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Introduction
Proximity is an important concept in topology and it can be considered either as axi-
omatizations of geometric notions, close to but quite independent of topology, or as 
convenient tools for an investigation of topological spaces. Hence proximity has close 
relations with topology, uniformity and metric. With the development of topology, the 
theory of proximity makes a massive progress. In the framework of L-topology, many 
authors generalized the crisp proximity to L-fuzzy setting. For example, in [1], Ghanim 
et  al. introduced the concept of S-quasi-proximities on [0, 1]X and in [2], Shi studied 
S-quasi-proximities on LX and pointwise S-quasi-proximities. Katsaras [3–5] introduced 
quasi-proximity in [0,1]-fuzzy set theory. Subsequently, Liu [6], Artico and Moresco 
[7] extended it into L-fuzzy set theory. In recently Yue and Shi extended the proximity 
theory of L-topology to L-fuzzy topology, see [8]. As an extension of Katsaras’s defini-
tion, Kim and Min[9] introduced L-fuzzy proximities on strictly two-sided, commutative 
quantales L in view points of Höhle fuzzy topology [10, 11]. Thron [12] carried out an 
extensive study of proximity structures with grills playing a central role.

In this paper, we introduce more properties of L-fuzzy pre-proximities , L-fuzzy grills 
and L-fuzzy filters. Moreover, we investigate the relations among the L-fuzzy pre-prox-
imities , L-fuzzy grills and L-fuzzy filters. We show that there is a Galois correspondence 
between the category of separated L-fuzzy grill spaces and that of separated L-fuzzy 
pre-proximity spaces. We introduce the local function associated with L-fuzzy grill and 
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L-fuzzy topology and study some of its properties. Finally, we build an L-fuzzy topology 
for the corresponding L-fuzzy grill by using local function.

The content of the paper is organized as follows. In Sect. 2, we recall some fundamental 
concepts and related definitions of L-fuzzy closure operators, L-fuzzy interior operators, 
L-fuzzy pre-proximities , L-fuzzy grills and L-fuzzy filters . In Sect.  3, we investigates 
the relations among the L-fuzzy pre-proximities and L-fuzzy grills. In Sect. 4, we inves-
tigates the relations among the L-fuzzy pre-proximities and L-fuzzy filters. In Sect.  5, 
there is a Galois correspondence between the category of L-fuzzy pre-proximity spaces 
and that of L-fuzzy grill spaces. In Sect. 6, we introduce the local function associated 
with L-fuzzy grill and L-fuzzy topology and study some of its properties. Also, we build 
an L-fuzzy topology for the corresponding L-fuzzy grill by using local function.

Preliminaries
Throughout the text we consider (L,≤,∨,∧) (or L in short) as fixed complete lattice, that 
is a lattice in which the suprema (joins) and infima (meets) for all subfamilies K ⊆ L 
exist. In particular, the top ⊤ and the bottom ⊥ elements in L exist and ⊤ �= ⊥. We use 
notation ∨ and ∧ to denote, respectively, infima and suprema of finite families of the 
elements of the lattice having notation 

∨

 and 
∧

 for the case when these families are arbi-
trary. We will additionally request the lattice L to be completely distributive, that is satis-
fying the first infinite distributive law of finite meets over arbitrary joins:

If a ≤ b or b ≤ a , for each a, b ∈ L , then L is called a chain. A lattice L is called an order 
dense chain if for each a, b ∈ L such that a < b , there exists c ∈ L such that a < c < b.

Definition 2.1  [13–16] An implicator on a lattice L is a mapping →: L× L → L 
defined by x → y =

∨

{z ∈ L | x ∧ z ≤ y}, such that: 

(1)	 ⊤ → x = x , x → ⊤ = ⊤ and ⊥ → x = ⊤,

(2)	 If y ≤ z , then x → y ≤ x → z and z → x ≤ y → x,
(3)	 x ≤ y iff x → y = ⊤ and x ∧ y ≤ z iff x ≤ y → z for x, y, z ∈ L,
(4)	 x → (y ∧ z) = (x → y) ∧ (x → z) and (x ∨ y) → z = (x → z) ∧ (y → z),

(5)	 (x ∧ y) → z = x → (y → z) = y → (x → z),
(6)	 x ∧ (x → y) ≤ y and y ≤ x → (x ∧ y) and (x → y) → y ≥ x,

(7)	 (x → ⊥) → (y → ⊥) = y → x,

(8)	 x ∧ y = (x → (y → ⊥)) → ⊥, and x ∨ y = (x → ⊥) → y.

From (7) and (1) we have the following important double negation property:

Thus x → ⊥ is an order-reversing involution on L and in the following we write 
x∗ = x → ⊥. Referring to the properties of the implicator we see that De Morgan laws 

x ∧
∨

i∈Ŵ

yi =
∨

i∈Ŵ

(x ∧ yi), ∀x, yi ∈ L.

(x → ⊥) → ⊥ = x.
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hold in the lattice with involution (L,≤,∨,∧,∗ ) determined by an implicator. In what fol-
lows (L,≤,∨,∧,→) is a complete lattice endowed with an implicator.

For α ∈ L, f ∈ LX , we denote (α → f ), (α ∧ f ) and αX ∈ LX as 
(α → f )(x) = α → f (x), (α ∧ f )(x) = α ∧ f (x), and αX (x) = α,

A fuzzy point xt for t ∈ L⊥ = L− {⊥} is an element of LX such that, for y ∈ X:

The set of all fuzzy points in X is denoted by Pt(X).

Definition 2.2  [12]A map G : LX → L is called an L-fuzzy grill on X if G satisfies the 
following conditions for all f , g ∈ LX : 

LG1	 G(⊥X ) = ⊥ , G(⊤X ) = ⊤,

LG2	 If f ≤ g , then G(f ) ≤ G(g),

LG3	 G(f ∨ g) ≤ G(f ) ∨ G(g).

The pair (X ,G) is called an L-fuzzy grill space. An L-fuzzy grill space is called: 

(1)	 Stratified if G(α → f ) ≤ α → G(f ) for all f ∈ LX and α ∈ L.

(2)	 Separated if G(⊤∗
x) = ⊥ , for all x ∈ X.

