Skip to main content
  • Original research
  • Open access
  • Published:

Balanced factor congruences of double MS-algebras

Abstract

In this paper, we introduce the concepts of Stone elements, central elements and Birkhoof central elements of a double MS-algebra and study their related properties. We observe that the center C(L) of a double MS -algebra L is precisely the Birkhoof center BC(L) of L. A complete description of factor congruences on a double MS-algebra is given by means of the central elements. A characterization of balanced factor congruences of double MS-algebra is obtained. A one-to-one correspondence between the class of all balanced factor congruences of a double MS-algebra L and the central elements of L is obtained.

Introduction

Blyth and Varlet [1] introduced MS-algebras as a generalization of both de Morgan algebras and Stone algebras. Blyth and Varlet [2] characterized the subvarieties of the class MS of all MS-algebras. Badawy, Guffova, and Haviar [3] introduced and characterized the class of principal MS-algebras and the class of decomposable MS-algebras by means of triples. Badawy [4] introduced and studied many properties of dL-filters of principal MS-algebras. Also, Badawy and El-Fawal [5] considered homomorphisms and subalgebras of decomposable MS-algebras.

Blyth and Varlet [6] introduced the class of double MS-algebras and showed that every de Morgan algebra M can be represented non-trivially as the skeleton of the double MS-algebra M[2]={(a,b)∈M×M:a≤b}. The class of double MS-algebras satisfying the complement property has been introduced by Congwen [7]. Haviar [8] studied affine complete of double MS-algebras from the class K2, of all double K-algebras. Wang [9] introduced the notion of congruence pairs of double K2-algebras. Recently, Badawy [10] introduced and constructed the class of double MS-algebras satisfying the generalized complement property that is containing the class of double MS -algebras satisfying the complement property.

In this paper, we introduce the notion of Stone elements in double MS -algebras. Then, we prove that the set of Stone elements of a double MS-algebra L forms the greatest Stone subalgebra of L. We introduce the concept of central elements of a double MS-algebra L and we show that the set C(L) of all central elements forms the greatest Boolean subalgebra of L. For a principal ideal (a] (filter [a)) of a double MS-algebra (L;∘,+), it is observed that a relativized algebra \(\phantom {\dot {i}\!}(a]_{L}=((a];\vee,\wedge,^{\circ _{a}},^{+_{a}},0,a)\) (\(\phantom {\dot {i}\!}[a)_{L}=([a);\vee,\wedge,^{\circ _{a}},^{+_{a}},a,1)\)) is a double MS-algebra if and only if a is a central element of L, where \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\wedge a\) and \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+}\wedge a\) (\(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\vee a\) and \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+}\vee a\)). Also, we introduce the Birkhoof center of a double MS-algebra, then we showed that the Birokhoof center of a double MS-algebra L can be identified with the center of L. Factor congruences of a double MS-algebra are investigated by means of central elements. Finally, we study and characterize balanced factor congruences of a double MS-algebra. There is one-to-one correspondence between the class of balanced factor congruences of a double MS-algebra L and the center C(L) of L.

Preliminaries

In this section, some definitions and results were introduced in [1, 2, 6, 11, 12].

A de Morgan algebra is an algebra (L;∨,∧,−,0,1) of type (2,2,1,0,0) where (L;∨,∧,0,1) is a bounded distributive lattice and − the unary operation of involution satisfies:

\(\overline {\overline {x}}=x,\overline {(x\vee y)}=\overline {x}\wedge \overline { y},\overline {(x\wedge y)}=\overline {x}\vee \overline {y}.\)

An MS-algebra is an algebra (L;∨,∧,∘,0,1) of type (2,2,1,0,0) where (L;∨,∧,0,1) is a bounded distributive lattice and a unary operation ∘ satisfies:

x≤x∘∘,(x∧y)∘=x∘∨y∘,1∘=0.

The basic properties of MS-algebras are given in the following theorem.

Theorem 1

(Blyth and Varlet [6]) For any two elements a,b of an MS-algebra L, we have

(1) 0∘∘=0 and 1∘∘=1,

(2) a≤b⇒b∘≤a∘,

(3) a∘∘∘=a∘,

(4) a∘∘∘∘=a∘∘,

(5) (a∨b)∘=a∘∧b∘,

(6) (a∨b)∘∘=a∘∘∨b∘∘,

(7) (a∧b)∘∘=a∘∘∧b∘∘.

A dual MS-algebra is an algebra (L;∨,∧,+,0,1) of type (2,2,1,0,0) where (L;∨,∧,0,1) is a bounded distributive lattice and the unary operation + satisfies:

x≥x++,(x∧y)+=x+∨y+,0+=1.

Proposition 1

For any two elements a,b of a dual MS-algebra (L;+), we have

(1) 0++=0 and 1++=1,

(2) a≤b⇒b+≤a+,

(3) a+++=a+,

(4) a++++=a++,

(5) (a∨b)+=a+∧b+,

(6) (a∨b)++=a++∨b++,

(7) (a∧b)++=a++∧b++.

A double MS-algebra is an algebra (L;∘,+) such that (L;∘) is an MS-algebra, (L;+) is a dual MS-algebra, and the unary operations ∘,+ are linked by the identities x+∘=x++ and x∘+=x∘∘, for all x∈L.

