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Introduction
Unwanted heat is produce during the electrical and mechanical processes, whereas, its 
control and minimization is necessary for the durability of all such devices. Heat trans-
port is important in many devices of practical uses; therefore, heat transfer in multiple 
engineering disciplines is of great interest. The practical applications of heat flow in solar 
collectors, heaters devices it is the first priority of engineers and physicists to develop 
accurate models of heat transfer with proper physically and mathematically tenable con-
ditions. Therefore, this field is thoroughly investigated in many research papers [1–4]. 

Abstract 

In this paper, a model problem of viscous flow and heat transfer in a rectangular 
converging (diverging) channel has been investigated. The governing equations are 
presented in Cartesian Coordinates and consequently they are simplified and solved 
with perturbation and numerical methods. Initially, symmetrical solutions of the 
boundary value problem are found for the upper half of the channel. Later on, these 
solutions are extended to the lower half and then to the whole channel. The numerical 
and perturbation solutions are compared and exactly matched with each other for a 
small value of the parameters involved in the problem. It is also confirmed that the 
solutions for the converging/diverging channel are independent of the sign of m (the 
slope). Moreover, the skin friction coefficient and heat transfer at the upper wall are 
calculated and graphed against the existing parameters in different figures. It is 
observed that the heat transfer at walls is decreased (increased) with increasing c1 
(thermal controlling parameter) for diverging (converging). It is also decreased against 
Pr (Prandtle number). For c1 = 0 , the temperature profiles may be exactly determined 
from the governing equations and the rate of heat transfer at the upper wall is 
θ ′(1) = m

(1+m2) tan−1 m
 . It is confirmed that the skin friction coefficient behaves linearly 

against Re* (modified Reynolds number) and it is increased with increasing of Re* 
(changed from negative to positive). Moreover, it is increased asymptotically against m 
and converges to a constant value i.e. zero.
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Converging and diverging channels have many applications in industry especially to 
increase the efficiency of devices in order to increase/decrease heat transfer. The design 
of such channels is extensively used in the physical problems and it is known fact that 
the heat transfer increase with the increase of surface area per volume. The boundary 
layers are merged with each other and specially mixing zones are formed in the flow 
region to enhance and sensitize the heat transfer coefficient. Researchers produce a lot 
of new research work on the basis of physical models of practical interest and estab-
lish valid results for simulated problems. Mendes and Sparrow [5] analyzed the diffusion 
of heat in flow inside a converging and diverging tubes they specified the entrance and 
developing regions. Note that, the heat transfer coefficient, the pressure rise (drop) and 
friction factor are grown effectively in multiple taper angles. Garg and Maji [6] found the 
proper numerical configuration for the flow inside the converging and diverging chan-
nel, however, it is a most suitable method for calculating the heat transfer in such cases. 
Amon and Mikic [7] explored numerical solutions for heat transfer in interrupted chan-
nels and they demonstrated the behavior of non-steady state self-sustained oscillating 
flow. Fluid flow and heat transport inside a channel of wavy walls is examined in Wang 
and Vanka [8] and they concluded that heat flow is changed significantly with the small 
changes in pressure drop. The experimented investigation of turbulent flow in a rectan-
gular channel containing the built-in wing type vortex generators are found in [14], and 
they claimed that heat transfer caused vortices in this flow. Dejond and Jacobi [9] evalu-
ated mass transfer at interrupted plate arrays with the help of experiment and they con-
clude that the mass transfer is much higher than the expected values. The converging 
and diverging channel are widely manipulated as finned surfaces in Caliskan and Bas-
kaya [10] and Kotcioglu et al. [11]. Heat transfer in converging and diverging channels is 
first investigated theoretically and experimentally in Yilmaz [12]. They proved that flow 
(which is perpendicular to steam direction), increases heat transfer in a channel of par-
allel plates. They provided experimental data, which shows that heat transfer enhances 
with improving of Reynolds number. The literature is rich enough about the utilization 
of periodic boundary condition in fluid flow and heat transfer analysis [12–14]. The 
models of converging (diverging) channels are also provide a background for automobile 
radiators, PV collectors, gas–gas heat exchangers, liquid–liquid plate heat exchangers, 
etc. The numerical study of communicating converging (diverging) channel is given in 
Yilmaz and Erdinç [12].

