ ¼ 6165:69
(1749.51)

â ¼ 0:1626
(0.1039)

b̂ ¼ 0:1157
(0.0199)

μ̂ ¼ 7826
(1759.97)

σ̂ ¼ 1339:35
(245.62)

α̂ ¼ 2:0433
(0.8129)

γ̂ ¼ 3:6464
(1.9910)

β̂ ¼ 1:5924
(1.2346)

λ̂ ¼ 4546:90
(2220.66)

θ̂ ¼ −0:6017
(2.5271)

Log likelihood −478.51 −480.52 −478.8681

AIC 965.0 969.0 967.7362

K–S
p value

0.0749
0.9462

0.0797
0.9144

0.0703
0.9549

(Standard error of estimates in parenthesis)
*Maximum likelihood estimates, loglikelihood, AIC, K–S statistic, and its p value of the GW and BN distributions were
obtained from Al-Aqtash et al. [29]
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Summary and conclusion
A new family of probability distributions called the T–R {Y}—power series family of

distributions has been introduced in this paper. The new family was realized by com-

pounding the T–R {Y} family of distribution and the power series family. Several math-

ematical properties of the new family were explored alongside the maximum likelihood

method for the estimation of the parameters of the new family. A special member of

the new family called the Gumbel–Weibull {logistics} Poisson distribution was defined

and applied to a real data set in order to buttress the applicability of members of the

new family in fitting real life data sets. Finally, we hope that the new family will attract

usage in complex applications in the literature on compounded family of probability

distributions.
Fig. 2 Histogram and fitted densities of Kevlar 49/epoxy strands failure times data (pressure at 70%)
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