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Introduction
In heat and mass simultaneous occurrence, it is evident that intricacy resulted due to 
fluxes and driving potentials relationship. Energy flux effect due to concentration gradi-
ent is referred to as diffusion-thermo (Dufour), and mass flux effect as a result of tem-
perature gradient is known as thermal-diffusion (Soret). Most often, Dufour and Soret 
effects are neglected in heat and mass transfer analysis based on the assumption that 
they are of smaller magnitude compared to other effects as depicted by Fick’s and Fou-
rier’s law. However, with reference to its applications in area like petrology, geosciences, 
Solar collectors, hydrology, Combustion flames, and building energy conservation, the 
significance of these effects become unavoidable. On this note, many researchers like 
Reddy et  al. [1] examined Soret and Dufour effects on MHD flow via exponentially 
stretching sheet in the presence of viscous dissipation and thermal radiation. The result 
revealed that both the fluid temperature and concentration increased with a slowdown 
in Soret and speed-up in Dufour. Studies on effects of Soret and Dufour on Micropolar 
fluid were considered by Babu et al. [2]. The effects of radiation and magnetic field were 
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also examined. It was reported that temperature profiles declined with the increase in 
Soret.

Furthermore, Sekhar and Manjula [3] studied Casson fluid inclined permeable plate in 
the presence of Soret and Dufour with slip condition. Runge–Kutta fourth-order method 
was used to solve resulting ordinary differential equations. The result revealed that the 
increase in the angle of inclination accelerates velocity profiles. Effects of Dufour and 
Soret on Casson fluid were presented by Reddy and Janardhan [4]. In the study, radia-
tion and chemical reaction effects were not given recognition. It was reported that 
concentration declined with the increase in Soret number. The impacts of Soret and 
Dufour on MHD flow with mass and heat transfer in a wavy channel were examined by 
Gbadeyan et al. [5]. The result showed that velocity declined with a rise in Soret, while 
a reverse trend is experienced for Dufour. Parandhama et al. [6] investigated effects of 
Soret on MHD Casson fluid via a vertical plate. The result showed that the increase in 
Soret decelerated temperature profiles. Salawu and Dada [7] considered pressure-driven 
inclined magnetic fluid flow through a Darcy Forchheimer medium in the presence of 
Soret and Dufour. It was reported that a rise in Soret and Dufour increases the skin fric-
tion. Iftikhar et al. [8] studied mixed convection MHD Jeffery fluid flow in the presence 
of Soret, Dufour and thermophoresis. The resulted partial differential equations are 
solved using Optimal Homotopy Analysis Method (OHAM). Convective unsteady MHD 
fluid flow via a permeable vertical plate with Soret and Dufour effects was carried out 
by Sarada and Shanker [9]. It was noticed that velocity speeds up with a rise in Dufour 
parameter. None of the above studies considered variable suction.

Boundary layer fluid flows in the presence of heat and mass transfer with effects of 
thermal radiation are applicable in numerous engineering and industrial processes such 
as extraction and manufacture of polymer. In addition, radiative effect has its applica-
tions in areas like cooling processes of electronic devices, nuclear reactors and techno-
logical processes involving high temperature. Navier–Stokes equations theory is basically 
on no-slip for the boundary conditions of the flow. But practically, it is not always appli-
cable, especially for non-Newtonian fluid. Problems involving slip conditions and ther-
mal radiation for various fluids have attracted the attention of researchers. Kumar [10] 
investigated the flow of fluid over stretched variable thickness surface of natural convec-
tive MHD Casson fluid in the presence of thermal radiation. The problem was solved 
numerically, and it was observed that temperature profiles are enhanced by radiation 
parameter. The impacts of slip conditions and radiation on stagnation point MHD flow 
via a stretching sheet were examined by Sumalatha et al. [11]. According to their results, 
the slip parameter has the tendency of declining the velocity of the fluid. Rajakumar et al. 
[12] presented the effects of diffusion-thermo, radiation and viscous dissipation on natu-
ral convective flow of Casson fluid over an oscillatory permeable vertical plate. Ion-slip 
current was put into consideration. Sreenivasulu et al. [13] considered impacts of radia-
tion on boundary layer MHD slip flow through an exponential porous stretching sheet 
with dissipation and joule heating. The resulted differential equations are solved numeri-
cally with Runge–Kutta fourth-order method. The study concluded that temperature of 
the fluid is improved by dissipation. Agunbiade and Dada [14] discussed dissipation and 
chemical reaction effects on rotatory Rivlin–Ericksen fluid flow via a vertical permeable 
plate in the presence of thermal radiation.
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In addition, Reddy and Reddy [15] examined slip boundary layer flow of convective MHD 
through an inclined porous surface with thermal radiation and chemical reaction. It was 
observed that fluid velocity tend to be higher when the angle of inclination is set to zero, 
while it declined with a rise in the angle of inclination. Eyring–Powell Unsteady Nanofluid 
flow of Hydromagnetic through a stretched inclined porous sheet in the presence of radi-
ation and joule heating was reported by Kumar and Srinivas [16]. It is noticed that ther-
mophoresis parameters speed up the fluid velocity. Ragavan et al. [17] examined inclined 
magnetic field for Walter’s Liquid B fluid with entropy generation via a stretching sheet. It 
was reported that magnetic field strengthens with the increase in the angle of inclination. 
Reddy [18] discussed MHD Casson fluid flow through an inclined permeable exponentially 
stretching surface in the presence of chemical reaction and thermal radiation. The results 
revealed that inclination parameter has the tendency of enhancing velocity profiles.