(3)	 Alexandroff if G(
∨

i∈Ŵ fi) =
∨

i∈Ŵ G(fi),∀{fi : i ∈ Ŵ} ⊆ LX.

Let (X ,GX ) and (Y ,GY ) be L-fuzzy grill spaces. ϕ : (X ,GX ) → (Y ,GY ) is called an LF-grill 
map if, for each f ∈ LY  , GX (φ

←(f )) ≤ GY (f ).

Definition 2.3  [11, 17] A mapping C : LX → LX is called an L-fuzzy closure operator 
on X if C satisfies the following conditions: for all f , g ∈ LX

C1	C(⊥X ) = ⊥X,
C2	C(f ) ≥ f ,
C3	if f ≤ g , then C(f ) ≤ C(g),
C4	C(f ∨ g) ≤ C(f ) ∨ C(g).

The pair (X , C) is called an L-fuzzy closure space.
A L-fuzzy closure space (X , C) is called: 

(1)	 Topological if C(C(f )) = C(f ),
(2)	 stratified if C(α ∧ f ) ≥ α ∧ C(f ) , for all α ∈ L,

(3)	 separated if C(⊤∗
x) = ⊤∗

x for each x ∈ X,
(4)	 Alexandrov if C(

∨

i∈Ŵ fi) =
∨

i∈Ŵ C(fi) for each subfamily {fi : i ∈ Ŵ} ⊆ LX,

⊤x(y) =

{

⊤, if y = x,
⊥, otherwise ,

⊤∗
x(y) =

{

⊥, if y = x,
⊤, otherwise .

xt(y) =

{

t, if x = y
⊥, if x �= y.
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(5)	 symmetric if C(⊤x)(y) = C(⊤y)(x) for each y ∈ X,

A mapping φ : (X , CX ) → (Y , CY ) between two L-fuzzy closure spaces is called LF-clo-
sure map if φ←(CY (h)) ≥ CX (φ

←(h)) for each h ∈ LY .
Definition 2.4  [11] A map F : LX → L is called an L-fuzzy filter on X if F  satisfies the 
following conditions for all f , g ∈ LX : 

LF1	 F(⊥X ) = ⊥ , F(⊤X ) = ⊤,

LF2	 if f ≤ g , then F(f ) ≤ F(g),

LF3	 F(f ∧ g) ≥ F(f ) ∧ F(g).

The pair (X ,F) is called an L-fuzzy filter space. An L-fuzzy filter space is called: 

(1)	 Stratified if F(α ∧ f ) ≥ α ∧ F(f ) for all f ∈ LX and α ∈ L.

(2)	 Separated if F(⊤x) = ⊤ , for all x ∈ X.
(3)	 Alexandroff if F(

∧

i∈Ŵ fi) =
∧

i∈Ŵ F(fi).

Let (X ,FX ) and (Y ,FY ) be L-fuzzy grill spaces. A mapping ϕ : (X ,GX ) → (Y ,GY ) is 
called an LF-filter map if, for each f ∈ LY  , FX (φ

←(f )) ≥ FY (f ).

Definition 2.5  [11, 16, 18] A mapping I : LX → LX is called an L-fuzzy interior opera-
tor on X if I  satisfies the following conditions for all f , g ∈ LX : 

	I1	 I(⊤X ) = ⊤X,
	I2	 I(f ) ≤ f ,
	I3	 if f ≤ g , then I(f ) ≤ I(g),
	I4	 I(f ∧ g) ≥ I(f ) ∧ I(g).

The pair (X , I) is called an L-fuzzy interior space.
An L-fuzzy interior space (X , I) is called: 

(1)	 Topological if I(I(f )) = I(f ),
(2)	 stratified if I(α ∧ f ) ≥ α ∧ I(f ),
(3)	 separated if I(⊤x) = ⊤x for each x ∈ X,
(4)	 Alexandrov if I(

∧

i∈Ŵ fi) =
∧

i∈Ŵ I(fi) for each subfamily {fi : i ∈ Ŵ} ⊆ LX.

A mapping φ : (X , IX ) → (Y , IY ) between two L-fuzzy interior spaces is called LI-
map if φ←(IY (h)) ≤ IX (φ

←(h)) for each h ∈ LY .
Lemma 2.6  Let F : LX → L and G : LX → L be two maps. For all f ∈ LX and α ∈ L, 
the following statements are equivalent

(1)	 G(α ∧ f ) ≥ α ∧ G(f ) (resp., F(α ∧ f ) ≥ α ∧ F(f )),

(2)	 G(α → f ) ≤ α → G(f ) (resp., F(α → f ) ≤ α → F(f )).
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Definition 2.7  [9] A mapping δ : LX × LX → L is called an L-fuzzy pre-proximity on X 
if it satisfies the following axioms. 

P1	δ(⊤X ,⊥X ) = δ(⊥X ,⊤X ) = ⊥,
P2	δ(f , g) ≥

∨

x∈X (f ∧ g)(x),
P3	If f1 ≤ f2, h1 ≤ h2 , then δ(f1, h1) ≤ δ(f2, h2),
P4	For every f1, f2, h1, h2 ∈ LX , we have 

The pair (X , δ) is called an L-fuzzy pre-proximity space.
An L-fuzzy pre-proximity is called stratified if the following hold:

δ(α ∧ f , g) ≥ α ∧ δ(f , g) and δ(f ,α ∧ g) ≥ α ∧ δ(f , g).

An L-fuzzy pre-proximity δ is called  separated if δ(⊤x,⊤
∗
x) = δ(⊤∗

x ,⊤x) = ⊥ for each 
x ∈ X.

An L-fuzzy pre-proximity is called Alexandroff if

(AL) δ(
∨

i∈Ŵ fi, g) =
∨

i∈Ŵ δ(fi, g),    δ(f ,
∨

i∈Ŵ gi) =
∨

i∈Ŵ δ(f , gi).

Let (X , δX ) and (Y , δY ) be two L-fuzzy pre-proximity spaces. A mapping 
φ : (X , δX ) → (Y , δY ) is said to be L- pre-proximity map if

Lemma 2.8  An L-fuzzy pre-proximity δ is stratified if and only if 
δ(α → f , g) ≤ α → δ(f , g) and δ(f ,α → g) ≤ α → δ(f , g).