Two-dimensional radial flow in an infinite converging (diverging) channel produced 
by linear source (sink) is studied in [15, 16]. More accurate results of such flow are pro-
vided see Rosenhead [17], Millsaps and Pohlhausen [18]. Researchers found more prop-
erties of these flow models while analyzing the Jeffery-Hammel model and they provided 
asymptotic solution in the form of series. Moreover, approximate analytical solutions for 
the flow inside the symmetrical channels are evaluated in Fraenkel [19] and he assumed 
that the channel is composed of slightly curved walls. Later on, Drazin [20] investigated 
the instability of flows maintained inside the converging (diverging) channel. He found 
that the mass flux is increased steadily along the channel. The temporal instability of 
Jeffery-Hammel flow is also analyzed in Hamadchi et  al. [21]. Details of both experi-
mental and theoretical studies of such model can be found in Dennis et al. [22]. They 
assumed flow between solid boundaries in polar coordinates ( r, θ) and the fluid motion 
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is maintained via a source or sink at origin where the walls of a channel are situated 
at θ = ±a . The past models are strictly presented in polar coordinates and concerned 
with purely radial flows. The idea of radial flows given in [23] is commonly propagated 
in literature, whereas, they formulate and present well-known converging/diverging flow 
problems. The investigation of flow in converging/diverging channel/tube is further elab-
orated, however, consequences of other physical effects are studied on flow characteris-
tic in Rehman et al. [24]. Ramesh and Devakar [25] used different methods to explore 
flow behavior in such channels. A common approach is used in all these research papers, 
however, it is strictly based on utilization of similarity transformation, which converts 
the equation of motion into ODE’s. Viscous flow in a converging/diverging channel is 
studied in Turkyilmazoglu [26], moreover, he analyzed Jeffery-Hammel flows for stretch-
ing (shrinking) walls of the channel. Heat transfer inside converging/diverging channel 
of stretching (shrinking) walls is examined in the presence of viscous dissipation effects. 
The problem of fluid flow and heat transfer in converging channel is studied by Turky-
ilmazoglu [27]. He gives exact (closed form) multiple solutions to the momentum and 
energy equation associated with momentum and thermal slip boundary conditions. 
The exact multiple solutions and numerical results of the modeled problem are exactly 
matched for a small value of the parameters. The flow problem is strictly depend upon 
the appropriate coordinate system and geometry of the problem, so the right choice for 
choosing the proper coordinate system decides on the bases of flow problem see [28]. 
Many research articles are available on a purely radial flow in a converging/diverging 
channel for both Newtonian and non- Newtonian fluids. Makinde [30] presented a com-
pact model of channel flow and he found the numerical and perturbation solutions of 
simulated problem, however, he investigated an incompressible viscous nanofluid in four 
different types of channels (divergent, convergent, locally constricted and wavy). Note 
he solved a system of ODE’s with the perturbation series method, furthermore, he found 
accurate results for heat and mass transfer with special cases in the channels. Makinde 
[31] also examined the steady flow of incompressible viscous fluid inside a diverging 
symmetrical channel, furthermore, he presented the Taylor series solution to the mod-
eled problem and all the field variables are evaluated and computed accurately using this 
method.

The previous problems of converging and diverging flow are simulated in polar 
coordinates system, whereas, we demonstrate the fluid flow and heat transfer prob-
lems in converging (diverging) channels of rectangular plan walls. The investigations 
of this paper have not been discussed in the open literature and a new problem of rec-
tangular channels is simulated, whereas, we solved the momentum and energy equa-
tions for a converging (diverging) channel of rectangular walls. A set of appropriate 
transformation is formed for the stream function and temperature variables which 
reduces the Navier–Stokes and energy equations into ODE’s and the final system of 
equations is solved with the regular perturbation method. A numerical method is also 
employed for confirmation and validation of the approximate analytical solutions. 
The numerical technique used here is the finite difference method, which is based 
on polynomial collocation with four Lobatto points. It is observed that the velocity 
and temperature profiles are charged significantly with the slope m of the upper wall 
and characteristic number Re. The skin friction coefficient and heat transfer from the 
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upper wall are graphed against different parameters. Further, the classical work of 
Millsaps and Pohlhausen [18] is also recovered from the result of the current model, 
whereas, the two solutions are exactly matched with each other.

