
Journal of the Egyptian
Mathematical Society

Younus et al. Journal of the EgyptianMathematical Society           (2020) 28:44 
https://doi.org/10.1186/s42787-020-00100-9

ORIGINAL RESEARCH Open Access

Fixed point theorems for self and
non-self F-contractions in metric spaces
endowed with a graph
Awais Younus*, Muhammad Umer Azam and Muhammad Asif

*Correspondence:
awais@bzu.edu.pk
CASPAM, Bahauddin Zakariya
University, Multan, Pakistan

Abstract
The main results obtained in this paper are fixed point theorems for self and non-self G
F-contractions on metric spaces endowed with a graph. Our new results are
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Introduction
The well-known Banach contraction theorem [1] has plenty of extensions in the litera-
ture (see, for example, [2, 3]). That theorem states that every self-mapping f defined on
complete metric space (S, d) satisfying

d
(
fr, fs

) ≤ αd (r, s) ∀ r, s ∈ S, (1)

where α ∈ (0, 1) has a unique fixed point, i.e., there exists a unique r∗ ∈ S such that
fr∗ = r∗.
The extension of Banach contraction theorem for non-self multi-valued mappings was

first studied by Assad and Kirk [4] in 1972. After this initiation, lot of fixed point theorems
for non-self mappings have been proved by various authors, see, for example, [5–7] and
[8].
Firstly, the study of fixed point theorem for single-valued monotone mappings in a met-

ric space endowed with a partial ordering has been investigated by Ran and Reurings [9]
and presented its applications to matrix equations. After this, many results in this direc-
tion were studied by different authors; see [10–12] and [13]. These theorems are actually
hybrids of two fundamental theorems of fixed point theory: the Kanaster-Tarski theorem
[14] and the Banach Contraction Principle. Jachymski [15] established the fixed point
theorems by using graphs which is the generalization of concept of partial ordering in
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metric spaces. Jachymski [15, Theorem 3.2] generalized the Banach contraction theorem
for self-mappings on complete metric spaces endowed with the graph, where as Berinde
[16, Theorem 3.1] for non-self mappings to Banach spaces endowed with a graph by using
the inwardness condition defined in [17]. There are few other fixed point theorems for
non-self mappings to Banach spaces endowed with a graph , see, for example, [18] and
[19].
Recently, Wardowski [20] introduced a new type of contraction by using a particular

function F : R+ → R called F-contraction and gave examples to show the validity of such
extensions in complete metric spaces. The author proved a new fixed point theorem by
using this concept of F-contraction.
This paper has been organized in the following manner: In the “Preliminaries” section,

we will give the brief introduction of a new type of contraction called F -contraction. In
the last section, we present a few preliminary notations and our main aim is to study the
fixed point theorems for self-mappings as well as non-self mappings using F-contractions
for metric spaces endowed with a graph. These theorems are the generalization of fixed
point theorems discussed by Berinde [16] on Banach spaces endowed with a graph and
Wardowski [20] on complete metric spaces.

Preliminaries
In this section, we present some definitions, examples and results from [20], which will
be used in this article. Throughout this paper, consider R be the set of all real numbers,
R

+ be the set of all positive real numbers and N be the set of all positive integers.

Definition 1 Let the mapping F : R+ → R satisfies the following conditions:

(f1) F is strictly increasing;
(f2) for each sequence {rn} ⊂ R

+ limn→+∞ rn = 0 iff limn→+∞ F (rn) = −∞;
(f3) there exists k ∈ (0, 1) provided that limλ→0+ λkF (λ) = 0.

The collection of all such mappings is denoted by �.

Definition 2 Let (S, d) be a metric space. A mapping ϒ : S → S is said to be
F-contraction if there exist F ∈ � and τ > 0 provided that

d (ϒs,ϒr) > 0 =⇒ τ + F (d (ϒs,ϒr)) ≤ F (d (s, r)) , (2)

for all r, s ∈ S.

Example 1 Let F ∈ � be defined by F (α) = lnα. For any k ∈ (0, 1) , it is clear that every
mapping ϒ : S → S satisfying (2) is an F-contraction such that

d (ϒs,ϒr) ≤ e−τd (r, s) ∀r, s ∈ S, ϒr 
= ϒs.