Definition 2.9  [19, 20], A mapping T : LX → L is called an L-fuzzy topology on X if it 
satisfies the following conditions: 

LO1	 T (⊥X ) = T (⊤X ) = ⊤,
LO2	 T (f1 ∧ f2) ≥ T (f1) ∧ T (f2) , for each f1, f2 ∈ LX,
LO3	 T (

∨

i∈Ŵ fi) ≥
∧

i∈Ŵ T (fi) , for each {fi}i∈Ŵ ⊆ LX.

The pair (Y , T ) is called an L-fuzzy topological space.

The relationships between L‑fuzzy pre‑proximities and L‑fuzzy grills
Now, let δ be an L-fuzzy pre-proximity, we can identify the relation δf  on LX with the 
mapping δf : LX → L such that

δ(f1 ∧ f2, h1 ∨ h2) ≤ δ(f1, h1) ∨ δ(f2, h2),

δ(f1 ∨ f2, h1 ∧ h2) ≤ δ(f1, h1) ∨ δ(f2, h2).

δX (φ
←(f ),φ←(g)) ≤ δY (f , g).
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It is clear that δf  is L-fuzzy grill.
Let P(X) and G(X) be the families of all L-fuzzy pre-proximities and L-fuzzy grills on 

X, respectively.

Theorem 3.1  For the mapping H : P(X)× G(X) → G(X) defined as follows:

We have the following properties:

(1)	 H(δ,G) ∈ G(X),

(2)	 G ≤ H(δ,G),

(3)	 H(δ, δf ) = δf ,

(4)	 If δ and G are stratified and Alexandrov, then H(δ,G) is stratified and Alexandrov.

Proof  (1) (LG1)

(LG2) Easily proved.

(LG3) Let f , g ∈ LX . Then we have

(2) It is clear from the definition.

(3) From (2), H(δ, δf ) ≥ δf , we need show that H(δ, δf ) ≤ δf .

(4) Let α ∈ L and f ∈ LX . If δ and G are stratified, then we have

δf (g) =

{

δ(f , g), if g �= ⊤X ,
⊤, if g = ⊤X ,

H(δ,G)(f ) =
∧

g∈LX

(

δ(f , g) ∨ G(f )
)

.

H(δ,G)(⊥X ) =
∧

g∈LX

(

δ(⊥X , g) ∨ G(⊥X )
)

= ⊥,

H(δ,G)(⊤X ) =
∧

g∈LX

(

δ(⊤X , g) ∨ G(⊤X )
)

= ⊤.

H(δ,G)(f ∨ h) =
∧

g∈LX

(

δ(f ∨ h, g) ∨ G(f ∨ h)
)

≤
∧

g∈LX

(

(δ(f , g) ∨ δ(h, g)) ∨ (G(f ) ∨ G(h))
)

=
∧

g∈LX

(

(δ(f , g) ∨ G(f )) ∨ (δ(h, g) ∨ G(h))
)

=H(δ,G)(f ) ∨H(δ,G)(h).

H(δ, δf )(f ) =
∧

h∈LX

(

δ(h, g) ∨ δf (g)
)

≤
∧

h∈LX

(

δ(h, g) ∨ δ(f , g)
)

≤ δ(f , g) ∨ δ(f , g)

= δ(f , g) = δf .
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Thus, H(δ,G) is stratified.

Let {fi : i ∈ Ŵ} ⊆ LX . If δ and G are Alexandrov , then we have

Thus, H(δ,G) is Alexandrov. � �

Theorem 3.2  Let G be L-fuzzy grill on X. Define a map CG : LX → LX by

Then we have the following properties.

(1)	 (X , CG) is an L-fuzzy closure space
(2)	 If G is stratified, then CG is stratified.
(3)	 If G is separated (resp., Alexandrov), then so is CG .

Theorem 3.3  Let C be L-fuzzy closure operator on X. Define a map GC : LX → L by

Then we have the following properties.

(1)	 (X ,GC) is an L-fuzzy grill space with GC(f ) ≥ f (x),

(2)	 If C is stratified, then GC is stratified.
(3)	 If C is separated (resp., Alexandrov), then so is GC ,

(4)	 GCG ≥ G and CGC
≥ C.

From the following theorem, we obtain an L-fuzzy pre-proximity induced by an 
L-fuzzy grill.

Theorem 3.4  Let (X ,G) be an L-fuzzy grill space. Define a map δG : LX × LX → L by

H(δ,G)(α ∧ f ) =
∧

g∈LX

(

δ(α ∧ f , g) ∨ G(α ∧ f )
)

≥
∧

g∈LX

(

(α ∧ δ(f , g)) ∨ (α ∧ G(f ))
)

=α ∧
∧

g∈LX

(

δ(f , g) ∨ G(f )
)

=α ∧H(δ,G)(f ).

H(δ,G)(
∨

i∈Ŵ
fi) =

∧

g∈LX

(

δ(
∨

i∈Ŵ
fi, g) ∨ G(

∨

i∈Ŵ
fi)
)

=
∧

g∈LX

(

∨

i∈Ŵ
δ(fi, g) ∨

∨

i∈Ŵ
G(fi)

)

=
∨

i∈Ŵ

∧

g∈LX

(

δ(fi, g) ∨ G(fi)
)

=
∨

i∈Ŵ
H(δ,G)(fi).

CG(f )(x) = f (x) ∨ G(f ), ∀f ∈ LX , x ∈ X .

GC(f ) =
∨

x∈X

C(f )(x), ∀f ∈ LX , x ∈ X .
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such that G(g) ≥ g(x), for all x ∈ X . Then we have the following properties.

(1)	 δG is an L-fuzzy pre-proximity.
(2)	 If G is a stratified, then so is δG .
(3)	 If G is separated, then δG is separated.
(4)	 If G is Alexandroff , then δG is Alexandroff.

Proof  (1) (P1) Since G(⊥X ) = ⊥X and G(⊤X ) = ⊤X , we have

(P2) Since G(f ) ≥ f (x),∀x ∈ X , we have

(P3) If f ≤ f1 and g ≤ g1 , then G(g) ≤ G(g1) . Thus,

(P4) For every f1, f2, g1, g2 ∈ LX , we have

and

Hence, δG is an L-fuzzy pre-proximity on X.