For any element x of a double MS-algebra L, it is clear that x++≤x∘∘ and consequently x∘≤x≤x+.

Some subsets of a double MS-algebra play a significant role in the investigation, by the skeleton L∘∘ of a double MS-algebra L we mean a de Morgan algebra

L∘∘={x∈L:x=x∘∘}=L++={x∈L:x=x++}={x∈L:x∘=x+}.

An equivalence relation θ on a lattice L is called a lattice congruence on L if (a,b)∈θ and (c,d)∈θ implies (a∨c,b∨d)∈θ and (a∧c,b∧d)∈θ.

Theorem 2

(Blyth [12]) An equivalence relation on a lattice L is a lattice congruence on L if and only if (a,b)∈θ implies (a∨z,b∨z)∈θ and (a∧z,b∧z)∈θ for all z∈L.

A lattice congruence θ on a double MS-algebra (L;∘,+) is called a congruence on L if (a,b)∈θ implies (a∘,b∘)∈θ and (a+,b+)∈θ.

We use ∇=L×L for the universal congruence on a lattice L and Δ={(a,a):a∈L} for the equality congruence on L.

We say the congruences θ,ψ on a lattice L are permutable if θ∘ψ=ψ∘θ, that is, x≡y(θ) and y≡z(ψ) imply x≡r(ψ) and r≡z(θ) for some y,r∈L.

Center and Birkhoof center of a double MS-algebra

We introduce the concept of Stone elements of a double MS-algebra L. Then, we show that the set LS of all Stone elements of L is the greatest Stone subalgebra of L.

Definition 1

An element x of a double MS-algebra L is called a Stone element of L if x∘∨x∘∘=1 and x+∧x++=0. Let LS denote the set of all Stone elements of L, that is, LS={x∈L:x∘∨x∘∘=1,x+∧x++=0}.

Definition 2

Let L1 be a bounded sublattice of a double MS-algebra L. Then, L1 is called a subalgebra of L if x∘,x+∈L1 for every x∈L1.

Definition 3

A subalgebra L1 of a double MS-algebra L is called a Stone subalgebra if x∘∨x∘∘=1 and x+∧x++=0, for all x∈L1.

Proposition 2

LS is the greatest Stone subalgebra of a double MS-algebra L.

Proof

It is clear that 0,1∈LS. Let x,y∈LS. Then, x∘∨x∘∘=1, x+∧x++=0, y∘∨y∘∘=1, and y+∧y++=0. Thus, we get

$$\begin{array}{@{}rcl@{}} (x\vee y)^{\circ}\vee(x\vee y)^{\circ\circ}&=&(x^{\circ}\wedge y^{\circ})\vee(x^{\circ\circ}\vee y^{\circ\circ})\text{ by Theorem 1(5),(6)}\\ &=&(x^{\circ}\vee x^{\circ\circ}\vee y^{\circ\circ})\wedge(y^{\circ}\vee x^{\circ\circ}\vee y^{\circ\circ})\text{ by distributivity of }L\\ &=&1\wedge 1=1\text{ as }x^{\circ}\vee x^{\circ\circ}=1,y^{\circ}\vee y^{\circ\circ}=1,\\ (x\vee y)^{+}\wedge(x\vee y)^{++}&=&(x^{+}\wedge y^{+})\wedge(x^{++}\vee y^{++})\text{ by Proposition 1(5),(6)}\\ &=&(x^{+}\wedge y^{+}\wedge x^{++})\vee(x^{+}\wedge y^{+}\wedge y^{++})\text{ by distributivity of }L\\ &=&0\vee 0=0\text{ as }x^{+}\wedge x^{++}=0,y^{+}\wedge y^{++}=0. \end{array} $$

Then, x∨y∈LS. Using a similar way, we get x∧y∈LS. Therefore, (LS,∨,∧,0,1) is a bounded distributive sublattice of L. Now, we prove that x+∈LS for all x∈LS.

$$\begin{array}{@{}rcl@{}} x^{+\circ}\vee x^{+\circ\circ}&=&x^{++}\vee x^{+++}\text{as }x^{+\circ}=x^{++}\\ &=&(x^{+}\wedge x^{++})^{+}\text{ by Proposition 1(5)}\\ &=&0^{+}=1\text{ as }x^{+}\wedge x^{++}=0,\\ x^{+\circ}\wedge x^{+\circ\circ}&=&x^{++}\wedge x^{+++}\text{ as }x^{+\circ}=x^{++}\\ &=&x^{++}\wedge x^{+}=0\text{ by Proposition 1(3)}. \end{array} $$

Hence, x+∈LS. Similarly, we can prove that x∘∈LS for all x∈LS. Therefore, LS is a subalgebra of a double MS-algebra L. Since x∘∨x∘∘=1 and x+∧x++=0 for every x∈LS, then LS is a Stone subalgebra of L. To prove that LS is the greatest Stone subalgebra of L, let S be any Stone subalgebra of L. Let x∈S. Then, x is a Stone element of L, and hence, x∈LS. So S⊆LS as claimed. □

On the following, we introduce the notion of central elements of a double MS-algebra L and prove that the set C(L) of all central elements of L is the greatest Boolean subalgebra of L. Also, the relationship among LS, C(L), and L∘∘ is investigated.