Formulation of the problem

Consider a rectangular converging/diverging channel of heated inclined plane walls 
with variable gap h(x) between them. The upper (lower) wall has slope m (− m). The 
gap between walls is 2  h(x) and the constant gap is a0 when x = 0. A line is drawn 
at the center of the channel which is equidistance from the upper and lower walls 
and representing the x-axis whereas the y-axis is normal to it. Note that the walls 
of a channel are equally heated and have a variable temperature. A steady flow of an 
incompressible viscous fluid is maintained in a two dimensional channel of inclined 
plane walls. The velocity vector has decomposed into two orthogonal components 
i.e. the axial velocity (u) in x-direction and the normal velocity (v) in the y-direction. 
Here, we considered a problem of converging (diverging) flow in a rectangular chan-
nel whose upper (lower) wall is situated at y = mx + a0 (y =  − mx − a0) where m is the 
slope of upper (lower) wall and 2a0 is entrance (for diverging flow)/exist (for converg-
ing flow) channel’s height. The upper wall of the channel has variable temperature  
Tw(x) = T0 + T1(a0 +mx)c1  and the fluid at the center has uniform temperature T0. 
The parameter m = 0 is representing the flow and heat transfer between parallel walls 
and for that choice of m, the model problem is exactly reduced to the well-known 
Poiseuille model of one dimensional flow and heat transfer between parallel plates. 
Here we assumed similar flows and the velocity vector has normal and axial com-
ponents whereas the classical Jeffery-Hammel model is equipped with only a radial 
component of velocity. The fluid attached to the plates has the velocity of solid sheet 
and would behave like walls. The axial velocity u(x; y) is maximum i.e. U(x) at the mid 
of channel or at y = 0. The normal velocity component and vorticity function will be 
zero at mid (y = 0) of channel due to symmetry conditions. Moreover, the center line 
as a reference stream line. The following equations are used for governing the incom-
pressible viscous flow and heat transfer in the converging/diverging channel (Fig. 1).

Continuity equation:

The component of Navier–Stokes equations:

The energy equation:

(1)
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The boundary conditions for the flow problem are:

where in Eq. (7) the vorticity (ξ) is defined and ν, ρ, p are kinematic viscosity, den-
sity and pressure, respectively. In view of the stream function formulation the velocity 
components are

Now defining the stream function (ψ) in term of such that

The vorticity equations is formed by eliminating pressure term between Eqs. (2) and 
(3).

where the vorticity function ξ is defined as:

(4)ρcρ

(

u
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)
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(5)u
(
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)
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(
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(
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(6)u
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(
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(7)ξ =
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−

∂u
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(8)u =
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∂ψ

∂x

(9)
ψ = h(x)U(x)f (η), T = �Tθ(η)+ T0 where η =

y

h(x)
,

�T = Tw − T0 = T1(mx + a1)
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)

Fig. 1  The converging (diverging) channel and geometry of the problem
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The transformations in Eqs. (7) and (9) are used and converted the energy Eq. (4) and 
vorticity Eq. (10) into the following ODE’s:

where Re = a0U0

υ
 , Pr = υ

α
  are used for Prandtl number and Reynolds number, 

respectively.

Methods
Perturbation solution

Perturbation solution of the modeled problem is given below. The perturbation solution 
is obtained for a small value of m, where m is representing the slope of the upper wall of 
the channel. The unknown quantities f and θ are expanded in terms of m as:

By substituting the expressions for f and θ from Eqs. (15)–(16) into (12)–(14) and 
equate like powers of m on both sides of them, we obtained the zeroth, first, second 
and third order systems. The zero, first, second and third order systems are solved for 
f0, θ0, f1, θ1, f2, θ2, f3, θ3  and we get the following solution.