δG(f , g) =
∨

x∈X

(f (x) ∧ G(g)), ∀f , g ∈ LX

δG(⊤X ,⊥X ) =
∨

x∈X
(⊤X (x) ∧ G(⊥X )) = ⊥.

δG(⊥X ,⊤X ) =
∨

x∈X
(⊥X (x) ∧ G(⊤X )) = ⊥.

δG(f , g) =
∨

x∈X
(f (x) ∧ G(g))

≥
∨

x∈X
(f (x) ∧ g(x)).

δG(f , g) =
∨

x∈X
(f (x) ∧ G(g))

≤
∨

x∈X
(f1(x) ∧ G(g1)

= δG(f1, g1).

δG(f1, g1) ∨ δG(f2, g2) =
(

∨

x∈X
(f1(x) ∧ G(g1))

)

∨

(

∨

x∈X
(f2(x) ∧ G(g2))

)

≥
∨

x∈X

(

(f1(x) ∧ G(g1)) ∨ (f2(x) ∧ G(g2))
)

≥
∨

x∈X

(

(f1(x) ∧ f2(x)) ∧ (G(g1) ∨ G(g2))
)

≥
∨

x∈X

(

(f1 ∧ f2)(x) ∧ G(g1 ∨ g2)
)

= δG(f1 ∧ f2, g1 ∨ g2),

δG(f1 ∨ f2, g1 ∧ g2) =
∨

x∈X

(

(f1 ∨ f2)(x) ∧ G(g1 ∧ g2)
)

≤
∨

x∈X

(

(f1(x) ∨ f2(x)) ∧ (G(g1) ∨ G(g2))
)

≤
∨

x∈X

(

(f1(x) ∧ G(g1)) ∨ (f2(x) ∧ G(g2))
)

≤
∨

x∈X

(

(f1(x) ∧ G(g1))
)

∨
∨

x∈X

(

(f2(x) ∧ G(g2))
)

= δG(f1, g1) ∨ δG(f2, g2).
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(2) If G is a stratified, we have

and

for each, f , g ∈ LX and α ∈ L.

(3) δG(⊤x,⊤
∗
x) =

∨

x∈X⊤x(x) ∧ Gδ(⊤
∗
x) = ⊥.

(4)

and

Thus, δG is Alexandroff. �

Corollary 3.5  Let (X ,G) be an L-fuzzy grill space. Define a map δG : LX × LX → L by

such that G(f ) ≥ f (x), for all x ∈ X . Then we have the following properties.

(1)	 δG is an L-fuzzy pre-proximity.

δG(f ,α ∧ g) =
∨

x∈X

(

f (x) ∧ G(α ∧ g)
)

≥
∨

x∈X

(

f (x) ∧ α ∧ G(g)
)

=α ∧
∨

x∈X

(

f (x) ∧ G(g)
)

=α ∧ δG(f , g),

δG(α ∧ f , g) =
∨

x∈X

(

(α ∧ f )(x) ∧ G(g)
)

=
∨

x∈X

(

α ∧ f (x) ∧ G(g)
)

=α ∧
∨

x∈X

(

f (x) ∧ G(g)
)

=α ∧ δG(f , g),

δG(
∨

i∈Ŵ
fi, g) =

∨

x∈X

(

(
∨

i∈Ŵ
fi)(x) ∧ G(g)

)

=
∨

x∈X

(

∨

i∈Ŵ
(fi(x) ∧ G(g))

)

=
∨

i∈Ŵ

(

∨

x∈X
(fi(x) ∧ G(g))

)

=
∨

i∈Ŵ
δG(fi, g),

δG(f ,
∨

i∈Ŵ
gi) =

∨

x∈X

(

f (x) ∧ G(
∨

i∈Ŵ
gi)

)

=
∨

x∈X

(

f (x) ∧ (
∨

i∈Ŵ
G(gi))

)

=
∨

i∈Ŵ

(

∨

x∈X
(f (x) ∧ G(gi))

)

=
∨

i∈Ŵ
δG(f , gi).

δG(f , g) =
∨

x∈X

(g(x) ∧ G(f )), ∀f , g ∈ LX
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(2)	 If G is a stratified, then so is δG .
(3)	 If G is separated, then δG is separated.
(4)	 If G is Alexandroff , then δG is Alexandroff.

The relationships between L‑fuzzy pre‑proximities and filters
Now, let δ be an L-fuzzy pre-proximity, we can identify the relation Ff  on LX with the 
mapping Ff : L

X → L such that

It is clear that Ff  is L-fuzzy filter.
Let F(X) be the family of all L-fuzzy filters on X.

Theorem 4.1  For the mapping H : P(X)× F(X) → F(X) defined as follows:

Then we have the following properties:

(1)	 H(δ,F) ∈ F(X),

(2)	 H(δ,Ff ) ≤ Ff ,

(3)	 H(δ,Ff ) = Ff ,

(4)	 If δ and F  are stratified, then H(δ,F) is stratified.

Proof  (1) (LF1) H(δ,F)(⊥X ) =
∨

g∈LX
(

δ∗(g ,⊤X ) ∧ F(⊥X )
)

= ⊥,

H(δ,F)(⊤X ) =
∨

g∈LX
(

δ∗(g ,⊥X ) ∧ F(⊤X )
)

= ⊤.

(LF2) Easily proved

(LF3) Let f , g ∈ LX . Then we have

(2) It is clear from the definition

(3) From (2), H(δ,Ff ) ≤ Ff , we need show that H(δ,Ff ) ≥ Ff .

Ff (g) =

{

δ∗(f , g∗), if g �= ⊥X ,
⊥, if g = ⊥X ,

H(δ,F)(f ) =
∨

g∈LX

(

δ∗(g , f ∗) ∧ F(f )
)

.

H(δ,F)(f ∧ h) =
∨

g∈LX

(

δ∗(g , f ∗ ∨ h∗) ∧ F(f ∧ h)
)

≥
∨

g∈LX

(

(δ∗(g , f ∗) ∧ δ∗(g , h∗)) ∧ (F(f ) ∧ F(h))
)

=
∨

g∈LX

(

(δ∗(g , f ∗) ∧ F(f )) ∧ (δ∗(g , h∗) ∧ F(h))
)

=H(δ,F)(f ) ∧H(δ,F)(h).
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(4) Let α ∈ L and f ∈ LX . Then we have ,by Lemma 2.8,

� �

Theorem 4.2  Let F  be an L-fuzzy filter on X. Define a map IF : LX → LX by

Then we have the following properties.