Definition 4

An element a of double MS-algebra L is called a central element if x∨x∘=1 and x∧x+=0. The set of all central elements of L is called the center of L and is denoted by C(L), that is, C(L)={x∈L:x∨x∘=1,x∧x+=0}.

Example 1

Consider the bounded distributive lattice L in Fig. 1. Define unary operations ∘,+ on L by

$$ b^{\circ}=x^{\circ}=a, d^{\circ}=y^{\circ}=c, 1^{\circ}=z^{\circ}=0,0^{\circ}=1,c^{\circ}=d,a^{\circ}=b $$
(1)
Fig. 1
figure 1

L

and

$$ a^{+}=z^{+}=b, c^{+}=y^{+}=d, 0^{+}=x^{+}=1,b^{+}=a,d^{+}=c,1^{+}=0. $$
(2)

It is clear that (L;∘,+)is a double MS-algebra. Then, L∘∘,LS, and C(L) are given in Figs. 2, 3, and 4, respectively.

Fig. 2
figure 2

L ∘∘

Fig. 3
figure 3

L s

Fig. 4
figure 4

C(L)

Theorem 3

Let L be a double MS-algebra. Then

(1) C(L)=L∘∘∩LS,

(2) C(L) is the greatest Boolean subalgebra of L, LS, and L∘∘,

(3) C(L)=C(LS)=C(L∘∘).

Proof

(1). Let x∈C(L). Then, x∨x∘=1 and x∧x+=0. Then

$$\begin{array}{@{}rcl@{}} x^{++}&=&x^{++}\vee 0\\ &=&x^{++}\vee(x\wedge x^{+})\\&=&(x^{++}\vee x)\wedge(x^{++}\vee x^{+})\text{ by distributivity of }L\\&=&x\wedge(x^{+}\wedge x)^{+}\text{ as }x\geq x^{++}\\&=&x\wedge0^{+}=x\wedge 1=x. \end{array} $$

Thus, x∈L∘∘. Also,

$$\begin{array}{@{}rcl@{}} x^{++}\wedge x^{+}&=&x^{++}\wedge x^{+++}\text{ by Proposition 1(3)}\\ &=&(x\wedge x^{+})^{++}\text{ by Proposition 1(7)}\\&=&0^{++}=0\text{ by Proposition 1(1)},\\ x^{\circ\circ}\vee x^{\circ}&\geq& x\vee x^{\circ}\hbox { as }x^{\circ\circ}\geq x\\&=&1. \end{array} $$

Then, x++∧x+=0 and x∘∘∨x∘=1 imply x∈LS. Therefore, C(L)⊆L∘∘∩LS. Conversely, let x∈L∘∘∩LS. Then, x=x∘∘=x++, x∘∨x∘∘=1, and x+∧x++=0. Now,

$$\begin{array}{@{}rcl@{}} x^{\circ}\vee x&=&x^{\circ}\vee x^{\circ\circ} =1,\\ x\wedge x^{+} &=&x^{++}\wedge x^{+}=0. \end{array} $$

Thus, x∈C(L), and hence, L∘∘∩LS⊆C(L).

(2) Clearly 0,1∈C(L). Let a,b∈C(L). Then, we have

$$\begin{array}{@{}rcl@{}} (a\vee b)\vee(a\vee b)^{\circ}&=&a\vee b\vee(a^{\circ}\wedge b^{\circ})\text{ by Proposition 1(5)}\\ &=&(a\vee b\vee a^{\circ})\wedge(a\vee b\vee b^{\circ})\text{ by distributivity of }L\\ &=&1\wedge 1=1,\\ (a\vee b)\wedge(a\vee b)^{+}&=&(a\vee b)\wedge(a^{+}\wedge b^{+})\text{ by Theorem 1(5)}\\ &=&(a\wedge a^{+}\wedge a^{+})\vee(b\wedge a^{+}\wedge b^{+})\text{ by distributivity of }L\\ &=&0\vee 0=0. \end{array} $$

Then, a∨b∈C(L). Similarly a∧b∈C(L). Therefore, (C(L);∨,∧,0,1) is a bounded sublattice of L. Now, we observe that a∘∈C(L) for all a∈C(L),

$$\begin{array}{@{}rcl@{}} a^{\circ\circ}\vee a^{\circ\circ\circ}&=&a\vee a^{\circ}\text{ as }a^{\circ\circ}=a,\forall a\in C(L)\text{ and }a^{\circ\circ\circ}=a^{\circ}\\ &=&1,\\ a^{\circ+}\wedge a^{\circ++}&=&a^{\circ\circ}\wedge a^{\circ\circ\circ}\text{ as }a^{\circ+}=a^{\circ\circ}\\ &=&a^{\circ\circ}\wedge a^{\circ}\text{ as }a^{\circ\circ\circ}=a^{\circ}\\ &=&(a^{\circ}\vee a)^{\circ}=1^{\circ}=0\text{ by Theorem 1(5)}. \end{array} $$

Since a∘=a+ for all a∈C(L), then ∘ coincide with + on C(L). Therefore, (C(L),∨,∧,∘,0,1) is a subalgebra of L. Since a∨a∘=1 and a∧a∘=a∘∘∧a∘=(a∘∨a)∘=1∘=0 for all a∈C(L), then (C(L),∨,∧,∘,0,1) is a Boolean subalgebra of L. Suppose that B is any Boolean subalgebra of L and x∈B. Then, a∨a∘=1 and a∧a+=a∧a∘=0. Hence, a is a central element of L and a∈C(L). So, B⊆C(L) and C(L) is the greatest Boolean subalgebra of L. Using similar agrement, we can show that C(L) is also the greatest Boolean subalgebra of both LS and L∘∘.