(11)ξ =
∂v
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−
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(12)

(
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)2
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(

1+m2η2
)

f ′′′

+ 12m2
(

1+ 3m2η2
)
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(
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)
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+ 4m3
Reη

(

f ′
)2

+ 24m4ηf ′ = 0

(13)c1m
2(1− c1)θ + c1mPr Ref ′θ − 2m2η(1− c1)θ

′
−

(

1+m2η2
)2

θ ′′ = 0

(14)f (0) = 0, f ′′(0) = 0, f ′(0) = 1, f ′(1) = 0, θ(0) = 0, θ(1) = 1

(15)f = f0 +mf1 +m2f2 +m3f3 + O
(

m4
)

(16)θ = θ0 +mθ1 +m2θ2 +m3θ3 + O
(

m4
)
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1
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3η − η3
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(18)θ0 = η
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1
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c1Pr Reη
(

7− 10η2 + 3η4
))
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The final perturbation solution is obtained when we substitute the zeroth, first, second 
and third order solutions from Eqs. (17)–(24) into (15)–(16). The unknown pressure is 
calculated from Eqs. (2)–(3). The transformation from Eqs. (8)–(9) are substituted into 
Eqs. (2)–(3) and we get the following ODE’s for the pressure term:

Substituting values of g ′  from Eqs. (26) into (25), we get the following expression for g 
(the representative of pressure).

Numerical solution

The numerical solution of Eqs. (12)–(14) is obtained with the help of finite difference 
method, which is based on polynomial collocation with four Lobatto points. The scheme 
is developed for solution of boundary value problem, whereas, produced Cebeci and 
Keller is produced it and the code is established with the name bvp4c in MATLAB. The 
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governing equations (continuity, momentum and energy) are transformed into a sim-
plest system of boundary values ODE’s with the help of similarity transformation dis-
cussed in Khan Marwat et al. [29]. The problem is formulated for the upper half channel 
and characterized by slop m of the upper wall of the channel, the Reynold’s number, 
Prandtl number, and a temperature controlling parameter c1. The following procedure is 
established to distinguish between different physical situations. Note that the mathemat-
ical model is presented for upper half of the channel. The modeled problem is classified 
into the following case on the bases of parameters and their numerical values:

•	 m > 0 and Re > 0 (Re < 0) corresponds to the diverging (converging) flow in the upper 
half of the channel.

Results and discussion
Note that the modeled equations are valid in the upper channel subject to above-estab-
lished criteria. The perturbation solutions are simultaneously valid for upper half of the 
channel or the whole channel. Moreover, the profiles in Fig.  2 are symmetrical about 
the center line for different values of Re* and m = 0. The profiles are obtained from the 
numerical solution of Eq. (12) for m = 0, Re* = − 100, − 20, − 10, − 5, 1, 5, 10, 20. The 
equations are solved in upper channel. The solutions of Eqs. (12)–(14) are symmetrical 
about the mid line of the channel for both converging and diverging flows. When m ∗ Re 
is replaced by Re* in Eq. (12) then the profiles are only symmetrical for m =0. For m = 
0, Re = 0, the model presents flow and heat transfer between parallel plates and ensures 
the classical observation of Poiseuille. It is observed from this figure that the parabolic 
profiles are extending towards wall with the increasing of Re*. However, the parabola 
shrinks towards the center for increasing the negative value of Re*. Note that the parab-
olae in all profiles of this figure have the same peaks. Nonetheless the profiles are plotted 
for m=0 and different Re* and show significant changes in the patterns of the profiles. 
Hence, it is likely that not all profiles at large Re* > 0 are shown over here. In Fig. 2 the 
stream wise velocities are graphed for m=0, moderate, and high Reynolds number (Re* 
> 0 and Re* < 0). The velocity profiles are highly sensitive to Re* for this set of parameters 

Fig. 2  f′ is graphed against η for m = 0 where Re* = mRe



Page 9 of 18Laila et al. J Egypt Math Soc           (2021) 29:18 	

value. For every value of Re* > 10:31, a reverse flow is observed near the surface of plate. 
The flow reversal is not occurred for a small value of Re*. It is more interesting that for 
m = 0, Re = Re* = 0, we obtained the classical Hagen–Poiseuille flow profiles and do not 
present these parabolic velocity profiles in the paper.