Example 2 Consider F ∈ � be defined by F (α) = −1√
α
, α > 0. In this case, for any

k ∈ (1/2, 1) , every F-contraction ϒ satisfies

d (ϒr,ϒs) ≤ 1
(
1 + τ

√
d (r, s)

)2 d (r, s) ∀ r, s ∈ S, ϒr 
= ϒs.
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Wardowski stated the F-contraction theorem for self mappings in complete metric
spaces as follows.

Theorem 1 Let a mapping T : S → S be an F-contraction and (S, d) be a complete
metric space. Then, T has a unique fixed point s∗ ∈ S and for every s ∈ S the sequence
(Tns)n∈N converges to s∗.

Remark 1 From (f1) and (2), we can conclude that every F-contractionϒ is a contractive
mappping, i.e.,

d (ϒr,ϒs) ≤ d (r, s) for all r, s ∈ S and ϒr 
= ϒs. (3)

Thus, every F-contraction is continuous mapping.

Fixed point theorems inmetric spaces endowedwith a graph
By using the concept of F-contractions, we establish fixed point theorems for self as well
as non-self mappings in complete metric spaces endowed with a graph.
Some graph theory terminologies will be presented here. Let (S, d) be metric space and

� denote the diagonal of Cartesian product S × S. Let G = (V (G) ,E (G)) be a directed
graph such that E (G) , the set of its edges consists of all loops , that is, � ⊂ E (G) and
V (G) , the vertex set coincides with S. Let G has no parallel edges (arcs). For more details
of these terminologies and notations see [21] and [22].
G−1 is the converse graph of G, i.e., the edge set of G−1 is obtained by reversing the

edges of G, defined as:

E
(
G−1) = {(r, s) ∈ S × S : (s, r) ∈ E (G)} .

If s, r are vertices in the graph G, then a path from s to r of length t is a sequence {si}ti=1 of
t + 1 vertices of G such that s0 = s, st = r and (si−1, si) ∈ E (G) , i = 1, 2 · · · t.
A graphG is called connected if there exist at least a path between two arbitrary vertices.

If G̃ =
(
S,E

(
G̃

))
is the symmetric graph obtained by placing together the vertices of

both G and G−1, that is,

E
(
G̃

)
= E (G) ∪ E

(
G−1) ,

then G is said to be weakly connected whenever G̃ is connected.
If G = (V (G) ,E (G)) is a graph and V (G) ⊃ H , then the graph (H ,E (G)) with

E (H) = E (G) ∩ (H × H)

is said to be the subgraph of G determined by H , denoted by GH .

Self F-contraction case

A mapping ϒ : S → S is said to be defined on a metric space endowed with a graph G if
it satisfies

∀ r, s ∈ S, (r, s) ∈ E (G) implies (ϒr,ϒs) ∈ E (G) . (4)

A mapping ϒ : S → S defined on metric space endowed with a graph G, is said to be a G
F-contraction, if there is a constant τ > 0 such that ∀ r, s ∈ S with (r, s) ∈ E (G) , we have

[d (ϒr,ϒs) > 0 =⇒ τ + F (d (ϒr,ϒs)) ≤ F (d (r, s))] . (5)
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If ϒr = r, then the element r ∈ S is said to be the fixed point of mapping ϒ .

Theorem 2 Suppose (S, d,G) be a complete metric space endowed with a weakly con-
nected and directed graph G such that the following property (T) holds, that is, for any
sequence {rn}∞n=1 ⊂ S with rn → r as n → ∞ and (rn, rn+1) ∈ E (G) for all n ∈ N, there
exists a subsequence

{
rsn

}∞
n=1 satisfying

(
rsn , r

) ∈ E (G) , ∀ n ∈ N. (6)

Let ϒ : S → S be a G F-contraction. If the set

Sϒ = {r ∈ S : (r,ϒr) ∈ E (G)} (7)

is nonempty, then the mapping ϒ has a unique fixed point in S.

