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Introduction

Proximity is an important concept in topology and it can be considered either as axi-
omatizations of geometric notions, close to but quite independent of topology, or as
convenient tools for an investigation of topological spaces. Hence proximity has close
relations with topology, uniformity and metric. With the development of topology, the
theory of proximity makes a massive progress. In the framework of L-topology, many
authors generalized the crisp proximity to L-fuzzy setting. For example, in [1], Ghanim
et al. introduced the concept of S-quasi-proximities on [0,1]X and in [2], Shi studied
S-quasi-proximities on LX and pointwise S-quasi-proximities. Katsaras [3-5] introduced
quasi-proximity in [0,1]-fuzzy set theory. Subsequently, Liu [6], Artico and Moresco
[7] extended it into L-fuzzy set theory. In recently Yue and Shi extended the proximity
theory of L-topology to L-fuzzy topology, see [8]. As an extension of Katsaras’s defini-
tion, Kim and Min[9] introduced L-fuzzy proximities on strictly two-sided, commutative
quantales L in view points of Hohle fuzzy topology [10, 11]. Thron [12] carried out an
extensive study of proximity structures with grills playing a central role.

In this paper, we introduce more properties of L-fuzzy pre-proximities , L-fuzzy grills
and L-fuzzy filters. Moreover, we investigate the relations among the L-fuzzy pre-prox-
imities , L-fuzzy grills and L-fuzzy filters. We show that there is a Galois correspondence
between the category of separated L-fuzzy grill spaces and that of separated L-fuzzy
pre-proximity spaces. We introduce the local function associated with L-fuzzy grill and
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L-fuzzy topology and study some of its properties. Finally, we build an L-fuzzy topology
for the corresponding L-fuzzy grill by using local function.

The content of the paper is organized as follows. In Sect. 2, we recall some fundamental
concepts and related definitions of L-fuzzy closure operators, L-fuzzy interior operators,
L-fuzzy pre-proximities , L-fuzzy grills and L-fuzzy filters . In Sect. 3, we investigates
the relations among the L-fuzzy pre-proximities and L-fuzzy grills. In Sect. 4, we inves-
tigates the relations among the L-fuzzy pre-proximities and L-fuzzy filters. In Sect. 5,
there is a Galois correspondence between the category of L-fuzzy pre-proximity spaces
and that of L-fuzzy grill spaces. In Sect. 6, we introduce the local function associated
with L-fuzzy grill and L-fuzzy topology and study some of its properties. Also, we build
an L-fuzzy topology for the corresponding L-fuzzy grill by using local function.

Preliminaries

Throughout the text we consider (L, <, V, A) (or L in short) as fixed complete lattice, that
is a lattice in which the suprema (joins) and infima (meets) for all subfamilies K € L
exist. In particular, the top T and the bottom L elements in L exist and T 7# L. We use
notation V and A to denote, respectively, infima and suprema of finite families of the
elements of the lattice having notation \/ and ) for the case when these families are arbi-
trary. We will additionally request the lattice L to be completely distributive, that is satis-
fying the first infinite distributive law of finite meets over arbitrary joins:

x A \/y,- = \/(x/\yi), Vx,y; € L.
iel’ iel’

Ifa<borb <a,foreacha,b € L, then L is called a chain. A lattice L is called an order
dense chain if for each a, b € L such that a < b, there exists ¢ € L such thata < ¢ < b.

Definition 2.1 [13-16] An implicator on a lattice L is a mapping —:L XL — L

definedbyx — y=\/{z € L | x Az <y}, such that:

1

2) fy<zthenx > y<x—zandz > x <y — x,

Tox=x,x— T =Tand L - x=T,

)
)
3y x<yiffx >y=Tandx Ay <ziffx <y — zforx,y,z €L,

) x—> A= —=>NAx—>2andxVy) > z=x —> 2) Ay — 2),
5)

6) xAN(x >y)<yandy<x—> (x Ay)and (x > y) —> y > x,
NeE—>1)—>@—>L=y>uz

8) x A\y=x—> (@y—> 1) > Landxvy=x—> 1) >y

@Ay mz=x—> @ —>2=y—> x—>2),

(
(
(
(
(
(
(
(

From (7) and (1) we have the following important double negation property:

x—>1)—> L=uw

Thus x — L is an order-reversing involution on L and in the following we write
x* =x — L. Referring to the properties of the implicator we see that De Morgan laws
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hold in the lattice with involution (L, <, V, A,* ) determined by an implicator. In what fol-
lows (L, <, V, A, =) is a complete lattice endowed with an implicator.

For «ac€l,felX, we denote (¢ — f),(@Af) and ay eILX as
(@ = Hx) =a = fx), (@ Af)(x) =a Af(x),and ax(x) = a,

_ T ify=x w0 L ify=ux
Tx() = { 1, otherwise, Tx0) = { T, otherwise.

A fuzzy point x, fort € L, = L — {L}is an element of L such that, for y € X:

_Jt if o x=y
"f(y)—{L, if X #y.

The set of all fuzzy points in X is denoted by Pt(X).

Definition 2.2 [12]A map G : LX — L is called an L-fuzzy grill on X if G satisfies the
following conditions for all f,g € L*:

LGl G(lx)=L16(Tx) =T,
LG2 If f <g,thenG(f) < G(9),
LG3 G(fve <G viG.