The dimensionless pressure is graphed against for m = 0:5 and different nega-
tive (positive) values of Re in Figs. 3 and 4, respectively. The favorable pressure rises 
against in both of these two figures, whereas, it is increased nonlinearly against for 
each Re. In Fig. 3 (Fig. 4) it is decreased with the increasing of Re, however, for large 
Re > o (i.e. fast diverging flow) apposing pressure appears at the center of the chan-
nel. Note that, for values of Re between two and three, the pressure is apposing at the 

Fig. 3  g is graphed against η for different Re* where Re* = mRe

Fig. 4  g is graphed against η for different Re* where Re* = mRe
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center of the channel, whereas, it is saveable at wall. Furthermore, beyond the val-
ues of Re ≥ 3, the pressure at center and wall is apposing. For high apposing pressure 
occurs for Re > 10, therefore, the flow separation point appear in such situation.

In Fig.  5, we graphed the streamlines for different values of Re. In this figure, we 
have shown the perturbation solutions in Eq.  (15) for two different values of Re i.e. 
Re = 5; − 5 and m = 0:3. It is observed from this figure that the behavior of streamlines 
is identical at the center of channel for this set of parameters value, therefore, it is 
concluded that the Reynolds number (Re) has minor effects on the streamlines near 
the center of the channel, whereas, slight variation in its profile is observed.

Fig. 5  The stream line y is graphed against the parameters x which show the solid line by (Re = − 5, m = 0:3) 
and dotted line by (Re = 5, m = 0:3)

Fig. 6  θ is graphed against η for m = 0:1, Pr = 1 and Re* = 5
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In Figs. 6 and 7, temperature profiles are graphed against for Re* > 0 (Re* < 0), differ-
ent c1 (both positive and negative values are taken). In Fig. 6, the temperature profiles 
are graphed against for diverging flow and different c1. The temperature profiles are 
decreased with increasing c1 < 0 and increased for decreasing c1 > 0. The profiles for c1 < 0 
are concave downward whereas for c1 > 0, they are concave upward. The variation in 
temperature against c1 is prominent in case of converging channel flows. It is observed 
from Fig. 7 that for decreasing values of c1 > 0, the temperature profile are decreased and 
the profiles are concave downward. The variation in against c1 > 0, is very weak. Similarly 
for increasing values of c1 < 0, the profiles are increasing and any small changes in c1, 
creates significant changes in the profiles of θ. Note that for c1 = 0, the exact solution of 
Eq. (13) satisfying the relevant boundary conditions in Eq. (14) is θ(η) = tan−1(mη)

tan−1m
  and 

it tends to θ0(η) = η (i.e., zeroth order solution for small m in Eq. (18) in the limiting case 
when m is being approached to zero.

Fig. 7  θ is graphed against η for m = 0:1, Re* =  − 5 and Pr = 1

Fig. 8  Converging channel: The dimensionless temperature distribution (θ) in the upper channel is graphed 
against η for c1 = 0.1 and Pr = 1
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The profiles in Figs. 8 and 9 are representing the dimensionless temperature distribu-
tion against the similarity variable (η) in the upper channel for different values of m. 
Heat transfer in converging and diverging channels is examined in Figs. 8 and 9, respec-
tively. The temperature profiles in either case are increased with increasing of m for con-
verging and diverging channel in the upper channel. For m = 0, the velocity profiles are 
linearly changed with while for increasing m, the profiles are uniformly increased. The 
variation in temperature distribution for converging and diverging flows is totally differ-
ent. The temperature has linear profiles for m = 0 and exactly same predications are 
obtained from the zeroth order perturbation solution for θ0 in Eq. (18). The shear stress 
(τ) at the flow region is calculated by the formulaτ = µ

(

∂u
∂y +

∂v
∂x

)

 . The dimensionless 

shear stress or the skin friction coefficient (Cf) at upper sheet is defined by Cf = µ

(

τh
µU

)

. 

where τh represents shear stress at the upper wall of the channel. By taking the definition 
of shear stress and substituting the values of velocity components from Eqs. (8)–(9), we 
get the final candidate for skin friction coefficient at the upper wall as= f

′

(1)(1−m) . 