(3) It follows (1) and (2). â–¡

The following theorem shows that the centers of isomorphic double MS-algebras are isomorphic Boolean algebras.

Theorem 4

If L and M are isomorphic double MS-algebras, then their centers are isomorphic.

Proof

Let h:L→M be an isomorphism and a∈C(L). Then, a∨a∘=1 and a∧a+=0. Hence, h(a∨a∘)=h(a)∨h(a∘)=h(a)∨(h(a))∘=h(1)=1 and h(a)∧(h(a))+=h(0)=0. Therefore, hC(L)(a)=h(a)∈C(M). It is clear that hC(L) is an injective (0,1) lattice homomorphism. Let b∈C(M). Then, there exists b∈L such that b=h(a)=hC(L)(a) as h is onto. It follows that b∘∘=(h(a))∘∘=h(a∘∘)=h(a)=hC(L)(a). Thus, hC(L) is onto. Obviously, hC(L) preserves ∘ and +. Then, hC(L) is an isomorphism, and hence, C(L)≅C(M). □

For an MS-algebra (L,∘), it is proved in [3] that \(\phantom {\dot {i}\!}(a]_{L}=((a],^{\circ _{a}})\) is an MS-algebra if and only if a∘∈C(L), where (a]={x∈L:x≤a}=[0,a] is a principal ideal of L generated by the element a of L, a unary operation \(\phantom {\dot {i}\!}^{\circ _{a}}\) is defined on (a] by \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\wedge a\) for all x∈(a] and C(L)={x∈L:x∨x∘=1} is the center of L.

For a double MS-algebra (L;∘,+), the answer of the following question is given: Under what conditions a principal ideal (a],a∈L constructs a double MS-algebra?

Theorem 5

Let L be a double MS-algebra. Suppose that a∈C(L), then the relativized algebra \(\phantom {\dot {i}\!}(a]_{L}=((a],\wedge,\vee,^{\circ _{a}},^{+_{a}},a,1)\) is a double MS-algebra, where \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\wedge a\) and \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+} \wedge a\). Conversely, if \(\phantom {\dot {i}\!}(a]_{L}=((a],\wedge,\vee,^{\circ _{a}},^{+_{a}},a,1)\) is a double MS-algebra, then a∈LS.

Proof

Assume that a∈C(L). Hence, a∘∈C(L). Then, by ([13], Theorem 3.5), \(\phantom {\dot {i}\!}((a],\vee,\wedge,^{\circ _{a}},0,a)\) is an MS-algebra, whenever \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\wedge a\). Now, we prove that \(\phantom {\dot {i}\!}((a],\vee,\wedge,^{+_{a}},0,a)\) is a dual MS-algebra, where \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+}\wedge a\) for any x∈(a]. Let x∈(a], we have

$$\begin{array}{@{}rcl@{}} x^{+_{a}\circ+_{a}}\vee x&=&(x^{+}\wedge a)^{+_{a}}\vee x\\ &=&((x^{+}\wedge a)^{+}\wedge a)\vee x\\ &=&((x^{++}\vee a^{+})\wedge a)\vee x \\ &=&(x^{++}\wedge a)\vee(a^{+}\wedge a)\vee x\text{ by distributivity of }L\\ &=&(x^{++}\wedge a)\vee x\text{ as }a^{+}\wedge a=0\\ &=&x\text{ as }x\geq x^{++}\geq x^{++}\wedge a. \end{array} $$

Then, \(\phantom {\dot {i}\!}x\geq x^{+_{a}+_{a}}\). Let x,y∈(a]

$$\begin{array}{@{}rcl@{}} (x\wedge y)^{+_{a}}&=&(x\wedge y)^{\circ}\wedge a\\ &=&(x^{+}\vee y^{\circ+})\wedge a\\ &=&(x^{+}\wedge a)\vee (y^{+}\wedge a)\text{ by distributivity of }L\\ &=&x^{+_{a}}\vee y^{+_{a}}, \end{array} $$

Also, \(\phantom {\dot {i}\!}0^{+_{a}}=a\). Now, for every x∈(a], we have

$$\begin{array}{@{}rcl@{}} x^{\circ_{a}+_{a}}&=&(x^{\circ}\wedge a)^{+_{a}}\\ &=&(x^{\circ}\wedge a)^{+}\wedge a\\ &=&(x^{\circ+}\vee a^{+})\wedge a\\ &=&(x^{\circ\circ}\vee a^{+})\wedge a\\ &=&(x^{\circ\circ}\wedge a)\vee (a^{+}\wedge a)\\ &=&x^{\circ\circ}\wedge a\text{ as }a^{+}\wedge a=0,\\ x^{\circ_{a}\circ_{a}}&=&(x^{\circ}\wedge a)^{\circ}\wedge a\\ &=&(x^{\circ\circ}\vee a^{\circ})\wedge a\\ &=&(x^{\circ\circ}\wedge a)\vee(a^{\circ}\wedge a)\text{ by distributivity}\\ &=&x^{\circ\circ}\wedge a\text{ as }a^{+}\wedge a=0. \end{array} $$