Proof Let r0 ∈ Sϒ . It follows from (7) that (r0,ϒr0) ∈ E (G) and by using (4), we obtain
(
ϒnr0,ϒn+1r0

) ∈ E (G) , ∀ n ∈ N. (8)

Denote rn := ϒnr0 for all n ∈ N. Then, by the fact that ϒ is aG F-contraction and in view
of (4), we get

F (d (rn, rn+1)) ≤ F (d (rn−1, rn)) − τ , (9)

for all n ∈ N. Denote αn = d (rn, rn+1) , n = 0, 1, . . .
Let rn+1 
= rn, for every n ∈ N ∪ {0} . Then, αn > 0 for all n ∈ N ∪ {0} and by using (2),

we get

F (αn) ≤ F (αn−1) − τ ≤ F (αn−2) − 2τ ≤ · · · ≤ F (α0) − nτ . (10)

Hence, limn→∞ F (αn) = −∞. By the property (f2), we obtain that αn → 0 as n → ∞.
From (f3), there exists k ∈ (0, 1) such that limn→∞ αk

nF (αn) = 0. By (10), the following
holds for all n ∈ N

αk
nF (αn) − αk

nF (α0) ≤ αk
n (F (α0) − nτ) − αk

nF (α0) = −αk
nnτ . (11)

Letting n → ∞ in (11), we deduce limn→∞ nαk
n = 0. From (11), we observe that there

exists n′ ∈ N such that nαk
n ≤ 1 for all n ≥ n′. Consequently, we have

αn ≤ 1
n1/k

for all n ≥ n′. (12)

Choosem, n ∈ N such thatm ≥ n ≥ n′ and from (12), we have

d (rm, rn) ≤ αm−1 + · · · + αn <

∞∑

j=n
αn ≤

∞∑

j=n

1
j1/k

.

The convergence of the series
∑∞

j=n
1

j1/k implies that {rn} is a Cauchy sequence, hence
convergent in (S, d,G) . The limit of this sequence is denoted as:

lim
n→∞rn = r

∗
. (13)

By using property (T) of (S, d,G) , there exists a subsequence
{
rsn

}
satisfying

(
rsn , r∗

) ∈ E (G) , ∀ n ∈ N.

Hence, by inequality (5) and in view of (4), we get

F
(
d

(
ϒrsn ,ϒr∗

)) ≤ Fd
(
rsn , r∗

) − τ < F
(
d

(
rsn , r∗

))
, (14)
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which implies

d
(
ϒrsn ,ϒr∗

) ≤ d
(
rsn , r∗

)
. (15)

Therefore, by triangle inequality, we have

d
(
r∗,ϒr∗

) ≤ d
(
r∗, rsn+1

) + d
(
rsn+1,ϒr∗

)

= d
(
r∗, rsn+1

) + d
(
ϒrsn ,ϒr∗

)
.

(16)

By using (15), inequality (16) yields

d
(
r∗,ϒr∗

) ≤ d
(
r∗, rsn+1

) + d
(
rsn , r∗

)
, (17)

for all n ≥ 1. In Eq. (17), assuming n → ∞ and using (13), we have d (r∗,ϒr∗) = 0, which
implies r∗ = ϒr∗, i.e., r∗ a fixed point of mapping ϒ .
Note that the uniqueness of r∗ follows by the G F-contraction condition (5).

Remark If we use the mapping F ∈ � defined by the formula F (α) = lnα in Theorem 2,
then for all k ∈ (0, 1) , we obtain the extension of [16, Theorem 2.1].

Example Let (S, d) be the complete metric space and G be the complete graph on the set
S, that is, E (G) = S × S. Let the mapping F ∈ � be defined as: F (α) = lnα, then the G
F-contraction (5) is actually a F-contraction (2) which reduces to Banach contraction, i.e.,

d (ϒr,ϒs) ≤ e−τd (ϒr,ϒs) , for all r, s ∈ S, ϒr 
= ϒs,

for any k ∈ (0, 1) and τ > 0.