Fig. 9  Diverging channel: The dimensionless temperature distribution (θ) in upper channel is graphed 
against η for c1 = 0.1 and Pr = 1

Fig. 10  θ ′(1) is graphed against c1 for m = 0:1 and Re = 5
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The heat flux (q) at the upper wall of the channel is calculated by the Fourier’s law 
i.e.q = −k∇T = −k

(

∂T
∂x ,

∂T
∂y

)

 , where k and T are already defined. In view of the trans-

formation employed in Eq. (9), we get qw = qy=h = −k �T
h(x)

(m(c1 − (1)), θ
′

(1)) , the ratio 
of  qw and ∆T is known as heat transfer coefficient (ς) and defined by 
ς =

qw
�T = −

k
h(x)

(m
(

c1 − θ
′

(1)

)

, θ
′

(1)) . Now non-dimensionalized ςby k
h(x)

 , gives the 

Nusselt number ( Nuh) and written as
(

Nuh

)

=
h(x)ς
k

= −(m(c1 − θ
′

(1)), θ
′

(1)) . In either 
case ( Nuh) is directly related to θ ′

(1).
The amount of thermal energy or heat flux θ ′(1)  is evaluated and graphed against c1 

in Fig.  10 for different values of Pr. It is observed from this figure that with the 
increasing of Pr, the value of θ ′(1) increases and the different profiles are intersecting 
each other at c1 = 0. For c1 = 0, Eq.  (13) is reduced to−2m2ηθ ′ − (1+m2η2)θ ′′ = 0 , 
which has an exact solution of the form θ(η) = tan−1(mη)

tan−1m
 . This solution also satisfies 

the relevant boundary condition in Eq. (14). The amount of heat transfer at the upper 
plate is evaluated from this exact solution and computed numerically, which has the 

Fig. 11  θ ′(1) is graphed against c1 for m = 0.1 and Re* =  − 5

Fig. 12  Upper half of the channel and diverging flow: θ ′(1) is graphed against Pr for m = 0:1 and c1 = 1
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value 1.00332. The heat flux at the upper wall is found exactly for c1 = 0 which is 
(1) = m

(1+m2)tan−1m
 . This value of heat flux at wall can also be conformed from Fig. 10. 

The heat transfer coefficient is decreased with increasing of c1 in case of diverging 
flow. Heat flux at upper wall is computed and graphed against c1 in Fig. 11 for con-
verging flows. It is increased with the increasing of c1 and all the profiles are intersect-
ing at ′(1) = 1.00332 for different Pr. In Fig. 12, ′(1) is plotted against Pr for different 
values of Re* and for fixed value of m = 0.1 and c1 = 1 (upper half of the channel and 
diverging flow). In Fig. 12, it is noticed that the value of θ ′(1)  is decreased with the 
increase of Re* for Pr > 0. But reverse phenomenon occurs in Fig. 13 and we observed 
that the value of ′(1) is increased with the decreasing of Re* for Pr (upper half of the 
channel and converging flow). From these two figures i.e. Figures  12 and 13, we 
observed that, for large positive values of Re*, value of Pr > 1, the differences between 
profiles are more significant. However, for all values of Re* < 0 and the values of Pr in 
the interval 0 < Pr < 1.4, the gaps between profiles are more prominent. Moreover, for 
small values of Pr, the gaps between profiles are negligibly small and these observa-
tions are also noted here. For c1 = 0, Pr = 0, Eq.  (13) reduced to the form: 

Fig. 13  Upper half of the channel and diverging flow:  θ ′(1) is graphed against Pr for m = 0:1 and c1 = 1

Fig. 14  f ′′(1) is graphed against Re*
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−
(

1+m2η2
)

θ ′′ = 0 . By integrating we obtained θ ′(η) = k1 , where k1 is any constant 
of integration. Considering k1 = 1 or used the boundary conditions in Eqs. (14), the 
amount of heat transfer is θ′(1) = 1. This claim clearly support the obtained result in 
figures (Figs. 12 and 13) at Pr = 0.