This deduce that \(\phantom {\dot {i}\!}x^{\circ _{a}+_{a}}=x^{\circ \circ }\). Also, we can get \(\phantom {\dot {i}\!}x^{+_{a}\circ _{a}}=x^{+_{a}+_{a}}\). Therefore, \(\phantom {\dot {i}\!}(a]_{L}=((a],\vee,\wedge,^{\circ _{a}},^{+_{a}},0,a)\) is a double MS-algebra.

Conversely, suppose that a∈L, \(\phantom {\dot {i}\!}(a]_{L}=((a],\vee,\wedge,^{\circ _{a}},^{+_{a}},0,a)\) is a double MS-algebra with \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\wedge a\) and \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+}\wedge a\). Since a is the greatest element of (a]L, then \(\phantom {\dot {i}\!}a^{+_{a}}=0\) and \(\phantom {\dot {i}\!}a^{\circ _{a}}=0\). This gives a+∧a=0 and a∘∧a=0, respectively. Consequently, a+∧x++=(a+∧a)++=0++=0 and a∘∘∨a∘=(a∘∧a)∘=0∘=1. Therefore, a is a Stone element of L. □

Similarly for the principal filter [a) of a double MS-algebra, we establish the following result, where [a)={x∈L:x≥a}=[a,1].

Theorem 6

Let L be a double MS-algebra. If a∈C(L), then the relativized algebra \(\phantom {\dot {i}\!}[a)_{L}=([a),\wedge,\vee,^{\circ _{a}},^{+_{a}},a,1)\) is a double MS-algebra, where \(\phantom {\dot {i}\!}x^{\circ _{a}}=x^{\circ }\vee a\) and \(\phantom {\dot {i}\!}x^{+_{a}}=x^{+}\vee a\). Conversely, if \(\phantom {\dot {i}\!}[a)_{L}=([a),\wedge,\vee,^{\circ _{a}},^{+_{a}},a,1)\) is a double MS-algebra, then a∈LS.

Let L1,L2 are double MS-algebras. Then, L1×L2 is a double MS-algebra, where ∘ and + are defined by (x,y)∘=(x∘,y∘) and (x,y)+=(x+,y+). Moreover, \((L_{1}\times L_{1})^{\circ \circ }=L_{1}^{\circ \circ }\times L_{2}^{\circ \circ } \) and C(L1×L2)=C(L1)×C(L2).

As a consequence of Theorem 5 and Theorem 6, we have

Theorem 7

Let L be a double MS-algebra. If a∈C(L), then ((a]L×[a)L,∘,+) is a double MS-algebra, where

(a]L×[a)L={(x,y):x∈(a]L,y∈[a)L},

and

(x,y)∘=(x∘∧a,y∘∨a) and (x,y)+=(x+∧a,y+∨a) for all (x,y)∈(a]L×[a)L.

Now, we introduce the concept of Birkhoff center for a double MS-algebra.

Definition 5

An element a of a double MS-algebra L is called a Birkhoff central element if there exist double MS-algebras L1 and L2 and an isomorphism from L to L1×L2 such that a is mapped to (1,0). The set BC(L) of all Birkhoff central elements of L is called the Birkhoff center.

Theorem 8

Let L be a double MS-algebra. Then, BC(L)=C(L).

Proof

Let a∈BC(L). Then, there exist double MS-algebras L1 and L2 and an isomorphism h from L to L1×L2 such that h(a)=(1,0). By Theorem 4, C(L) is isomorphic to C(L1×L1)=C(L1)×C(L2). Thus, (1,0)∈C(L1)×C(L2). Therefore, a=h−1(1,0)∈C(L) and BC(L)⊆C(L).Conversely, let a∈C(L). Then, by Theorem 5 and Theorem 6, L1=(a]L and L2=[a)L are double MS-algebras, respectively. The direct product L1×L2=(a]L×[a)L is a double MS-algebra, by Theorem 7. Notice that \(1_{L_{1}}=a\) is the greatest element of L1 and \(0_{L_{2}}=a\) is the smallest element of L2. Define h:L→L1×L2 by h(x)=(a∧x,a∨x). It is already seen that h is an isomorphism of L onto L1×L2. Then, \(h(a)=(a,a)=(1_{L_{1}},0_{L_{2}})\) implies a∈BC(L). Therefore, C(L)⊆BC(L). □

Balanced factor congruences of a double MS-algebra

In [14], Badawy investigated the relationship between congruences and de Morgan filters of decomposable MS-algebras. In this section, we study the connection between congruences and central elements of a double MS-algebra.

Let a be an element of a double MS-algebra L. Define a binary relation θa on L by

(x,y)∈θa iff x∨a=y∨a.

Proposition 3

For any two elements a and b of a double MS-algebra L, we have

(1) θa is a lattice congruence on L with Ker θa=(a],

(2) a≤b iff θa⊆θb,

(3) a=b iff θa=θb,

(4) θ0=Δ and θ1=∇,

(5) θa is the smallest lattice congruence containing (0,a).