Non-self F-contraction case

Let S be a Banach space, A be a nonempty, closed subset of S and ϒ : A → S be a non-self
mapping. We choose r ∈ A such that ϒr /∈ A, then there is an element s ∈ ∂A such that

s = (1 − μ) r + μϒr where μ ∈ (0, 1) ,

which represents the fact that

d (r,ϒr) = d (r, s) + d (s,ϒr) , s ∈ ∂A (18)

where d (r, s) = ‖r − s‖ .
Caristi [17] used a condition related to (18), called inward condition, to get the gener-

alization of Banach contraction theorem for non-self mappings. The inward condition is
more general because it does not need s in (18) to belong to ∂A.
A non-self mapping ϒ : A → S is said to be defined on the Banach space S endowed

with a graph G, if it satisfies the property that

for all r, s ∈ A (r, s) ∈ E (G)

with ϒr,ϒs ∈ A, implies (ϒr,ϒs) ∈ E (G) ∩ (A × A) ,
(19)

for the subgraph of G induced by A.

Theorem 3 Suppose (S, d,G) be a Banach space endowed with a weakly connected and
directed graphG provided that following property (T) holds, that is, for any sequence {rn} ⊂
S along with rn → r as n → ∞ and

(rn, rn+1) ∈ E (G) , ∀ n ∈ N,
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there exists a subsequence
{
rsn

}
satisfying

(
rsn , r

) ∈ E (G) , ∀ n ∈ N. (20)

Let A be a nonempty, closed subset of S andϒ : A → S be a GA F-contraction, that is, there
exists a constant τ > 0 such that

τ + F (d (ϒr,ϒs)) ≤ F (d (r, s)) for all (r, s) ∈ E (GA) , (21)

where GA is the subgraph of G determined by A. If the set

Aϒ := {r ∈ ∂A : (r,ϒr) ∈ E (G)}
is nonempty and ϒ satisfies Rothe’s boundary condition

ϒ (∂A) ⊂ A, (22)

then the mapping ϒ has a unique fixed point.

Proof If ϒ(A) ⊂ A, then ϒ is a self-map of the closed set A and the conclusion follows
by Theorem 2. Now, we consider the case that ϒ(A) 
⊂ A. Let r0 ∈ Aϒ . It follows that
(r0,ϒr0) ∈ E (G) and in view of equation (4), we have

(
ϒnr0,ϒn+1r0

) ∈ E (G) , for all n ∈ N. (23)

Let we denote rn := ϒnr0, for all n ∈ N. By virtue of (22) ϒr0 ∈ A.
Consider r1 ≡ s1 = ϒr0. Let ϒr1 ∈ A, set r2 ≡ s2 = ϒr1. If ϒr1 /∈ A, then we can select

an element r2 ∈ ∂A on the segment [r1,ϒr1] , that is,

r2 = (1 − μ) r1 + μϒr1, where μ ∈ (0, 1) .

By following the same method, we obtain two sequences {rn} and {sn} whose terms satisfy
one of the succeeding properties:

(i) rn ≡ sn = ϒrn−1, if ϒrn−1 ∈ A;
(ii) rn = (1 − μ) rn−1 + μϒrn−1 ∈ ∂A, μ ∈ (0, 1) , ϒrn−1 /∈ A.

For the simplicity of arguments in the proof, let us denote

U = {ra ∈ {rn} : ra = sa = ϒra−1}
and

Z = {ra ∈ {rn} : ra 
= ϒra−1} .
Note that {rn} ⊂ A for all n ∈ N. Moreover, if ra ∈ Z, then both ra−1 and ra+1 belong to set
U . The sequence {rn} can have consecutive terms ra and ra+1 in set U , but this assertion
is not true for the set Z. First of all we have to prove that

ra 
= ϒra−1 implies ra−1 = ϒra−2.

Suppose contrary that ra−1 
= ϒra−2 then ra−1 ∈ ∂A. Since ϒ (∂A) ⊂ A then ϒra−1 ∈ A.
Hence, ra = ϒra−1 which is a contradiction.
Here, we have three different cases to show that {rn} is Cauchy sequence which are

following:

Case 1. rn, rn+1 ∈ U .
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Since both elements belong to set U , therefore, we have rn = sn = ϒrn−1 and rn+1 =
sn+1 = ϒrn. Hence,

d (rn+1, rn) = d (sn+1, sn) = d (ϒsn,ϒsn−1) ,

where (sn, sn−1) ∈ E (G) by virtue of (23). Therefore, we have

d (ϒsn,ϒsn−1) = d (ϒrn,ϒrn−1) > 0.