This study is an extension of Sharma and Choudhary [19], and in view of the above stud-
ies, combined effects of diffusion-thermo, thermal-diffusion, viscous dissipation and ther-
mal radiation on unsteady MHD slip flow with inclined magnetic field over a permeable 
vertical plate have not being given adequate attention. Practically, combined effects of these 
parameters are significantly important in numerous engineering and industrial processes. 
Therefore, this study is motivated to consider diffusion-thermo and thermal-diffusion 
effects on unsteady MHD slip flow with inclined magnetic field, thermal radiation, viscous 
dissipation and variable suction. The results of the coupled nonlinear differential equations 
governing the flow were obtained using collocation method with the aid of assumed Leg-
endre polynomial.

Main text
Consider unsteady free convective MHD laminar incompressible, electrically conducting 
fluid flow via a permeable medium with slip condition in the presence of inclined magnetic 
field, diffusion-thermo and thermal-diffusion. The plate is considered to be porous and infi-
nite, x-axis is considered in the vertical direction of the plate, while η-axis is perpendicular 
to the plate. There is application of inclined magnetic field in η-axis direction. Soret and 
Dufour are not negligible because it is assumed to be of substantial magnitude. Since appli-
cation of voltage externally is absent, electric field is not considered. The flow configuration 
is shown below (Fig. 1).

Based on Boussinesq approximation and the above assumptions, the equations governing 
the flow can be expressed as
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where h∗ and v∗ are dimensional velocity components in x∗ and η∗ directions, respec-
tively, t∗ is the dimensional time, V ∗ is the constant suction velocity, H∗

∞ is the free 
stream velocity, g is the acceleration as a result of gravitational force, β is the thermal 
expansion coefficient, β∗ concentration expansion coefficient, ϑ∗ is the dimensional tem-
perature, ϑ∞ is the temperature of the fluid at the free stream, ζ ∗ is the boundary layer 
species concentration, ζ∞ is the species concentration at the free stream, ν is the kin-
ematic viscosity, K ∗ is the permeability of porous medium, B is the magnetic field inten-
sity, ψ is the angle of inclination of magnetic field, k is the thermal conductivity,Cp is the 
specific heat at constant pressure, q∗r  is the radiation heat flux, ρ is the fluid density, µ 
is the viscosity coefficient, D is the mass diffusivity, Kϑ is the thermal diffusion ratio, Cs 
concentration susceptibility, k∗1 is the chemical reaction coefficient, and ϑm is the mean 
fluid temperature.