Proof

(1). Obviously θa is an equivalence relation on L. Let (x,y)∈θa. Then, x∨a=y∨a. For all z∈L, by associativity and commutativity of ∨, we have

$$\begin{array}{@{}rcl@{}} (x\vee z)\vee a&=&x\vee (z\vee a)\\&=&x\vee (a\vee z)\\&=&(x\vee a)\vee z\\ &=&y\vee (a\vee z\\ &=&y\vee(z\vee a)\\ &=&(y\vee z)\vee a, \end{array} $$

and

$$\begin{array}{@{}rcl@{}} (x\wedge z)\vee a&=&(x\vee a)\wedge(z\vee a)\text{ by distributivity of }L\\ &=&(y\vee a)\wedge(z\vee a)\\ &=&(y\wedge z)\vee a\text{ by distributivity of }L. \end{array} $$

Then, by Theorem 2, θa is a lattice congruence on L. Now

$$\begin{array}{@{}rcl@{}} Ker~\theta_{a}&=&\{x\in L:(0,x)\in \theta_{a}\}\\ &=&\{x\in L:a=0\vee a=x\vee a\}\\ &=&\{x\in L:x\leq a\}=[a). \end{array} $$

(2) Let a≤b and (x,y)∈θa. Hence, x∨a=y∨a. Then, x∨a∨b=y∨a∨b implies x∨b=y∨b. This gives (x,y)∈θa and θa⊆θb. Conversely, let θa⊆θb. Since (a∧b)∨a=a=a∨a, then (a∧b,a)∈θa. By hypotheses, (a∧b,a)∈θb. Then, (a∧b)∨b=a∨b implies b=a∨b. Therefore, a≤b.

(3) It is obvious.

(4) Since for any (x,y)∈θ0, we have x=y. Then, θ0=Δ. For all x,y∈L, we have x∨1=1=y∨1 and hence (x,y)∈θ1. Hence, θ1=∇.

(5) Let θ be a lattice congruence containing (0,a). Suppose that (x,y)∈θa. Then, x∨a=y∨a. Since (x,x),(0,a)∈θ, then (x,x∨a)∈θ. Also, (y,y),(0,a)∈θ give (y,y∨a)∈θ. Then, (x,x∨a),(x∨a,y)∈θ imply (x,y)∈θ. So, θa⊆θ. □

Proposition 4

For any two elements a and b of a double MS-algebra L, we have

(1) θa∧b=θa∩θb,

(2) θa∨b=θa∨θb,

(3) θa∘θb=θb∘θa,

(4) θa∘θb=θa∨θb,

Proof

(1). Since a∧b≤a,b, then by Proposition 3(2), θa∧b⊆θa,θb. Thus, θa∧b⊆θa∩θb. Conversely, let (x,y)∈θa∩θb. Then

$$\begin{array}{@{}rcl@{}} (x,y)\in\theta_{a}\cap\theta_{b}&\Rightarrow&(x,y)\in\theta_{a} \hbox { and } (x,y)\in\theta_{b}\\ &\Rightarrow&x\vee a=y\vee a\text{ and }x\vee b=y\vee b\\ &\Rightarrow&(x\vee a)\wedge(x\vee b)=(y\vee a)\wedge(y\vee b)\\ &\Rightarrow&x\vee(a\wedge b)=y\vee(a\wedge b)\text{ by distributivity of }L\\ &\Rightarrow&(x,y)\in\theta_{a\wedge b}. \end{array} $$

Therefore, θa∩θb⊆θa∧b and θa∧b=θa∩θb.

(2) Since a,b≤a∨b, then θa,θb⊆θa∨b. Hence, θa∨b is an upper bound of θa and θb. Assume that θc is an upper bound of θa and θb. Then, by Proposition 3(2), θa,θb⊆θc imply that a,b≤c. We prove that θa∨b⊆θc. Let (x,y)∈θa∨b. Then, x∨a∨b=y∨a∨b. Hence, x∨a∨b∨c=y∨a∨b∨c implies x∨c=y∨c and (x,y)∈θc. This shows that θa∨b is the least upper bound of θa and θb, that is, θa∨b=θa∨θb.

(3) Let (x,y)∈θa∘θb. Then, there exists q∈L such that (x,q)∈θa and (q,y)∈θb. Thus, x∨a=q∨a and q∨b=y∨b. Put s=(a∨y)∧(b∨x). Now

$$\begin{array}{@{}rcl@{}} a\vee s&=&a\vee\{(a\vee y)\wedge(b\vee x)\}\\ &=&(a\vee a\vee y)\wedge(a\vee b\vee x)\text{ by distributivity of }L\\ &=&(a\vee y)\wedge(a\vee b\vee q)\text{ as }a\vee q=a\vee x\\ &=&(a\vee y)\wedge(a\vee b\vee y)\text{ as }b\vee q=b\vee y\\ &=&a\vee\{y\wedge(b\vee y)\}\text{ by distributivity of }L\\ &=&a\vee y\text{ by the absorbtion identity}. \end{array} $$