The pair (X, G) is called an L-fuzzy grill space. An L-fuzzy grill space is called:

(1) Stratified if G(a — f) <a — G(f)forall f € LXand« € L.
(2) Separatedif G(T}) = L, forallx € X.
(3) Alexandroffif G(\/;crfD) = Vier G(f), Vifi 1 i € T} € LY.

Let (X, Gx) and (Y, Gy) be L-fuzzy grill spaces. ¢ : (X,Gx) — (Y,Gy)is called an LF-grill
map if, for each f € LY, Gx (¢ (f)) < Gy (f).

Definition 2.3 [11, 17] A mapping C : L* — L is called an L-fuzzy closure operator
on X if C satisfies the following conditions: for all f,g € LX

ClC(Lx) = Lx,

C20(h) = f,

C3if f < g, then C(f) < C(g),
CAC(f v g) < C(f) vC(9).

The pair (X, C) is called an L-fuzzy closure space.
A L-fuzzy closure space (X, C) is called:

(1) Topological if C(C(f)) = C(f),

(2) stratified if C(a A f) > a AC(f), foralla € L,

(3) separatedif C(T}) = T} foreachx € X,

(4) Alexandrov if C(\,crf;) = Vier C(fi) for each subfamily {f; : i € I'} € LX,
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(5) symmetric if C(T4)(y) = C(T)(x) for each y € X,

A mapping ¢ : (X,Cx) — (Y,Cy) between two L-fuzzy closure spaces is called LF-clo-
sure map if < (Cy (h)) > Cx (¢ (h)) for eachh € LY.

Definition 2.4 [11] A map F : L — L is called an L-fuzzy filter on X if F satisfies the
following conditions for all f,g € LX:

LF1 F(lx)=L1LF(Tx)=T,
LE2 if f <g,then F(f) < F(g),
LE3  F(f Ag) = F() AF(g).

The pair (X, F) is called an L-fuzzy filter space. An L-fuzzy filter space is called:

(1) Stratified if F(a Af) > a A F(f)forall f € [*anda € L.
(2) Separatedif F(T,) =T, forallx € X.
(3) Alexandroff if F(\;cp fi) = Nier F ().

Let (X, Fx) and (Y, Fy) be L-fuzzy grill spaces. A mapping ¢ : (X,Gx) — (¥, Gy) is
called an LF-filter map if, for each f € LY , Fx(¢ () = Fy(f).

Definition 2.5 [11, 16, 18] A mapping Z : L* — L% is called an L-fuzzy interior opera-
tor on X if Z satisfies the following conditions for all f,g € LX:

1 I(Tx) = Tx

2 I() < f,

13 if f < g, then Z(f) < Z(g),
4 I(f Ag) = Z(f) NI(Q).

The pair (X, Z) is called an L-fuzzy interior space.
An L-fuzzy interior space (X, Z) is called:

(1) Topological if Z(Z(f)) = Z(f),

(2) stratified if Z(ax A f) = a AZ(f),

(3) separated if Z(T,) = T, foreachx € X,

(4) Alexandrov if Z(\;cpf)) = A;er Z(f;) for each subfamily {f; : i € '} € LX.

A mapping ¢ : (X,Zx) — (Y,Zy) between two L-fuzzy interior spaces is called LI-
map if ¢~ (Zy (h)) < Ix(¢p(h))foreachh e LY.

Lemma 2.6 Let F:LX — Land G :L* — L be two maps. For all f € LX and « € L,
the following statements are equivalent

(1) GlaAf) =anG(f) (resp., Fla Af) = a AF(f)),
(2) Gla@ = f) <a— G(f) (resp., Fla — f) < a = F(f)).
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Definition 2.7 [9] A mapping 8 : LX x LX — Lis called an L-fuzzy pre-proximity on X
if it satisfies the following axioms.

P16(Tx, Lx) =48(Lx, Tx) = L,

P25(f,8) = Vyex(f A @),
P3If fi < fo,h1 < hy, then 8(f1, 1) < 8(f, h2),
P4 For every fi,f2,h1,h2 € L, we have

§(fi Afa, i Vv ha) < 8(fi, ) Vv 8(fa, ha),

81V fa, i A ha) < 8(f1,h1) Vv é(fa, ha).

The pair (X, §) is called an L-fuzzy pre-proximity space.
An L-fuzzy pre-proximity is called stratified if the following hold:

Sanf,g) =aAd(f,g)ands(f,a Ag) = a AS(f,g2).

An L-fuzzy pre-proximity § is called separated if 8(T,, TE) = 8(T%, T,) = L for each
x € X.

An L-fuzzy pre-proximity is called Alexandroff if

(AL) 8(Vierfi8) = Vier 8,8, 8(f, Vier &) = Vier (> 8-

Let (X,8x) and (Y,8y) be two L-fuzzy pre-proximity spaces. A mapping
¢ (X,8x) — (Y,8y)is said to be L- pre-proximity map if

Sx(6= (9" (@) =8v(f,9).

Lemma 2.8 An L-fuzzy pre-proximity &8 is stratified if and only if
S = f,9) <a— 8(f,9)ands(f,a - g) <a — 3(f,2).