The boundary conditions are:

Here ε is the scalar constant, A is the non-dimensional suction velocity parameter, 
ω∗ is the dimensional oscillation parameter, S∗ is the slip parameter, ϑw and ζw are the 
temperature and species concentration at the plate, respectively, H∞ is the free stream 
velocity, and H0 is a constant. The suction velocity is normal to the plate and is expressed 
as a function of time in the form

Radiative heat flux is given as

(4)
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Fig. 1  Geometry of the problem
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Expanding ϑ∗4 using Taylor series expansion and ignoring higher order terms from 
second order gives

Method of solution
The following non-dimensional quantities

Equations (10)–(13) are obtained by introducing Eqs. (6)–(9) to Eqs. (2)–(5)

The boundary in non-dimensional form is

where S is the slip parameter, � =
H0
V0

 , h is the non-dimensional velocity along x-axis, ξ 
is the non-dimensional fluid temperature, ζ is the non-dimensional concentration, Du 
is the Dufour parameter, St is the Soret parameter, Hg and Mg are the Grashof number 
for heat and mass transfer, respectively, M is the Hartmann number, Pr is the Prandtl 
number, K  is the permeability parameter, Rd is the radiation parameter, Ec is the Eck-
ert number, Sc is the Schmidt number, H is the free stream velocity, k1 is the chemical 
reaction parameter, σs is the fluid electrical conductivity, and ke is the mean absorption 
coefficient.

Considering the associated boundary conditions, the assumed solutions can be 
expressed as

Applying assumed solutions (14) to Eqs. (10)–(13) and equating the terms, harmonic 
and non-harmonic, gives
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Now, the boundary conditions reduced to

Legendre collocation method
The solutions to the coupled, nonlinear ordinary differential Eqs.  (15)–(20) with the 
boundary conditions (21) are obtained using collocation method with assumed Leg-
endre polynomial. Applying the domain truncation method, the interval [0,∞) is 
transformed to [0, L] . The Legendre polynomial is of interval [−1, 1] which is trans-
formed to [0, L] using the transformation

Hence, the boundary value problem is solved within the region [0, L] instead of 
[0,∞) , where L (scaling parameter) is taken to be sufficiently large enough to take care 
of the thickness of the boundary layer (Olagunju et al. [20] and Aysun and Salih [21]).

Therefore, the Legendre polynomial is expressed as

Hence,
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where

Substituting Eqs. (22) and (25) in Eq. (24) gives

For L = 20 and N = 20 , Eq. (26) becomes

Similarly,

{a0, a1, . . . , aN }, 
{

b0, b1, . . . , bN
}

, {c0, c1, . . . , cN }, 
{

d0, d1, . . . , dN
}

, {e0, e, . . . ., eN } and 
{

f0, f , . . . , fN
}

 are unknown coefficients which can be obtained using the coupled, 
nonlinear differential Eqs.  (15)–(20) with the boundary conditions (21). Hence, the 
approximate solutions of the truncated series (27)–(32) can be obtained.

Equation  (33) is a MATHEMATICA Software Language used to generate the fol-
lowing collocation points for values of η.

Equations (27)–(32) are substituted in Eqs. (15)–(20), with the default values for the 
fluid parameters; Hg = 5 , Mg = 5 , Pr = 0.71 , Ec = 0.01 , ψ = π

2  , k1 = 0.1 , Sc = 0.22 , 

(24)h0 = a0P0
(

y
)

+ a1P1
(

y
)

+ a2P2
(

y
)

+ · · ·
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(
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(
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(33)Collpoints = NSolve
[
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[
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]]

= 0, η
]

(34)
0.0759316, 0.397918, 0.968441, 1.77285, 2.79034, 3.99455,
5.35429, 6.83436, 8.39641, 10.0000, 11.6036, 13.1657,
14.646, 16.0051, 17.2097, 18.2273, 19.0319, 19.6002, 19.9241






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Rd = 1.6 , K = 0.1 , Du = 0.1 , St = 0.2 , M = 1 , t = 0.1 , A = 0.5 , S = 0.2 , � = 0.5 , ω = 1 , 
and ε = 0.1 , to give six residual equations. By imposing the boundary conditions (21) 
on Eqs. (27)–(32), twelve equations are derived. Each residual equation is collocated 
at the above collocation points to yield one hundred and fourteen collocation equa-
tions. Consequently, there are a total number of one hundred and twenty-six equa-
tions with one hundred and twenty-six unknown coefficients. These equations are 
solved using MATHEMATICA 11.0 software. The numerical values obtained for the 
unknown coefficients are then substituted back into Eqs.  (27)–(32). Hence, Eq.  (14) 
becomes