(1)	 (X , IF ) is an L-fuzzy interior space
(2)	 If F  is stratified, then IF is stratified.
(3)	 If F  is separated (resp., Alexandrov), then so is IF .

Theorem 4.3  Let I  be an L-fuzzy interior operator on X. Define a map FI : LX → L by

Then we have the following properties.

(1)	 (X ,FI) is an L-fuzzy filter space with FI(f ) ≤ f (x),

(2)	 If I  is stratified, then FI is stratified.
(3)	 If I  is separated (resp., Alexandrov), then so is FI ,

(4)	 FIF ≤ F  and IFI
≤ I .

Theorem 4.4  Let F  be an L-fuzzy filter on X. Define a map δF : LX × LX → L by

such that F(f ) ≤ f (x),∀x ∈ X . Then, we have the following properties:

(1)	 δF  is an L-fuzzy pre-proximity,

H(δ,Ff )(g) =
∨

h∈LX

(

δ∗(h, g∗) ∧ Ff (g)
)

=
∨

h∈LX

(

δ∗(h, g∗) ∧ δ∗(f , g∗)
)

≥ δ∗(f , g∗) ∧ δ∗(f , g∗)

= δ∗(f , g∗) = Ff (g).

H(δ,F)(α ∧ f ) =
∨

g∈LX

(

δ∗(g , (α ∧ f )∗) ∧ F(α ∧ f )
)

≥
∨

g∈LX

(

(α ∧ δ∗(g , f ∗)) ∧ (α ∧ F(f ))
)

=α ∧
∨

g∈LX

(

δ∗(g , f ∗) ∧ F(f )
)

=α ∧H(δ,F)(f ).

IF (f )(x) = f (x) ∧ F(f ), ∀f ∈ LX , x ∈ X .

FI(f ) =
∧

x∈X

I(f )(x), ∀f ∈ LX , x ∈ X .

δF (f , g) =
∨

x∈X

(f (x) ∧ F∗(g∗)) ∀ f , g ∈ LX .
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(2)	 If F  is a stratified then, so is δF  ,
(3)	 F ≥ FδF,
(4)	 If F  is separated, then δF  is separated,
(5)	 If F  is Alexandrov, then δF  is Alexandrov.

Proof  (1) (P1) Since F(⊥X ) = ⊥X and F(⊤X ) = ⊤X , we have

(P2) Since F(g) ≤ g(x),∀x ∈ X , we have

(P3) If g ≤ g1 , f ≤ f1 , then F∗(g∗) ≤ F∗(g∗1 ) . Thus,

(T) For f1, f2, g1, g2 ∈ LX,

Hence, δF  is an L-fuzzy pre-proximity.

(2) If F  is a stratified, by Lemma 2.6, we have F∗(α → f ∗) ≥ α ∧ F∗(f ∗).

Thus,

(3) It is trivial.

(4) Let F  be separated. Then,

δF (⊤z ,⊤
∗
z ) =

∨

x∈X (⊤z(x) ∧ F∗(⊤z)(x)) = ⊥.

δF (⊤X ,⊥X ) =
∨

x∈X
(⊤X (x) ∧ F∗(⊥∗

X )) = ⊥.

δF (⊥X ,⊤X ) =
∨

x∈X
(⊥X (x) ∧ F∗(⊤∗

X )) = ⊥.

δF (f , g) =
∨

x∈X
(f (x) ∧ F∗(g∗))

≥
∨

x∈X
(f (x) ∧ g(x)).

δF (f , g) =
∨

x∈X
(f (x) ∧ F∗(g∗))

≤
∨

x∈X
(f1(x) ∧ F∗(g∗1 ))

= δF (f1, g1).

δF (f1, g1) ∨ δF (f2, g2) =
∨

x∈X
(f1(x) ∧ F∗(g∗1 )) ∨

∨

x∈X
(f2(x) ∧ F∗(g∗2 ))

≥
∨

x∈X
(f1(x) ∧ f2(x)) ∧ (F∗(g∗1 ) ∨ F∗(g∗2 ))

≥
∨

x∈X
(f1(x) ∧ f2(x) ∧ F∗((g1 ∨ g2)

∗))

= δF (f1 ∧ f2, g1 ∨ g2).

δF (f ,α ∧ g) =
∨

x∈X
(f (x) ∧ F∗(α → g∗))

≥
∨

x∈X
(f (x) ∧ α ∧ F∗(g∗))

=α ∧
∨

x∈X
(f (x) ∧ F∗(g∗))

=α ∧ δF (f , g).
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(5) It is easily proved from definitions. �

Example 4.5  (1) Define C1 : LX → LX as C1(f )(x) =
∨

x∈X f (x) and G1 : L
X → L as 

G1(f ) =
∨

x∈X f (x). Hence C1 is L-fuzzy closure operator on X and G1 is L-fuzzy grill on 
X. Since C1(⊤∗

x) = ⊤X and G1(⊤
∗
x) = ⊤X , C1 and G1 and are not separated. Theorems 3.2 

and 3.3, CGC1
≥ C1 and GCG1

≥ G1 . By Theorem 3.4 , we have

(2) Define C2 : LX → LX as C2(f )(x) = f (x) and G2 : L
X → L as G2(f ) = f  , then C2 is 

L-fuzzy closure operator on X and G2 is L-fuzzy grill on X. Since C2(⊤∗
x)(x) = ⊤∗

x and 
G2(⊤

∗
x) = ⊤∗

x = ⊥, then C2 and G2 are separated. From Theorems 3.2 and 3.3, CGC2
≥ C1 

and GCG2
≥ G1 . By Theorem 3.4 , we have

(3) Define I1 : LX → LX as I1(f )(x) =
∧

x∈X f (x) and F1 : L
X → L as F1(f ) =

∧

x∈X f (x) 
Hence I1 is L-fuzzy interior operator on X and F1 is L-fuzzy filter on X. Since 
I1(⊤x) = ⊥X and F1(⊤x) = ⊥ , I1 and F1 are not separated. By Theorems 4.2 and 4.3 we 
obtain IFI1

≤ I1 and FIF1
≤ F1 . By Theorem 4.4 , we have

(4) Define I2 : LX → LX as I2(f )(x) = f (x) and F2 : L
X → L as I2(f ) = f (x). Hence, I2 

is L-interior operator on X and F2 is L- fuzzy filter. Since I2(⊤x) = ⊤x and F2(⊤x) = ⊤ , 
I2 and F2 are separated. By Theorem 4.4, we obtain L-fuzzy preproximities δI2 as

Galois correspondences

Theorem 5.1  Let (X ,GX ) and (Y ,GY ) be L-fuzzy grill spaces and φ : X → Y  be a map. 
If a map φ : (X ,GX ) → (Y ,GY ) is an LF-grill map, then φ : (X , CGX ) → (Y , CGY ) is an 
LF-closure map.