Definition 2.9 [19, 20], A mapping 7 : LX — L is called an L-fuzzy topology on X if it
satisfies the following conditions:

LOl T(ly)=T(Tx) =T,
LO2 T(f Afp) =T (i) AT (), for each fi,f; € L%,
LO3 T (VerfD) = Nier T (f), for each {fi}ier < L%

The pair (Y, 7) is called an L-fuzzy topological space.
The relationships between L-fuzzy pre-proximities and L-fuzzy grills

Now, let § be an L-fuzzy pre-proximity, we can identify the relation §; on LX with the
mapping Jy : LX — L such that
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_ 5(f;g)» lfg#TXx
‘Sf(g)—{T, if g =Ty,

It is clear that 7 is L-fuzzy grill.
Let P(X) and G(X) be the families of all L-fuzzy pre-proximities and L-fuzzy grills on
X, respectively.

Theorem 3.1 For the mapping H : P(X) x G(X) — G(X) defined as follows:

HE9DN = N\ (3¢9 V().

gelX

We have the following properties:

(1) H(S,9) € G(X),

(2) G <H(E,9),

(3) H(6,5¢) = 5,

(4) If§ and G are stratified and Alexandrov, then H (8, G) is stratified and Alexandrov.

Proof (1) (LG1)

HE,H (L) = N\ (5(lx,9) vGlx) =1,
gelX
HEO(T0 =\ (8(Txe) VG(Tx)=T.

gelX
(LG2) Easily proved.
(LG3) Let f,g € L*. Then we have
HEODf Vi = 60V VG v )

= /\geLx (B(f,9) v 8hg) v (G(f) v G(h)))

= /\geLX ((S(f,g) vVG(f) Vv (sthg v g(h)))
=M, () v HE, G)(h).

(2) It is clear from the definition.
(3) From (2), H(3,37) > 8¢, we need show that H (3, 37) < &f.

HE, 800 =\, (3o v @)

< N\,opx 018 vV 3(£,9))

<8(f,8) Vi(f,9)
=38(f,g) = 5.

(4) Leta € Land f e LX.If §and G are stratified, then we have
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HE G @A) =\ (6@ nf.9) v Gl n)
> N\yepr (@ AOF.0) v (@ A G())

=aA /\geLx (8,2 VG()
=a AHEG, ().

Thus, H(8, G) is stratified.

Let{f; : i € '} C L. If §and G are Alexandrov, then we have

H(‘S, g) (\/,Erﬂ) - /\geLX <5 (\/ielﬁ’g) v g(\/zerfl))
[ \gerx (\/iera(ﬂ’g) v \/,.Erg(fi))
- \/ieF/\geLx (S(ﬂ’g) v g(ﬂ))
=\ HEO.

Thus, H(8, G) is Alexandrov. O

Theorem 3.2 Let G be L-fuzzy grill on X. Define a map Cg : L — LX by
Co(f)®) =f(x) VG(), ¥f e ¥ xeX.

Then we have the following properties.

(1) (X,Cg)is an L-fuzzy closure space
(2) IfG is stratified, then Cg is stratified.
(3) IfG is separated (resp., Alexandrov), then so is Cg.

Theorem 3.3 Let C be L-fuzzy closure operator on X. Define a map Ge : LX — L by

Ge(f) =\ CH), Vf eLl* xeX.

xeX

Then we have the following properties.

(1) (X,Ge)isan L-fuzzy grill space with Ge () > f (%),
(2) If Cis stratified, then G is stratified.

(3) IfC is separated (resp., Alexandrov), then so is Ge,
(4) Geg = GandCg, > C.

From the following theorem, we obtain an L-fuzzy pre-proximity induced by an
L-fuzzy grill.

Theorem 3.4 Let (X, G) be an L-fuzzy grill space. Define a map 8g : LX x LX — L by
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8g(f,9) = \/ f@®) AG(g), Yf.gelLX

xeX

such that G(g) > g(x), for all x € X. Then we have the following properties.

(1) 8g is an L-fuzzy pre-proximity.

(2) IfG is a stratified, then so is 8g.

(3) IfG is separated, then 8¢ is separated.

(4) IfG is Alexandroff, then 8g is Alexandroff.

Proof (1) (P1) Since G(Lx) = Lxand G(Tx) = Tx, we have

3g(Tx, ) =\ _ (Tx®) AG(Lx) =L
So(Ln, Ty =\ _ (Lx@) AG(Tx)) =L

(P2) Since G(f) > f(x),Vx € X, we have

Sgf9) =\ _ @ A G@)
=\ @ rg@).

(P3)If f < fiand g < g1, then G(g) < G(g1). Thus,

Sf9) =\ _ @ A G@)
<V, (i A G@)
=68g(f1,&1).

(P4) For every fi,f2,81,2 € LX, we have

Sa(fign) v 8o () = (\/_ (i@ A Ge) v (\_ (b A G@)
=V (A@ A GED) v (h(0) A G(g)
=V _ (A@ A £@) A G@) v G(@)
> \/xeX((ﬁ AR @) A G(gLV &)
=8g(h Nf2, 1V &)

and

V) (X)) AG(gL Ag))
@ V@) A GE) Vv G(E))
(L) AG@E)) V () AG(g2))

HAR@AGE@) v ((he) A G@))
=3g(f1,41) V 8g(f2,82)-

Sgthvharg =\ _,

V(6
\/xeX(
=V,
=V..