Skin-friction:
The coefficient of skin-friction in non-dimensional form is expressed as

Nusselt Number
The rate of heat transfer at the plate is expressed as

Sherwood Number
The rate of mass transfer in non-dimensional form is given as

Results and discussion
Ordinary differential Eqs. (15)–(20) with the boundary conditions (21) are solved using 
collocation method with the aid of assumed Legendre polynomial. On velocity, tempera-
ture and concentration profiles, the impacts of various parameters are considered and 

(35)

h = 0.631525+ 5.71453× 10−25i −
(

0.0248978+ 3.12151× 10−25i
)

(−10+ η)

+

(

0.000790613+ 7.21393× 10−27i
)(

200− 60η + 3η2
)

−

(
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)(

−400+ 240η − 30η2 + η3
)

−
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ξ = 0.140729+ 1.49935× 10−24i − (0.030269+ 7.79491× 10−25i)− 10+ η

+ (0.00136063+ 1.65512× 10−26i)(200− 60η + 3η2)

− (0.0041331− 2.16109× 10−26i)(−400+ 240η − 30η2 + η3)+ . . .

(37)

ζ = 0.194627− 2.1262× 10−25i − (00373656− 8.6365× 10−26i)(−10+ η)

+ (0.00134708− 1.58859× 10−27i)(200− 60η + 3η2)

(0.000299884 + 2.32537× 10−27i)(−400+ 240η − 30η2 + η3)+ . . .

(38)Cf =

(

∂

∂η

(

h0(η)+ εeiωth1(η)
)

)

η=0

(39)Nu = −

(

∂

∂η

(

ξ0(η)+ εeiωtξ1(η)
)

)

η=0

(40)Sh = −

(

∂

∂η

(

ζ0(η)+ εeiωtζ1(η)
)

)

η=0
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the results are presented both in graphical and tabular forms. For the computations, the 
default values are: Hg = 5 , Mg = 5 , Pr = 0.71 , Ec = 0.01 , ψ = π

2  , k1 = 0.1 , Sc = 0.22 , 
Rd = 1.6 , K = 0.1 , Du = 0.1 , St = 0.2 , M = 1 , t = 0.1 , A = 0.5 , S = 0.2 , � = 0.5 , ω = 1 , 
and ε = 0.1 . The comparison of this work with the work of Sharma and Choudhary 
[19] is presented in Table 1, by setting Dufour and Soret parameters to zero, an excel-
lent agreement is observed. In order to further validate the results, the comparison of 
Legendre collocation method with fourth-order Runge–Kutta method for skin friction, 
Nusselt number and Sherwood Number is displayed in Table 2 where d is the difference 
between the collocation method and fourth-order R-K.

Figures 2 and 3 display the variation of thermal Hg and solutal Mg Grashof number, 
respectively, on velocity profiles. Physically, increase in thermal Grashof number will 
make the buoyancy force to rise, which in turn accelerates within the channel the vis-
cous hydrodynamics. Solutal Grashof number can be expressed as ratio of concentration 
buoyancy force to viscous hydrodynamic force. From these figures, it is obvious that a 
rise in Hg enhanced velocity profiles. The same trend is evidence in Fig. 3, a hike in Mg 
speed-up velocity profiles.

Effects of angle of inclination parameter ψ is depicted in Fig. 4. Increase in ψ retards 
the velocity distribution. This is as a result of magnetic field being strengthen with a rise 
in ψ . Magnetic field exhibits a resistance force known as Lorentz force. This force resists 
the fluid motion. Hence, in Fig. 5 it is evident that Hartmann number M has the ten-
dency of retarding the fluid velocity.