Proof  For each f ∈ LY  , we have

δG1(f , g) =
∨

x∈X
(f (x) ∧ G1(g))

=
∨

x,y∈X
(f (x) ∧ g(y)).

δG2(f , g) =
∨

x∈X
(f (x) ∧ G2(g))

=
∨

x∈X
(f (x) ∧ g(x)).

δF2(f , g) =
∨

x∈X
(f (x) ∧ F∗

2 (g
∗))

=
∨

x,y∈X
(f (x) ∧ g(y)).

δF1(f , g) =
∨

x∈X
(f (x) ∧ F∗

1 (g
∗))

=
∨

x∈X
(f (x) ∧ g(x)).



Page 14 of 20Ramadan et al. J Egypt Math Soc           (2020) 28:47 

� �

Theorem  5.2  Let (X , CX ) and (Y , CY ) be L-fuzzy closure spaces and φ : X → Y  be a 
map. If a map φ : (X , CX ) → (Y , CY ) is an LF-closure map, then φ : (X ,GCX ) → (Y ,GCY ) 
is an LF-grill map.

Proof  For each f ∈ LY  , we have

� �

Theorem 5.3  Let (X ,FX ) and (Y ,FY ) be L-fuzzy filter spaces and φ : X → Y  be a map. 
If a map φ : (X ,GX ) → (Y ,GY ) is an LF-filter map, then φ : (X , IFX ) → (Y , IFY ) is an 
LF-interior map.

Proof  For each f ∈ LY  , we have

� �

Theorem  5.4  Let (X , IX ) and (Y , IY ) be L-fuzzy interior spaces and φ : X → Y  be a 
map. If a map φ : (X , IX ) → (Y , IY ) is an LF-interior map, then φ : (X ,FIX ) → (Y ,FIY ) 
is an LF-filter map.

Proof  For each f ∈ LY  , we have

� �

CGX (φ
←(f ))(x) =φ←(f )(x) ∨ GX (φ

←(f ))

≤φ←(f )(x) ∨ GY (f )

= f (φ(x)) ∨ GY (f ) = CGY (f )(φ(x))

=φ←(CGY (f ))(x).

GCX (φ
←(f )) =

∨

x∈X
CX (φ

←(f ))(x)

≤
∨

x∈X
φ←(CY (f ))(x)

=
∨

φ(x)∈Y
CY (f )(φ(x))

≤GCY (f ).

IFX (φ
←(f ))(x) =φ←(f )(x) ∧ FX (φ

←(f ))

≥φ←(f )(x) ∧ FY (f )

= f (φ(x)) ∧ FY (f ) = IFY (f )(φ(x))

=φ←(IFY (f ))(x).

FIX (φ
←(f )) =

∧

x∈X
IX (φ

←(f ))(x)

≥
∧

x∈X
φ←(IY (f ))(x)

=
∧

x∈X
IY (f )(φ(x))

=FIY (f ).
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Theorem 5.5  Let (X ,GX ) and (Y ,GY ) be L-fuzzy grill spaces and φ : (X ,GX ) → (Y ,GY ) 
be an LF-grill map. Then φ : (X , δGX ) → (Y , δGY ) is an LF-proximity map.

Proof  Since GX (φ
←(g)) ≤ GY (g) , we have

� �

Theorem  5.6  Let (X ,FX ) and (Y ,FY ) be L-fuzzy filter spaces and 
φ : (X ,FX ) → (Y ,FY ) be an LF-filter map. Then φ : (X , δFX ) → (Y , δFY ) is an LF- prox-
imity map.

Proof  Since FY (f ) ≤ FX (φ
←(f )) , we have

� �

Definition 5.7  [21, 22] Suppose that F : D → C, G : C → D are concrete functors. 
The pair (F,  G) is called a Galois correspondence between C and D if for each Y ∈ C, 
idY : F ◦ G(Y ) → Y  is a C-morphism, and for each X ∈ D , idX : X → G ◦ F(X) is a D
-morphism.

If (F, G) is a Galois correspondence, then it is easy to check that F is a left adjoint of G, or 
equivalently that G is a right adjoint of F.

The category of separated L-fuzzy closure spaces with LF-closure mappings as mor-
phisms is denoted by SCS.

The category of separated L-fuzzy interior spaces with LF-interior mappings as mor-
phisms is denoted by SIS.

The category of separated L-fuzzy filter spaces (resp. separated L-fuzzy grill spaces) with 
L-filter mappings (resp. L-grill maps) as morphisms is denoted by SFF (resp. SFG).

From Theorems 3.2 and 5.1, we obtain a concrete functor ϒ : SFG → SCS defined as

From Theorems 3.2 and 5.2, we obtain a concrete functor � : SCS → SFG defined as

δGX (φ
←(f ),φ←(g)) =

∨

x∈X

(

φ←(f )(x) ∧ GX (φ
←(g))

)

≤
∨

x∈X

(

f (φ(x)) ∧ GY (g))
)

≤
∨

y∈Y

(

f (y) ∧ GY (g))
)

= δGY (f , g).

δFX (φ
←(f ),φ←(g)) =

∨

x∈X

(

φ←(f )(x) ∧ F∗
X (φ

←(g∗))
)

≤
∨

x∈X

(

f (φ(x)) ∧ F∗
Y (g

∗)
)

≤
∨

y∈Y

(

f (y) ∧ F∗
Y (g

∗)
)

= δFY (f , g)

ϒ(X ,G) = (X , CG),ϒ(φ) = φ.