Hence, dg is an L-fuzzy pre-proximity on X.
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(2) If G is a stratified, we have
sotfrang) =\/ _ (f@AG@ng)
=V _ @ rang@)

=an\/ _ (@ ArG(@)
=a AN 5g(f,g),

and
Sganf.9) =\ _ (@r)H@ rG@)
V. (@rfe) A G@)

—a A \/xex (fx) A G(©)
=aA 8g(f’g)’

for each, f,g € LXand«a € L.
(3)(To T) = Viex Te) A Go(T) = L.
@
s\ o =\ _ (V&) A ©)

- \/xeX (\/iel“(fi(x) A g(g))>

- \/ieI‘ (\/xex(ﬁ(x) A g(g)))
=\/i€r5g(fi»g),

and

S, viel‘gi) - \/xeX (f(x) a Q(\/iergi))
- \/xGX (f(x) a (\/ier‘g(gi)))
- \/ieF (vxeX(f(x) N g(gl)))
= \/ierfgg(f,gi)

Thus, §¢g is Alexandroff. O

Corollary 3.5 Let (X, G) be an L-fuzzy grill space. Define a map 8g : L* x L* — L by

56(f.9) = \/ €®) A G()), Yf.geL

xeX

such that G(f) > f(x), for all x € X. Then we have the following properties.

(1) 8¢ is an L-fuzzy pre-proximity.
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(2) IfG is a stratified, then so is §g.
(3) If G is separated, then 8¢ is separated.
(4) If G is Alexandroff, then §g is Alexandroff.

The relationships between L-fuzzy pre-proximities and filters
Now, let § be an L-fuzzy pre-proximity, we can identify the relation 7 on LX with the
mapping Fy : LX — L such that

_ 1&g it g# Ly
}—f(g)_{L, if ¢ = Ly,

It is clear that F; is L-fuzzy filter.
Let 7 (X) be the family of all L-fuzzy filters on X.

Theorem 4.1 For the mapping H : P(X) x F(X) — F(X) defined as follows:

HE P =\ (8" @S5 A F ().

gelX

Then we have the following properties:

(1) H@G,F) € FX),

(2) H, Fy) < Fp,

(3) H(, Fy) = Fy,

(4) If8 and F are stratified, then H (S, F) is stratified.

Proof (1) (LF1) H(8, F)(Lx) = Vyerx (8% Tx) A F(Lyx)) = L,
HGF)(Tx) = Vyerx (8% Lx) AF(Tx)) =T.
(LF2) Easily proved

(LE3) Let f,g € LX. Then we have

HE P AR = \/geLX (8" @ f* VY NF(f AR))
z \/gELX ((8*(@.f*) A8 (@, 1) A (F(f) A F(h)))

=V (G @S AF () A @ %) 7 F i)
=H(S, F)(f) AHS, F)(h).

(2) It is clear from the definition

(3) From (2), H($, F¢) < Fr, we need show that H(8, Fr) > Fy.
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HEF@ =\, . (67" A Fr (@)

= \/heLx (8%(h,g*) A 8*(f,g"))
>8"(f,g) A8 (f,g")
=8"(f,g") = 75 (@

(4) Leta € Land f € LX. Then we have ,by Lemma 2.8,
HEG, F)a Af) = \/gdx (5*(g, (@ ASY) A Fla Af))
=\ o (@AS @D A @A F()

=an\ 6@ AF ()
=a AHEG, F)().

Theorem 4.2 Let F be an L-fuzzy filter on X. Define a map Tr : L — LX by
Ir(f)(x) = f(x) A F(f), ¥f € LX,x e X.

Then we have the following properties.

(1) (X,ZF)is an L-fuzzy interior space
(2) If F is stratified, then Tr is stratified.
(3) If F is separated (resp., Alexandrov), then so is Tx.

Theorem 4.3 Let T be an L-fuzzy interior operator on X. Define a map Fr : LX — L by

Fr)= NI(Hw), ¥f e X xeX.

xeX

Then we have the following properties.

(1) (X, Fp)is an L-fuzzy filter space with Fr(f) < f(x),
(2) IfZ is stratified, then Fr is stratified.
(3) If T is separated (resp., Alexandrov), then so is Fr,
(4) Frp <Fandlr, <1I.

Theorem 4.4 Let F be an L-fuzzy filter on X. Define a map 87 : LX x LX — L by

5(f,9) = \/ f@) A F*(g") Vf,g e IX.

xeX

such that F(f) < f(x),Vx € X. Then, we have the following properties:

(1) 85 is an L-fuzzy pre-proximity,
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2) If F is a stratified then, so is S r ,

3) F = Fsp

4) If F is separated, then § r is separated,

5) If F is Alexandrov, then §  is Alexandrov.

(
(
(
(
Proof (1) (P1) Since F(Lx) = Lxand F(Tx) = Tx, we have

8r(Too Lo =\ _ (Tx) AF*(LE) = L.

87l Tx) =\ _ (x) A F*(TH) = L.
(P2) Since F(g) < g(x),Vx € X, we have

37,9 =\ _ @ AF g

=\ @ Ag@).