Table 1  Comparison of the present work with Sharma and Choudhary [19]

Sharma and Choudhary Present work

R Temp. ( ξ) Conc. ( ζ) Temp. ( ξ) Conc. ( ζ)

1.0 0.3062 0.2978 0.2999 0.2988

1.6 0.3895 0.2978 0.3812 0.2988

k1 Temp. ( ξ) Conc. ( ζ) Temp. ( ξ) Conc. ( ζ)

0.1 0.3895 0.2978 0.3812 0.2988

0.4 0.3897 0.4307 0.3816 0.4314

Table 2  Comparison of the collocation method with fourth-order Runge–Kutta method

Du St Ec k1 Rd Collocation 
method

4th order R-K |d|

0.3 5.10354 5.10354 0.00000

0.6 5.13080 5.13080 0.00000

0.2 5.08704 5.08704 0.00000

0.6 5.14038 5.14038 0.00000

0.05 5.09275 5.09272 0.00003

0.07 5.09561 5.09557 0.00004

0.3 5.04433 5.04432 0.00001

0.7 4.98716 4.98715 0.00001

0.7 5.13774 5.13773 0.00001

1.7 5.08322 5.08321 0.00001
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Figure  6 portrays effects of permeability of the porous medium parameter ( K  ) on 
velocity profiles. Momentum boundary layer thickness is boosted with higher values of 
K  . Physically, this result can be justified by ignoring the permeability holes.

Fig. 2  Effect of Hg on the velocity profile

Fig. 3  Effect of Mg on the velocity profile

Fig. 4  Effect of ψ on the velocity profile
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Variation of chemical reaction parameter ( k1 ) on concentration and velocity distri-
bution is detected in Figs. 7 and 8. It is observed in Fig. 7 that a hike in the value of 
k1 slowed down the concentration profiles. This is as a result of reduction in solutal 
boundary layer thickness and mass transfer increases due to destructive chemical. 

Fig. 5  Effect of M on the velocity profile

Fig. 6  Effect of K  on the velocity profile

Fig. 7  Effect of k1 on the concentration profile
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The same trend is apparent in Fig. 8; k1 has the tendency of retarding the velocity of 
the fluid.

The effects of Prandtl number ( Pr ) on temperature and velocity profile are elucidated 
in Figs. 9 and 10. Prandtl can be expressed as relativity of momentum diffusivity to ther-
mal diffusivity; therefore, high thermal conductivity reduced the velocity of the fluid. 
High values of Pr imply high thermal conductivity; hence from the heated surface, heat 
diffuses away more rapidly. Consequently, the thermal boundary layer is lessened with 
hike in Pr , as displayed in Fig. 10.

Figures  11 and 12 show the variation of thermal radiation ( Rd ) on temperature and 
velocity profiles. Dominance of conduction over Rd accelerated with a rise in thermal 
radiation. As a result, both buoyancy force and thermal boundary temperature are 
slowed down. Generally, though trivial fact, there is inverse proportionality between 
thermal radiation and temperature. From Fig.  12, it is noticed that the increase in Rd 
decelerated the velocity distributions.

It is shown in Figs. 13 and 14 the effects of Schmidt number ( Sc ) on concentration and 
velocity distribution. Both concentration and velocity are retarded with the increase in 
Sc . Physically, a boost in Sc implies a reverse trend in molecular diffusion.

Fig. 8  Effect of k1 on the velocity profile

Fig. 9  Effect of Pr on the temperature profile
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Figures 15, 16 and 17 reveal the effects of thermal-diffusion ( St ) on concentration, 
temperature and velocity distributions. A careful examination of these figures shows 
that concentration and velocity improved for higher values of St . Soret ( St ) resulted 

Fig. 10  Effect of Pr on the velocity profile

Fig. 11  Effect of Rd on the temperature profile

Fig. 12  Effect of Rd on the velocity profile
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from mass flux; hence, there is tendency for concentration to increase. In Fig.  16, 
the effect of St on the temperature of the fluid is not noticeable. Figures  18, 19 and 
20 depict the variation of diffusion-thermo ( Du ) on concentration, temperature and 

Fig. 13  Effect of Sc on the concentration profile

Fig. 14  Effect of Sc on the velocity profile

Fig. 15  Effect of St on the concentration profile
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velocity. Both temperature and velocity accelerated as the values of Du speed up. The 
enhancement of temperature due to a rise in Du is as a result of energy flux being 

Fig. 16  Effect of St on the temperature profile

Fig. 17  Effect of St on the velocity profile

Fig. 18  Effect of Du on the concentration profile
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generated. Consequently, there is increase in heat of the fluid flow. It is apparent in 
Fig. 18 that concentration profiles are indifference to the increase in Du.