Then, (s,y)∈θa. Also

$$\begin{array}{@{}rcl@{}} b\vee s&=&b\vee\{(a\vee y)\wedge(b\vee x)\}\\ &=&(a\vee b\vee y)\wedge(b\vee x)\text{ by distributivity of }L\\ &=&(b\vee a\vee q)\wedge(b\vee x)\text{ as }b\vee q=b\vee y\\ &=&(b\vee a\vee x)\wedge(b\vee x)\text{ as }x\vee a=q\vee a\\ &=&b\vee\{(a\vee x)\wedge x\}\text{ by distributivity of }L\\ &=&b\vee x\text{ by the absorbtion identity}. \end{array} $$

Then, (x,s)∈θb. Therefore, (x,y)∈θb∘θa and θa∘θb⊆θb∘θa. Conversely, let (x,y)∈θb∘θa. Then, there exists s∈L such that (x,s)∈θb and (s,y)∈θa. Set t=(b∨y)∧(a∨x). Then, we can get a∨t=a∨x and b∨t=b∨y which means (x,t)∈θa and (t,y)∈θb. Therefore, (x,y)∈θa∘θb. So, θb∘θa⊆θa∘θb. (4) Let (x,y)∈θa∘θb. Then, there exists q∈L such that (x,q)∈θa and (q,y)∈θb. Then, x∨a=q∨a and q∨b=y∨b. Using associativity and commutativity of ∨, we get

$$\begin{array}{@{}rcl@{}} (a\vee b)\vee x=(a\vee x)\vee b =(a\vee q)\vee b =a\vee(q\vee b) =a\vee(y\vee b) =(a\vee b)\vee y. \end{array} $$

Then, (x,y)∈θa∨b. Conversely, let (x,y)∈θa∨b. Then, a∨b∨x=a∨b∨y. Set q=(a∨x)∧(b∨y). We have

$$\begin{array}{@{}rcl@{}} a\vee q&=&a\vee \{(a\vee x)\wedge(b\vee y)\} \\ &=&(a\vee x)\wedge (a\vee b\vee y)\text{ by distributivity of }L\\ &=&(a\vee x)\wedge (a\vee b\vee x)\\ &=&a\vee x\text{ as }a\vee x\leq a\vee b\vee x. \end{array} $$

Then, (x,q)∈θa. Also, we can get (q,y)∈θb. Therefore, (x,y)∈θa∘θb and θa∨b⊆θa∘θb. □

Theorem 9

For any two elements a and b of a double MS-algebra L, we have

(1) θa is compatible with ∘ if and only if a∨a∘=1,

(2) θa is compatible with + if and only if a+∧a++=0,

(3) θa is a congruence on L if and only if a∈C(L).

Proof

(1). Let (x,y)∈θa and a∘∨a=1. Then, x∨a=y∨a. We prove that (x,y)∈θa implies (x∘,y∘)∈θa.

$$\begin{array}{@{}rcl@{}} (x,y)\in\theta_{a}&\Rightarrow&x\vee a=y\vee a\\ &\Rightarrow&x^{\circ}\wedge a^{\circ}=(x\vee a)^{\circ}=(y\vee a)^{\circ}=y^{\circ}\wedge a^{\circ}\text{ by Theorem 1(5)}\\ &\Rightarrow&(x^{\circ}\wedge a^{\circ})\vee a=(y^{\circ}\wedge a^{\circ})\vee a\text{ by joining two sides with }a\\ &\Rightarrow&(x^{\circ}\vee a)\wedge(a^{\circ}\vee a)=(x^{\circ}\vee a)\wedge(a^{\circ}\vee a)\text{ by the distributivity of }L\\ &\Rightarrow&x^{\circ}\vee a=x^{\circ}\vee a\text{ as }a^{\circ}\vee a=1\\ &\Rightarrow&(x^{\circ},y^{\circ})\in\theta_{a} \end{array} $$

Then, (x∘,y∘)∈θa. Conversely, let θa is compatible with ∘. Since (0,a)∈θa by Proposition 3(5), then (1,a∘))∈θa. Hence, (a,a),(1,a∘))∈θa implies (1,a∨a∘)∈θa. Therefore, 1=1∨a=a∨(a∨a∘)=a∨b.

(2) Let a+∧a++=0. Using the properties of dual MS-algebra (L;+) and Proposition 1, we get a+∨a≥a+∨a++=(a+∧a++)+=0+=1 and hence a+∨a=1. Now, let (x,y)∈θa. We have

$$\begin{array}{@{}rcl@{}} (x,y)\in\theta_{a}&\Rightarrow&x\vee a=y\vee a\\ &\Rightarrow&x^{+}\wedge a^{+}=(x\vee a)^{+}=(y\vee a)^{+}=y^{+}\wedge a^{+}\text{ by Proposition 1(5)}\\ &\Rightarrow&(x^{+}\wedge a^{+})\vee a=(y^{+}\wedge a^{+})\vee a\text{ by joining two sides with }a\\ &\Rightarrow&(x^{+}\vee a)\wedge(a^{+}\vee a)=(x^{+}\vee a)\wedge(a^{+}\vee a)\text{ by the distributivity of }L\\ &\Rightarrow&x^{+}\vee a=x^{+}\vee a\text{ as }a^{+}\vee a=1. \end{array} $$

Then, (x+,y+)∈θa. Conversely, let θa is compatible with +. Then, (0,a)∈θa implies (1,a+))∈θa. Since (a,a),(1,a+))∈θa, then (1,a∨a+)∈θa. Hence, 1=1∨a=a∨a+. It follows that a+∧a++=(a∨a+)+=1+=0.