(P3)If g < g1, f < fi,then F*(g*) < F*(g{). Thus,

3r(f,0) =\ @ AF g

<V, @ A F @)
=38r(f1,81)-

(T) For flrf%glrg2 S LX:

Sr(fign) v ortg) =\ (i) AF @)V _ (he) A F* @)
=V A@ AL@) A FH @) v FHg))

=\ i) A L@ A F (g1 v g2)*)
=8r(i Afog1V ).

Hence, § 7 is an L-fuzzy pre-proximity.
(2) If F is a stratified, by Lemma 2.6, we have F* (o — f*) > a A F*(f*).
Thus,

Sf(f’a /\g) Z\/xeX(f(x) A\ _7:*(0[ — g*))
Z\/xex(f(x) Aa A F*(g")

=a A \/xeng(x) A F*(g")
=a A (f, Q).

(3) It is trivial.
(4) Let F be separated. Then,

8F(T2 T7) = Vieex (Tz(0) A FH(T) () = L.
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(5) It is easily proved from definitions. [J

Example 4.5 (1) Define C; : LX — LX as C1(f)(x) = Viexf ) and Gi LX > L as
Gi1(f) = V,exf ®). Hence Cy is L-fuzzy closure operator on X and G is L-fuzzy grill on
X. Since C1(T}) = Txand Gi(T%) = Tx, Ci and G; and are not separated. Theorems 3.2
and 3.3, C’gcl > C;and gcgl > G;. By Theorem 3.4, we have

bg, (.9 =\ @ A Gi@)
=V, @ A g0,
(2) Define Cy : LX — L% as Co(f)(x) = f(x) and G : LY — L as Go(f) =f, then C; is
L-fuzzy closure operator on X and G, is L-fuzzy grill on X. Since C2(T})(x) = T and

Go(T%) = Tk = L, then Cp and G, are separated. From Theorems 3.2 and 3.3, Cgc2 >C1
and gcg2 > Gi. By Theorem 3.4, we have

36,01,8) =\, () A Ga())

=V __ @ Ag@).
(3) Define 77 : LY — L as 71 (f) (x) = Nyexf ) and Fr LY — Las Fi(f) = Asexf @)
Hence 7; is L-fuzzy interior operator on X and F; is L-fuzzy filter on X. Since

T1(Tx) = Lxand F1(T4) = L, Z; and Fj are not separated. By Theorems 4.2 and 4.3 we
obtain 7. Fr, < 77 and ‘7:1?1 < Fi. By Theorem 4.4, we have

3r ) =\, _ @ A F5E)
= \/x,yex(f(x) AgW)).
(4) Define 7, : LX — LX as To(f)(x) = f(x) and F» : LX — L as Z5(f) = f(x). Hence, I,

is L-interior operator on X and JFy is L- fuzzy filter. Since Zo(T,) = Tyand Fo(T,) =T,
1, and F are separated. By Theorem 4.4, we obtain L-fuzzy preproximities §7, as

79 =\, _ @ A FED)
=V, ) A gt

Galois correspondences

Theorem 5.1 Let (X,Gx) and (Y, Gy) be L-fuzzy grill spaces and ¢ : X — Y be a map.
If amap ¢ : (X,Gx) = (Y,Gy) is an LF-grill map, then ¢ : (X,Cgy) — (Y,Cg,) is an
LF-closure map.

Proof For each f € LY, we have
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Cox (@~ (M@ =0~ (H (%) Vv Gx (9™ ()
<o () v Gy (f)
=f(px) VvV Gy(f) =Cgy, (f)(d(x))
=¢" (Cgy () ).

O
Theorem 5.2 Let (X,Cx) and (Y,Cy) be L-fuzzy closure spaces and ¢ : X — Y be a

map. If a map ¢ : (X,Cx) — (Y,Cy) is an LF-closure map, then ¢ : (X, Gey) — (Y, Gey)
is an LF-grill map.

Proof For each f € LY, we have

Gex @M =\ __ Cx@~ (M)
<V, ¢ Crimne
=V ey YN @)
< gCy (f)
d
Theorem 5.3 Let (X, Fx) and (Y, Fy) be L-fuzzy filter spaces and ¢ : X — Y be a map.

If a map ¢ : (X,Gx) — (Y,Gy) is an LE-filter map, then ¢ : (X,Lry,) — (Y,IF,)is an
LF-interior map.

Proof Foreach f € LY, we have

Try (@ (@) =0~ (Hx) A Fx (¢~ (f))
> () @) A Fy(f)
=f(@@®) AFy () =Zr, () (P (%))
=90~ Tx ().

O
Theorem 5.4 Let (X,Zx) and (Y,Zy) be L-fuzzy interior spaces and ¢ : X — Y be a

map. Ifamap ¢ : (X,Ix) — (Y,1Ly)isan LF-interior map, then ¢ : (X, Fz,) — (Y, Fzy)
is an LF-filter map.

Proof Foreach f € LY, we have
Fr@ =N _ Ix@" (M)

=\, T (H@

=\, Lr(N@)
=Fzy ().
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Theorem 5.5 Let (X, Gx) and (Y, Gy) be L-fuzzy grill spaces and ¢ : (X,Gx) — (Y, Gy)
be an LF-grill map. Then ¢ : (X,8gy) — (Y,8g,) is an LE-proximity map.