In Fig. 14, the skin friction coefficient is graphed against Re* for different m and it is 
also graphed against m in Fig. 15 for different Re*. Note that the skin friction coefficient 
is increased with the increasing of both Re* and m. In Fig. 14, it is varied linearly against 
Re* for all values of m, moreover, the non-linear variation in its behavior is depicted in 
Fig. 15, whereas, the profiles are started at negative values and vanished at zero asymp-
totically. Moreover, negative values are representing a dragging force on the fluid and 
positive sign to correspond opposite behavior. It behaves asymptotically against m for 
different Re* and reaches zero for large values of m.

Fig. 15  f ′′(1) is graphed against m  for different Re*

Fig. 16  f ′ is plotted against η for different values of Re* = mRe
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Comparison of present simulations with previously published results

We compared the present results with the published work of Khan Marwat [29] 
and Millsaps and Pohlhausen [18] in this section. The numerical solutions of Eq.  (12) 
and relevant boundary conditions in Eq.  (14) is graphed in Fig.  16 for f′(η), differ-
ent value of Re* = mRe and m = 0.1. These profiles are also reported in Khan Marwat 
[29]. Moreover, the profiles in Fig.  17 are graphed from the numerical solutions of 
F ′′(η)+ 2ReαF(η)F ′(η)+ 4α2F ′(η) = 0 with boundary conditions F (1) = F (− 1) = 0, F 
(0) = 1 and this problem is reported in Millsaps and Pohlhausen [18], where, F(η) is rep-
resenting the radial velocity and η  = r/α , r is the radial coordinate and  α is representing 
the inclination of the channel’s wall. Note that the equations in Khan Marwat [29], Mill-
saps and Pohlhausen [18] are different, but they are presenting the flow inside a converg-
ing and diverging channel. The profiles in Figs. 16 and 17 are exactly same and they are 
obtained from the solution of two different problems.

In Figs. 16 and 17, we compared the present results with the published work and found 
the same pattern in these two figures.

Conclusion
The following interesting remarks are solicited from the solutions of the modeled 
problem where the simulated model describes the flow and heat transfer in a channel 
of inclined plane walls. The modeled equations are simplified and solved with numeri-
cal and analytical means. The two solutions are exactly matched for small value of the 
parameters of the current modeled problem. The governing equations are simulated for 
the upper half of the channel and generalized their solutions for the lower half of the 
channel. However, a solution network is produced for the whole channel. For m = 0 (i.e. 
parallel walls channel), we exactly obtained the classical Poiseuille profiles for the veloc-
ity and temperature. Later on, a modified Reynolds number is defined by Re* = mRe and 
for different values of Re* and m = 0, we obtained the similar profiles as shown in Fig. 2. 
Effects of c1 (a thermal controlling parameter) are seen on the temperature profiles for 
both converging and diverging flows. The temperature profiles behaved differently for 

Fig. 17  F is plotted against η from the Millsaps and Pohlhausen [18] for different values of Re* = Reα , where 
α is the inclination angle of the channel
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these two different channel models. In case of diverging flow, the temperature profiles 
are decreased for − 0:9 ≤ c1 ≤ 2:3, whereas, for converging flows, the temperature profiles 
are increased for − 3 ≤ c1 ≤ 0:9. Moreover, the temperature profiles are also graphed in 
both upper and lower halves of the channel for converging/diverging flows. It is con-
firmed that the profiles are similar. Besides that skin friction coefficient and heat transfer 
coefficient at the upper wall of the converging/diverging channel are also calculated and 
graphed. For zero-value of any of these parameters i.e., either Pr = 0, or m = 0, or c1 = 0, 
or Re* = 0, heat is purely transferred by conduction.
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