Consequently, we get the following inequality

τ + F (d (ϒsn,ϒsn−1)) ≤ F (d (sn, sn−1)) , (24)

by using (21).
Case 2. rn ∈ U , rn+1 ∈ Z.
In this case, we have rn = sn = ϒrn−1, but rn+1 
= sn+1 = ϒrn; therefore, we have

d (rn,ϒrn) = d (rn, rn+1) + d (rn+1,ϒrn) .

The above equality implies d (rn+1,ϒrn) 
= 0 and hence

d (rn, rn+1) = d (rn,ϒrn) − d (rn+1,ϒrn) < d (rn,ϒrn) = d (ϒrn−1,ϒrn) , (25)

since rn ∈ U . By using (25), we obtain

d (rn, rn+1) < d (ϒrn−1,ϒrn) = d (ϒsn−1,ϒsn) > 0.

We can obtain again inequality (24) by using the similar arguments to that in case 1.
Case 3. rn ∈ Z, rn+1 ∈ U .
In this case, we have rn+1 = ϒrn, and rn 
= sn = ϒrn−1. Since rn ∈ Z, so we have

d (rn−1,ϒrn−1) = d (rn−1, rn) + d (rn,ϒrn−1) . (26)

Hence, by triangle inequality

d (rn, rn+1) ≤ d (rn,ϒrn−1) + d(ϒrn−1, rn+1)

= d (rn,ϒrn−1) + d(ϒrn−1,ϒrn)

= d (rn,ϒrn−1) + d(ϒsn−1,ϒsn).

(27)

By virtue of (23) (sn−1, sn) ∈ E (G) , and the following inequality is obtained by the
contraction condition (21)

F (d (ϒsn−1,ϒsn)) ≤ F (d (sn−1, sn)) − τ < F (d (sn−1, sn)) , (28)

which implies

d(ϒsn−1,ϒsn) ≤ d (sn−1, sn) = d (rn−1, rn) . (29)

Thus, by using (26) and (29) in inequality (27), we have

d (rn, rn+1) ≤ d (rn,ϒrn−1) + d(ϒsn−1,ϒsn)

< d (rn,ϒrn−1) + d(rn−1, rn)

= d (rn−1,ϒrn−1) .

By using (23), (rn−2, rn−1) = (sn−2, sn−1) ∈ E (G) and by virtue of contraction condition
(21), we get

d (rn, rn+1) < d (rn−1,ϒrn−1) = d (ϒrn−2,ϒrn−1) ≤ d (rn−2, rn−1) . (30)
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Now, we summarize all the above mentioned three cases. By virtue of (24) and (30), it
follows that the sequence {d (rn, rn+1)} satisfies the inequality

τ + F (max {d (rn−2, rn−1) , d (rn−1, rn)}) ≤ F (d (rn, rn+1)) , (31)

for all n ≥ 2. Denote αn = d (rn, rn+1) for n = 2, 3, · · · .
We obtain the following inequality by simple induction for n ≥ 2, and using (31)

F (αn) ≤ F (max {α0,α1}) −
[n
2

]
τ , (32)

where
[n
2
]
denotes the greatest integer not exceeding n

2 .
Hence, limn→∞ F (αn) = −∞. By the property (f2), we obtain that αn → 0 as

n → ∞. From (f3), there exists k ∈ (0, 1) such that limn→∞ αk
nF (αn) = 0. Denote

γ = max {α0,α1} . By (32), the following holds for all n ≥ 2 :

αk
nF (αn) − αk

nF (γ ) ≤ αk
n

(
F (γ ) −

[n
2

]
τ
)

− αk
nF (γ ) = −αk

n

[n
2

]
τ . (33)

Assuming n → ∞ in (33), we deduce limn→∞
[n
2
]
αk
n = 0. From (33), we observe that

there exists n′ ∈ N such that
[n
2
]
αk
n < nαk

n ≤ 1 for all n ≥ n′. Consequently, we have

αn ≤ 1
n1/k

for all n ≥ n′. (34)

Choosem, n ∈ N such thatm ≥ n ≥ n′ and from (34), we have

d (rm, rn) ≤ αm−1 + · · · + αn <

∞∑

j=n
αn ≤

∞∑

j=n

1
j1/k

.