Proof Since Gx (¢ (g)) < Gy(g), we have

Sox @ (1,0 @) =\ _ (67 () A Gx(@“ (@)
<V, f@@) A Gr @)
=\, F® A Gr@e)
=dg, (f,9)-

O

Theorem 5.6 Let (X,Fx) and (Y,Fy) be L-fuzzy filter spaces and
¢ (X, Fx) — (Y, Fy) be an LF-filter map. Then ¢ : (X,85,) — (Y,85,) is an LF- prox-
imity map.

Proof Since Fy(f) < Fx(¢(f)), we have

3@ (@ =\ (67 N@AFR@G ()
<V, F@e) A Fiegh)
=V, 0 AFi @)
=7, (f,2)

O

Definition 5.7 [21, 22] Suppose that F: D — C, G : C — D are concrete functors.
The pair (F, G) is called a Galois correspondence between C and D if for each Y € C,
idy : FoG(Y) — Y is a C-morphism, and for each X € D, idy : X > GoF(X)isa D
-morphism.

If (F, G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or
equivalently that G is a right adjoint of F.

The category of separated L-fuzzy closure spaces with LF-closure mappings as mor-
phisms is denoted by SCS.

The category of separated L-fuzzy interior spaces with LF-interior mappings as mor-
phisms is denoted by SIS.

The category of separated L-fuzzy filter spaces (resp. separated L-fuzzy grill spaces) with
L-filter mappings (resp. L-grill maps) as morphisms is denoted by SFF (resp. SFG).

From Theorems 3.2 and 5.1, we obtain a concrete functor Y : SFG — SCS defined as

T(X,0) = (X,Cg), Y (¢) = ¢.
From Theorems 3.2 and 5.2, we obtain a concrete functor 2 : SCS — SFG defined as

QX,C) = (X,Gc), 2(9) = ¢.
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Theorem 5.8 € :SFG — SFG is a left adjoint of Y : SGS — SEC, i.e., (T,Q) is a

Galois correspondence.

Proof By Theorem 3.3(4), if Gx is an separated L-fuzzy grill on
a set X, then TY(Q(Gx)) = gch > Gx. Hence, the identity map
idx : (X,Gx) = (X,Gcy) = (X, Y(2(Fx))) is an LF-closure map. Moreover, if Cy is a
separated L-fuzzy closure on a set Y, by Theorem 3.3(4), 2 (Y (Cy)) = CgCY > Cy. Hence
the identity map idy : (Y, gcgy) — (Y,8y) is LF-closure map. Therefore (Y, ) is a
Galois correspondence.

From Theorems 4.2 and 5.3, we obtain a concrete functor ® : SFS — SFI defined as
OWX,F) =X, Zr),0() = ¢.
From Theorems 4.3 and 5.4, we obtain a concrete functor I' : SFI — SFF defined as
X, 7) = (X,Zr),T'(¢) = ¢.
O

Theorem 5.9 T : SFF — SFl is a left adjoint of ® : SFI — SFF, i.e., (®,1") is a Galois

COVV@SPOI’Id@VlC@.

Proof By  Theorem 4.3(4), if Fx is a  separated L-fuzzy fil-
ter on a set X, then O (Fx)) = ngX < Fx. Hence, the identity map
idy : (X, Fx) = (X, ngX) = (X,0('(Fx))) is an LF-filter map. Moreover, if 8y is a
separated L-fuzzy preproximity on a set Y, by Theorem 4.3(4), '(®(Zy)) = I]:Iy <Zy.
Hence the identity map idy : (Y, T'(®(Zy))) — (Y,Zy) is an LF-interior map. Therefore
(®,T) is a Galois correspondence. [

L-fuzzy grill fuzzy topological space
In this section, we assume that L is an order dense chain. Let
Tx,r)={gelX :xeg,T(Q >r)

Definition 6.1 Let (X, 7T) be an L-fuzzy topological space and G be an L-fuzzy grill on
X. Then, the triplet (X, 7, G) is called an L-fuzzy grill fuzzy topological space.

Definition 6.2 Let (X,7,G) be an L-fuzzy grill fuzzy topological space. The operator
&g 7 : LX x Ly — LX which defined by:

Sg7(f,r) = \/ {5 € P,(X): G(f Ag) > r,foreachg € T (xz,1) }

is called the local function associated with L-fuzzy grill G and L-fuzzy topology 7, sim-
ply we denote it by Og(f,7).

Theorem 6.3 Let (X,7T) be an L-fuzzy topological space. Then the following statements
hold.
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(1) If G is an L-fuzzy grill on X, then ®g is an increasing function; in the sense that f < g
implies g (f,r) < Og(g, 7).

(2) If G1 and Gy are two L-fuzzy grills on X with G < G, then ®g,(f,r) < ®g,(f,r),
vfelX,relL,.

(3) For any L-fuzzy grillGon X, if G(f) = L, then ®g(f,r) = Lx,Vr e L.
Proof ltis clear. U

Theorem 6.4 Let (X,7,G) be an L-fuzzy grill fuzzy topological space. Then for all
f,g € L*, we have:

(1) Pg(f vg,r)=dg(f,r)Vv dg(g,r),rely.
(Z)CDQ(q)g(f,”)rr) =< q’g(fﬂ’) = CT(q)g(f;f),’”) =< C’T(f;r)»r ELL«
Proof (1) Itis clear.