�(X , C) = (X ,GC),�(φ) = φ.
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Theorem  5.8  � : SFG → SFG is a left adjoint of ϒ : SGS → SFC , i.e., (ϒ ,�) is a 
Galois correspondence.

Proof  By Theorem  3.3(4), if GX is an separated L-fuzzy grill on 
a set X, then ϒ(�(GX )) = GCGX

≥ GX . Hence, the identity map 
idX : (X ,GX ) → (X ,GCX ) = (X ,ϒ(�(FX ))) is an LF-closure map. Moreover, if CY  is a 
separated L-fuzzy closure on a set Y, by Theorem 3.3(4), �(ϒ(CY )) = CGCY

≥ CY  . Hence 
the identity map idY : (Y ,GCGY

) → (Y , δY ) is LF-closure map. Therefore (ϒ ,�) is a 
Galois correspondence.

From Theorems 4.2 and 5.3, we obtain a concrete functor � : SFS → SFI defined as

From Theorems 4.3 and 5.4, we obtain a concrete functor Ŵ : SFI → SFF defined as

� �

Theorem 5.9  Ŵ : SFF → SFI is a left adjoint of � : SFI → SFF , i.e., (�,Ŵ) is a Galois 
correspondence.

Proof  By Theorem  4.3(4), if FX is a separated L-fuzzy fil-
ter on a set X, then �(Ŵ(FX )) = GIFX

≤ FX . Hence, the identity map 
idX : (X ,FX ) → (X ,GIFX

) = (X ,�(Ŵ(FX ))) is an LF-filter map. Moreover, if δY  is a 
separated L-fuzzy preproximity on a set Y, by Theorem 4.3(4), Ŵ(�(IY )) = IFIY

≤ IY  . 
Hence the identity map idY : (Y ,Ŵ(�(IY ))) → (Y , IY ) is an LF-interior map. Therefore 
(�,Ŵ) is a Galois correspondence. �

L‑fuzzy grill fuzzy topological space
In this section, we assume that L is an order dense chain. Let 
T (xt , r) = {g ∈ LX : xt ∈ g , T (g) ≥ r}.

Definition 6.1  Let (X , T ) be an L-fuzzy topological space and G be an L-fuzzy grill on 
X. Then, the triplet (X , T ,G) is called an L-fuzzy grill fuzzy topological space.

Definition 6.2  Let (X , T ,G) be an L-fuzzy grill fuzzy topological space. The operator 
�G,T : LX × L⊥ → LX which defined by:

is called the local function associated with L-fuzzy grill G and L-fuzzy topology T , sim-
ply we denote it by �G(f , r) .

Theorem 6.3  Let (X , T ) be an L-fuzzy topological space. Then the following statements 
hold.

�(X ,F) = (X , IF ),�(φ) = φ.

Ŵ(X , I) = (X , IF ),Ŵ(φ) = φ.

�G,T (f , r) =
∨

{

xt ∈ Pt(X) : G(f ∧ g) ≥ r, for each g ∈ T (xt , r)
}
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(1) If G is an L-fuzzy grill on X, then �G is an increasing function; in the sense that f ≤ g 
implies �G(f , r) ≤ �G(g , r).

(2) If G1 and G2 are two L-fuzzy grills on X with G1 ≤ G2 , then �G1(f , r) ≤ �G2(f , r) , 
∀f ∈ LX , r ∈ L⊥.

(3) For any L-fuzzy grill G on X, if G(f ) = ⊥ , then �G(f , r) = ⊥X , ∀r ∈ L⊥.

Proof  It is clear. � �

Theorem  6.4  Let (X , T ,G) be an L-fuzzy grill fuzzy topological space. Then for all 
f , g ∈ LX , we have:

(1) �G(f ∨ g , r) ≥ �G(f , r) ∨�G(g , r) , r ∈ L⊥.

(2) �G(�G(f , r), r) ≤ �G(f , r) = CT (�G(f , r), r) ≤ CT (f , r) , r ∈ L⊥.

Proof  (1) It is clear.

(2) If xt  ∈ CT (f , r) , then there exists g ∈ T (xt , r) such that g ∧ f = ⊥X . Then, 
G(g ∧ f , r) = G(⊥X ) = ⊥ . Thus, xt  ∈ �G(f , r) . Therefore, �G(f , r) ≤ CT (f , r).

Now, we will show that CT (�G(f , r), r) ≤ �G(f , r) . Suppose that xt ∈ CT (�G(f , r), r) , 
then for every g ∈ T (xt , r) we have g ∧�G(f , r) �= ⊥X . Let ys ∈ g ∧�G(f , r) . Then, 
ys ∈ g and ys ∈ �G(f , r) . Since ys ∈ �G(f , r) , then for each h ∈ LX with ys ∈ h and 
T (h) ≥ r , we have G(f ∧ h) ≥ r . Since ys ∈ g and T (g) ≥ r , we have G(f ∧ g) ≥ r . 
Therefore, xt ∈ �G(f , r) . Thus, CT (�G(f , r), r) ≤ �G(f , r) , which implies that, 
CT (�G(f , r), r) = �G(f , r) . Hence

� �

Remark 6.5  The following example show that the equality in Theorem 6.4(i) does not 
always hold.

Example 6.6  Let X = {a, b, c, d} and L = I . Define an L-fuzzy topology T : LX → L on 
X by:

Define an L-fuzzy grill G : LX → L on X by:

�G(�G(f , r), r) ≤ CT (�G(f , r), r) = �G(f , r) ≤ CT (f , r).

T1(f ) =







⊤, if f = ⊥X ,⊤X
1
2 , if f ∈ {χ{a},χ{a,b}}
⊥, otherwise,
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Then (X , T ,G) is an L-fuzzy grill fuzzy topological space. If f = χ{a} , g = χ{b,c} and 
r = 1

4 . Then

�G(f , r) ∨�G(g , r) = ⊥X < �G(f ∨ g , r) = χ{a,b,c}.