Tables 3, 4 and 5 are the numerical presentation of Figs. 15, 16 and 17, respectively. 
In Table 4, there is evidence of slight impact of Soret on the fluid temperature, though 
this effect is not noticeable on the graph. It is obvious in Table 4 that from η = 0 to 

Fig. 19  Effect of Du on the temperature profile

Fig. 20  Effect of Du on the velocity profile

Table 3  Effect of Soret ( St ) on the concentration profile

η 0 2 4 6 8 10 12

St = 0.1 1.099500 0.632188 0.358456 0.201081 0.111797 0.061527 0.033302

St = 0.5 1.099500 0.774195 0.497873 0.304587 0.180726 0.104751 0.059191

St = 0.8 1.099500 0.884066 0.602424 0.380692 0.230938 0.136207 0.078126

η 14 16 18 20

St = 0.1 0.017421 0.008389 0.003151 2.663072 × 10−17

St = 0.5 0.032146 0.015973 0.006158  − 3.840786 × 10−17

St = 0.8 0.043017 0.021637 0.008431  − 1.832301 × 10−17
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η = 4 , temperature tends to decline, while a different trend is observed from η = 6 to 
η = 20 where Soret ( St ) shows the tendency of enhancing the fluid temperature.

Table 6 displays the effects of Ec , R , k1 , ψ , St and Du on Skin-friction Cf , Nusselt num-
ber Nu and Sherwood Number Sh . It is discovered that Ec , St and Du have the tendency 
of enhancing Cf  , while it is slowed down by R , k1 and ψ . The heat transfer is improved 
with the increase in R , ψ and St . A reverse trend is noticed for a rise in Ec , k1 and Du . 
Finally, mass transfer accelerated as a result of a hike in Ec , k1 and Du . On the other hand, 
Sh is lessened with the increase in R , ψ and St.

Conclusion
This study is carried out to examine the combined effects of diffusion-thermo, thermal-
diffusion, viscous dissipation and thermal radiation on unsteady MHD slip flow with 
inclined magnetic field over a permeable vertical plate. The nonlinear coupled differen-
tial equations are solved using collocation method with the aid of assumed Legendre 
polynomial. The results are graphically and tabularly presented. From the study, though 
Dufour and Soret has the tendency of improving the fluid velocity but mass flux as a 
result of temperature gradient has insignificant impact on temperature of the fluid, like-
wise energy flux on concentration. The result revealed that Soret and Dufour effect is 
relevant in mixture of gases of light molecular weight and is applicable in different areas.

It is detected that:
	(i)	 Velocity of the fluid is retarded with a rise in ψ , M , k1 , Pr , Rd , and Sc . On the other 

hand, the fluid velocity improved for higher values of Hg , Mg , K , St and Du.
	(ii)	 Increase in Pr and Rd reduced the thermal boundary layer.

Table 4  Effect of Soret ( St ) on the temperature profile

η 0 2 4 6 8 10 12

St = 0.1 1.099500 0.518484 0.247139 0.058668 0.029054 0.014355

St = 0.5 1.099500 0.509459 0.243169 0.119894 0.060664 0.031242 0.016106

St = 0.8 1.099500 0.502553 0.240365 0.120271 0.062239 0.032888 0.017395

η 14 16 18 20

St = 0.1 0.006846 0.003030 0.001044 8.361909 × 10−18

St = 0.5 0.008017 0.003691 0.001318  − 1.928525 × 10−17

St = 0.8 0.008867 0.004169 0.001514  − 1.324082 × 10−17

Table 5  Effect of Soret ( St ) on the velocity profile

η 0 2 4 6 8 10

St = 0.1 1.110223 ×10−16 1.034678 0.794341 0.670473 0.599357 0.565011

St = 0.5 1.110223 ×10−16 1.094751 0.855088 0.716909 0.631038 0.585281

St = 0.8 2.220446× 10−16 1.141179 0.900692 0.751129 0.654171 0.600058

η 12 14 16 18 20

St = 0.1 0.547432 0.534347 0.529838 0.527093 0.524875

St = 0.5 0.559761 0.541413 0.533488 0.528522 0.524875

St = 0.8 0.568785 0.546624 0.536206 0.529597 0.524875
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	(iii)	 The concentration profiles are improved for higher values of St , while they deceler-
ated with hike in k1.

Abbreviation
MHD: Magneto-hydrodynamic.
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