(2) If x & Cr(f,r), then there exists g € 7 (x,r) such that g Af = Lx. Then,
Ggnf,r)=G(Lyx) = L. Thus, 2 € Dg(f,r). Therefore, ®g(f,r) < Cr(f,r).

Now, we will show that Cr(®g(f,r),r) < ®g(f,r). Suppose that x; € Cr(Pg(f,r),7),
then for every g € 7 (x;,r) we have g A ®g(f,r) # Lx. Let ys € g A Dg(f,r). Then,
ys € g and y; € ®g(f,r). Since ys € ®g(f,r), then for each i € LX with y; € h and
T (h) = r, we have G(f Ah) > r. Since y; € g and 7(g) > r, we have G(f Ag) >r.
Therefore, x; € ®g(f,r). Thus, Cr(Dg(f,r),r) < ®g(f,r), which implies that,
Cr(Pg(f,r),r) = ®g(f,r). Hence

d’g(q)g(fﬂ”),’”) =< CT(d)g(f,r);r) = qu(f)r) =< CTG;’").

O

Remark 6.5 The following example show that the equality in Theorem 6.4(i) does not
always hold.

Example 6.6 Let X = {a,b,c,d}and L = I. Define an L-fuzzy topology 7 : L* — L on
X by:

T, if f=1x,Tx

3 i f € {Xiap Xiaty)
1, otherwise,

T(f) =

Define an L-fuzzy grill G : LX — L on X by:
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-

if f=Tx
if  f € {Xabep Xiabd)}

it f € Xap)
otherwise,

Gi(f) =

W=

=

Then (X,7,G) is an L-fuzzy grill fuzzy topological space. If f = x4}, & = x(p,cy and
_ 1
r = 7. Then

Og(f,r) vV Pg(g, 1) = Lx < Pg(f V&, 1) = Xape)

Theorem 6.7 Let (X, T,G) be an L-fuzzy grill fuzzy topological space. Define the opera-
toqug— IX x L) — X by:

CL(f,r) =f Vv @g(f, 7).

Then, ng— satisfies the following properties:

1) CH(Lx,r) = Lx, CH(Tx,r) = Tx,VreL,.

@) f<CI(f,r,Nf e X, relL,.

() CL(f,r) < CE(f,s)ifr <s.

(4) Cg’—(f Vg, rAs)< Cg(f,r) Vv C7g—(g,s), r,seL.
(5) CH(CE(f,r),r) = CL(f,r),r e Ly.

Proof 1t is straightforward. O

Theorem 6.8 Let (X,7,G) be an L-fuzzy grill fuzzy topological space. Define the map
Tg : LX — Lby:

() =\/ {r €Ly : CY(f*,r) :f*}.
Then, 1g is an L-fuzzy topology on X.
Proof (LOL1) Itis clear.

(LO2) Suppose that there exist fi,f> € LX such that
1(h A f2) 2 Tg(f) A Tg(fa).

By the definitions of 75(f1) and 7g(f2), there exist r1,rp € L] with Cg—(fl*, r) =f;" and
ng—(fz*, r) = fy such that 7g(fi A fo) # r1 A ro. From Theorem 6.7(4),

CI((fi AS)* 11 AT2) =CE(fE N fifyr1 AT2)
<CE (i, ) v CL(f )
<fivfy
=(fi A

By Theorem 6.7(2), CS.((fi Afo)*,r1 Ara) = (fi Af)*. Then, Tg(fi Afa) = r1 Ay It is
contradiction. Hence, 75 (i A f5) > T5(fi) A Tg(f), YA, o € LX.
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(LO3) Suppose that there exist {f; : i € I'} € L such that:

T\ f) # \ Ta(h.

iel’ iel
Since L is an order dense chain, there exists g € L such that

To(\/f) <ro = \ Ta(fo.

iel iel

Since Acr Zg(f)) = ro. Then Tg(f;) > ro, Vi € T. This implies that: ng—(fi*,ro) =f7
Vi el Let f = \/,.fi- Then, f; <f, Vi e I. Therefore, C5.(f*,r0) < CZ(f*,ro), Vi € I'.
Then

C7(*r0) < \,_.CZ¢7*r0)
- /\ierfi
- (\/ze[fl>
=f*_
Thus, CS(f*,ro) =f* Then, T6\ier f) = 1g(f) = ro, a contradiction. Thus,
T5(Vier /) = Nier To (), for each {f; - i € T} € LX.0

Theorem 6.9 Let (X,7) be an L-fuzzy topological space. Then the following statements
hold.

(1) IfG1and Gy are L-fuzzy grills on X with G1 < G, then 1g, < 1g,.

(2) IfG is an L-fuzzy grill on X and f € LX with G(f) = L, then there exists r € L, such
that Tg(f*) > r.

(3) Forany f € LX,r € L} and for any L-fuzzy grill G on X, Tg((®g (f,7)*) > r.

@) If f e LX,r € Ly with Tg(f*) > r, then ®g(f,r) < f.