Theorem 6.7  Let (X , T ,G) be an L-fuzzy grill fuzzy topological space. Define the opera-
tor CG

T : LX × L⊥ → LX by:

Then, CG
T  satisfies the following properties:

(1)	 CG
T (⊥X , r) = ⊥X , CG

T (⊤X , r) = ⊤X , ∀r ∈ L⊥.
(2)	 f ≤ CG

T (f , r) , ∀f ∈ LX , r ∈ L⊥.
(3)	 CG

T (f , r) ≤ CG
T (f , s) if r ≤ s.

(4)	 CG
T (f ∨ g , r ∧ s) ≤ CG

T (f , r) ∨ CG
T (g , s) , r, s ∈ L⊥.

(5)	 CG
T (C

G
T (f , r), r) = CG

T (f , r) , r ∈ L⊥.

Proof  It is straightforward. � �

Theorem 6.8  Let (X , T ,G) be an L-fuzzy grill fuzzy topological space. Define the map 
TG : LX → L by:

Then, TG is an L-fuzzy topology on X.

Proof  (LO1) It is clear.

(LO2) Suppose that there exist f1, f2 ∈ LX such that

By the definitions of TG(f1) and TG(f2) , there exist r1, r2 ∈ L⊥ with CG
T (f

∗
1 , r) = f ∗1  and 

CG
T (f

∗
2 , r) = f ∗2  such that TG(f1 ∧ f2) �≥ r1 ∧ r2 . From Theorem 6.7(4),

By Theorem  6.7(2), CG
T ((f1 ∧ f2)

∗, r1 ∧ r2) = (f1 ∧ f2)
∗ . Then, TG(f1 ∧ f2) ≥ r1 ∧ r2 . It is 

contradiction. Hence, TG(f1 ∧ f2) ≥ TG(f1) ∧ TG(f2),∀f1, f2 ∈ LX .

G1(f ) =















⊤, if f = ⊤X
1
2 , if f ∈ {χ{a,b,c},χ{a,b,d}}
1
3 , if f ∈ χ{a,b}
⊥, otherwise,

CG
T (f , r) = f ∨�G(f , r).

TG(f ) =
∨

{

r ∈ L⊥ : CG
T (f

∗, r) = f ∗
}

.

TG(f1 ∧ f2) �≥ TG(f1) ∧ TG(f2).

CG
T ((f1 ∧ f2)

∗, r1 ∧ r2) =CG
T (f

∗
1 ∨ f ∗2 , r1 ∧ r2)

≤CG
T (f

∗
1 , r1) ∨ CG

T (f
∗
2 , r2)

≤ f ∗1 ∨ f ∗2
= (f1 ∧ f2)

∗.
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(LO3) Suppose that there exist {fi : i ∈ Ŵ} ⊆ LX such that:

Since L is an order dense chain, there exists r0 ∈ L⊥ such that

Since 
∧

i∈Ŵ TG(fi) ≥ r0 . Then TG(fi) ≥ r0 , ∀i ∈ Ŵ . This implies that: CG
T (f

∗
i , r0) = f ∗i  , 

∀i ∈ Ŵ . Let f =
∨

i∈Ŵ fi . Then, fi ≤ f  , ∀i ∈ Ŵ . Therefore, CG
T (f

∗, r0) ≤ CG
T (f

∗
i , r0) , ∀i ∈ Ŵ . 

Then

Thus, CG
T (f

∗, r0) = f ∗ . Then, TG(
∨

i∈Ŵ fi) = TG(f ) ≥ r0 , a contradiction. Thus, 
TG(

∨

i∈Ŵ fi) ≥
∧

i∈Ŵ TG(fi) , for each {fi : i ∈ Ŵ} ⊆ LX . �

Theorem 6.9  Let (X , T ) be an L-fuzzy topological space. Then the following statements 
hold.

(1)	 If G1 and G2 are L-fuzzy grills on X with G1 ≤ G2 , then TG1 ≤ TG2.
(2)	 If G is an L-fuzzy grill on X and f ∈ LX with G(f ) = ⊥ , then there exists r ∈ L⊥ such 

that TG(f ∗) ≥ r.
(3)	 For any f ∈ LX , r ∈ L⊥ and for any L-fuzzy grill G on X, TG((�G(f , r))

∗) ≥ r.
(4)	 If f ∈ LX , r ∈ L⊥ with TG(f ∗) ≥ r , then �G(f , r) ≤ f .

Proof  (1) Let r ∈ L⊥ such that TG2(f ) ≥ r . Then C
G2
T (f ∗, r) = f ∗ . Thus, 

f ∗ ∨�G2(f
∗, r) = f ∗ . This implies that �G2(f

∗, r) ≤ f ∗ . By Theorem  6.3(2), we have 
�G1(f

∗, r) ≤ f ∗ . This implies that f ∗ ∨�G1(f
∗, r) = f ∗ . Thus, CG1

T (f ∗, r) = f ∗ , which 
implies that TG1(f ) ≥ r . Thus, TG2 ≤ TG1.

(2) Let G be an L-fuzzy grill, r ∈ L⊥ and f ∈ LX with G(f ) = ⊥ . Then by Theorem 6.3(3), 
�G(f , r) = ⊥X . Thus CG

T (f , r) = f ∨�G(f , r) = f  . This implies that TG(f ∗) ≥ r.

(3) Let f ∈ LX and r ∈ L⊥ . For any L-fuzzy grill G on X , we have

Thus, TG((�G(f , r))
∗) ≥ r.

(4) Let f ∈ LX and r ∈ L⊥ with TG(f
∗) ≥ r . Suppose that 

xt  ∈ f = CG
T (f , r) = f ∨�G(f , r) , which implies that xt  ∈ �G(f , r) . Thus, �G(f , r) ≤ f  . �

TG(
∨

i∈Ŵ

fi) �≥
∧

i∈Ŵ

TG(fi).

TG(
∨

i∈Ŵ

fi) < r0 ≤
∧

i∈Ŵ

TG(fi).

CG
T (f

∗, r0) ≤
∧

i∈Ŵ
CG
T (f

∗
i , r0)

=
∧

i∈Ŵ
f ∗i

=

(

∨

i∈Ŵ
fi

)∗

= f ∗.

CG
T (�G(f , r), r) = �G(f , r) ∨�G(�G(f , r), r) = �G(f , r). (by Theorem 6.4(2))
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