The convergence of the series
∑∞

j=n
1

j1/k implies that {rn} is a Cauchy sequence, hence
convergent in (S, d,G). Since {rn} ⊂ A and A is closed, {rn} converges to some point
r′ ∈ A, i.e., limn→∞ rn = r′ .
By property (T), there exists a subsequence

{
rsn

}
satisfying

(
rsn , r

′) ∈ E (G) , for all n ∈ N.

Hence, by the F-contraction condition (21), we get

d
(
ϒrsn ,ϒr

′) ≤ d
(
rsn , r

′)
. (35)

Therefore, by triangle inequality, we have

d
(
r

′
,ϒr

′) ≤ d
(
r

′
, rsn+1

)
+ d

(
rsn+1,ϒr

′)

= d
(
r

′
, rsn+1

)
+ d

(
ϒrsn ,ϒr

′)
.

By using (35), the above inequality yields

d
(
r

′
,ϒr

′) ≤ d
(
r

′
, rsn+1

)
+ d

(
rsn , r

′)
, (36)

for all n ≥ 1. Taking limit n → ∞ and using (36), we obtain d
(
r′ ,ϒr′) = 0 and get

r′ = ϒr′ , which shows that r′ is a fixed point of ϒ .
The uniqueness of r∗ immediately follows by the GA F -contraction condition (21).

Remark 3 If we use the mapping F ∈ � defined by the formula F (α) = lnα in
Theorem 3, then for all k ∈ (0, 1) , we obtain the extension of [16, Theorem 3.1].
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Example 4 Let S = R be a Banach space with the usual norm and A = (−∞, 0] is a
closed subset of S. Let the mapping ϒ : A → S be defined as:

ϒr =
{
0 if r ∈ [−1, 0]
0.5 if r ∈ (−∞,−1) .

Let the mapping F ∈ � be given by the formula F (α) = −1√
α
, and the edge set of graph G

and the subgraph GA determined by A is defined as:

E (G) = {(r, s) ∈ S × S : r ≤ s}
and

E (GA) = {(r, s) ∈ A × A : r ≤ s} ,
respectively. It is easy to check that (19) holds, that is,

for all r, s ∈ A (r, s) ∈ E (G)

with ϒr,ϒs ∈ A, implies (ϒr,ϒs) ∈ E (G) ∩ (A × A) .

In view of (19), for t,u ∈ (−∞,−1) and r, s ∈ [−1, 0] , the edges (t,u) , (t, r) has to be
removed and for the rest of edges we have

(ϒr,ϒs) = (0, 0) ∈ E (GA) .

Moreover, G is a weakly connected and for any k ∈ (0.5, 1) , ϒ is a non-self GA

F-contraction on A with τ = 1
√
d (r, s)

, since

d (ϒr,ϒs) = 1
2

<
1
4

× d (r, s) for r ∈ (−∞,−1) and s ∈ [−1, 0] .

(for the rest of edges of E (GA) , the F-contraction condition (21) is obvious, since the quan-
tity in its left hand side is always zero). Property (T) holds with constant sequences {rn = r}
satisfying the property (rn, rn+1) ∈ E (GA) , for all n ∈ N. Rothe’s boundary condition is
also satisfied, as ∂A = {0} and so ϒ (∂A) ⊂ A. Finally, since we have Aϒ = {0} 
= ∅, all
assumptions in Theorem 3 are satisfied and r′ = 0 is the fixed point of ϒ .

Conclusion
In this paper, we have presented the fixed point theorems for self and non-self G, F-
contractions on metric spaces endowed with a graph. These theorems immediately imply
the extension of recently fixed point theorems for self-mappings on metric spaces and
fixed point theorems for non-self mappings in Banach spaces.
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