Proof (1) Let relL; such that 7g,(f)>r. Then ng—z(f*,r) =f* Thus,
f*v &g, (f*,r) =f* This implies that ®g,(f*,r) <f* By Theorem 6.3(2), we have
Dg, (f*,r) < f*. This implies that f*Vv &g, (f*,r) =f*. Thus, ng—l (f*,r) =f*, which
implies that 7g, (f) > r. Thus, 7g, < 7g,.

(2) Let G be an L-fuzzy grill, » € L and f € LX with G(f) = L. Then by Theorem 6.3(3),
do(f,r) = Lyx. Thus CL(f,r) = f v ®g(f, r) =f. This implies that 75 (f*) > r.

(3) Let f € LX and r € L. For any L-fuzzy grill G on X , we have
CI(DG(f,r),7) = Dg(f,r) V (PG (f,7),7) = Dg(f,r). (by Theorem 6.4(2))

Thus, 7g ((Pg(f,7))*) > r.

(4) Let felX and rel; with To(f*) > r. Suppose that
x; &f = CL(f,r) =f v ®g(f, r), which implies that x; & ®g (f,r). Thus, ®g(f,r) < f.0



Ramadan et al. J Egypt Math Soc (2020) 28:47 Page 20 of 20

Acknowledgements
The authors would like to thank the Editor and anonymous reviewers for their insightful comments and suggestions.

Authors’ contributions
AAR, MAU and AAAE contributes all paper.

Funding
There are no sources of funding for the research

Availability of data and materials
Itis not applicable in our paper.

Competing interests
We have no competing interests.

Author details

! Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt. 2 Department of Mathematics,
Faculty of Science and Arts at Belgarn, University of Bisha, PO. Box 60, Sabt Al-Alaya 61985, Kingdom of Saudi Arabia.

3 High Institute of Computer King Marriott, PO. Box 3135, Alexandria, Egypt.

Received: 7 August 2019 Accepted: 18 September 2020
Published online: 23 October 2020

References

1. Ghanim, MH, Tantawy, O.A,, Selim, EM.: On S-fuzzy quasi-proximity spaces. Fuzzy Sets Syst. 109, 285-290 (2000)

2. Shi,FG.: The category of pointwise S-proximity spaces. Fuzzy Sets Syst. 152, 349-372 (2005)

3. Katsaras, AK: Fuzzy proximity spaces. J. Math. Anal. Appl. 68, 100-110 (1979)

4. Katsaras, AK, Petalas, CG.: A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities. Rev. Roum.
Math. Pures Appl. 28, 845-896 (1983)

5. Katsaras, AK. Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy
proximities. Fuzzy Sets Syst. 36, 375-393 (1990)

6. Liu, W.J.: Fuzzy proximity spaces redefined. Fuzzy Sets Syst. 15, 241-248 (1985)

7. Artico, G, Moresco, R.: Fuzzy proximities and totally bounded fuzzy uniformities. J. Math. Anal. Appl. 9, 320-1337
(1984)

8. Yue,Y, Shi, FG. Generalized quasi-proximities. Fuzzy Sets Syst. 158, 386-398 (2007)

9. Kim,Y.C, Min, K.C.: L-fuzzy proximities and L-fuzzy topologies. Inf. Sci. 173, 93-113 (2005)

10. Hohle, U, Klement, E.P: Non-classical Logic and Their Applications to Fuzzy Subsets. Kluwer Academic Publishers,
Boston (1995)

11. Hohle, U, Rodabaugh, S.E.: Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The Handbooks of
Fuzzy Sets Series 3. Kluwer Academic Publishers, Boston (1999)

12. Thron, W.J:: Proximity structures and grills. Math. Ann. 206, 35-62 (1973)

13. Hajek, P: Metamathematices of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

14. Turunen, E.: Mathematics Behind Fuzzy Logic. A Springer-Verlag Co., Heidelberg (1999)

15. Bélohlavek, R.: Fuzzy Relational Systems. Kluwer Academic Publishers, New York (2002)

16. Rodabaugh, S.E,, Klement, E.P: Topological and Algebraic Structures in Fuzzy Sets. The Handbook of Recent Devel-
opments in the Mathematics of Fuzzy Sets. Kluwer Academic Publishers, Boston (2003)

17. Oh, JM, Kim, Y.C.: L-fuzzy fuzzy closure operators, L-fuzzy topologies and L-fuzzy quasi-uniformities. J. Comput. Anal.
Appl. 24(5), 910-927 (2018)

18. Ramadan, A.A.: On L-fuzzy interior operators and L-fuzzy quasi-uniform spaces. J. Intell. Fuzzy Syst. 30, 3717-3752
(2016)

19. Sostak, AP: On a fuzzy topological structure. Suppl. Rend. Circ. Matem. Palermo?2 Ser Il 11, 89103 (1985)

20. Ramadan, A.A: Smooth topological spaces. Fuzzy Sets Syst. 48, 371-375 (1992)

21. Adémek, J, Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)

22. Zhang, D.: An enriched category approach to many valued topology. Fuzzy Sets Syst. 158, 349-366 (2007)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



	L-fuzzy pre-proximities, L-fuzzy filters and L-fuzzy grills
	Abstract 
	Introduction
	Preliminaries
	The relationships between L-fuzzy pre-proximities and L-fuzzy grills
	The relationships between L-fuzzy pre-proximities and filters
	Galois correspondences
	L-fuzzy grill fuzzy topological space
	Acknowledgements
	References