(3) As a∈C(L), then a∨a∘=1, a∧a+=0, and a=a∘∘, the proof follows (1) and (2). □

Now, we introduce the concept of factor congruences for double MS-algebras.

Definition 6

A congruence θ on a double MS-algebra L is called a factor congruence if there is a congruence ψ on L such that θ∧ψ=Δ, θ∨ψ=∇ and θ permutes with ψ.

Theorem 10

Let L be a double MS-algebra and θ a congruence on L. Then, θ is a factor congruence on L if and only if θ=θa for some a∈C(L).

Proof

Let a∈C(L). Hence, a∘∈C(L). Using Theorem 9(3), we deduce that θa and \(\phantom {\dot {i}\!}\theta _{a^{\circ }}\) are congruences on L. Hence, we get

$$\begin{array}{@{}rcl@{}} \theta_{a}\vee\theta_{a^{\circ}}&=&\theta_{a\vee a^{\circ}}\text{ by Proposition 4(2)}\\ &=&\theta_{1}\text{ as }a\vee a^{\circ}=1\\ &=&\nabla\text{ by Proposition 3(4)},\\ \theta_{a}\cap\theta_{a^{\circ}}&=&\theta_{a\wedge a^{\circ}}\text{ by Proposition 4(1)}\\ &=&\theta_{0}\text{ as }a\wedge a^{\circ}=0\\ &=&\Delta\text{ by Proposition 3(4)},\\ \theta_{a}\circ\theta_{a^{\circ}}&=&\theta_{a^{\circ}}\circ\theta_{a}\text{ by Proposition 4(3)}. \end{array} $$

Therefore, θa is a factor congruence on L, whenever a∈C(L). Conversely, let θ be a factor congruence on L. Then, there exists a congruence ψ on L such that θ∨ψ=∇ and θ∩ψ=Δ. Since (0,1)∈∇=θ∨ψ=θ∘ψ, then there exists x∈L such that (0,x)∈θ and (x,1)∈ψ. Thus, (0,x∘∘)∈θ and (x∘∘,1)∈ψ. We prove that \(\phantom {\dot {i}\!}\theta =\theta _{x^{\circ \circ }}\) such that x∘∘∈C(L). Since (0,x∘∘)∈θ, then by Proposition 3(5), \(\theta _{x^{\circ \circ }}\subseteq \theta \). Now, let (p,q)∈θ. Then, (p,q),(x∘∘,x∘∘)∈θ implies (p∨x∘∘,q∨x∘∘)∈θ. Since (x∘∘,1),(p,p),(q,q)∈ψ, then (x∘∘∨p,1),(x∘∘∨q,1)∈ψ. Hence, (x∘∘∨p,x∘∘∨q)∈ψ. Therefore, (x∘∘∨p,x∘∘∨q)∈θ∩ψ=Δ. It follows that x∘∘∨p=x∘∘∨q and hence \(\phantom {\dot {i}\!}(p,q)\in \theta _{x^{\circ \circ }}\). So, θ⊆θ∘∘ and \(\phantom {\dot {i}\!}\theta =\theta _{x^{\circ \circ }}\). This deduce that \(\phantom {\dot {i}\!}\theta _{x^{\circ \circ }}\) is a congruence on L. So, by Theorem 9(3), x∘∘∈C(L). □

Now, we introduce the concept of balanced factor congruences of a double MS-algebra.

Definition 7

A congruence θ on a double MS-algebra L is called balanced if \((\theta \vee \alpha)\cap (\theta \vee \acute {\alpha })=\theta \) for all factor congruence α and its complement \(\acute {\alpha }\). The set B(L) of all balanced factor congruences which admit a balanced complement is called the Boolean center of L.

Example 2

Consider the double MS-algebra L as in Example 1. Factor congruences on L are given as follows:

$$\begin{array}{@{}rcl@{}} \theta_{0}=\Delta, \theta_{1}=\nabla, \theta_{a}=\{\{0,c,a\},\{x,y,z\},\{b,d,1\}\}, \theta_{b}=\{\{0,x,b\},\{c,y,d\},\{a,z,1\}\}. \end{array} $$

It is observed that the Boolean lattice B(L), of all balanced factor congruences is B(L)={θ0,θa,θb,θ1} which is represented in Fig. 5. Clearly C(L) and B(L) are isomorphic Boolean lattices.

Fig. 5
figure 5

B(L)

Lemma 1

Let L be a double MS-algebra and x∈C(L). Then, θx is balanced.

Proof

Let α be a factor congruence on L and \(\acute {\alpha }\) be its complement. Using Theorem 10, there exist a,b∈C(L) such that α=θa and \(\acute {\alpha }=\theta _{b}\). Hence, \(\alpha \cap \acute {\alpha }=\Delta \) and \(\alpha \vee \acute {\alpha }=\nabla \). We have

$$\begin{array}{@{}rcl@{}} (\theta_{x}\vee\alpha)\cap(\theta_{x}\vee\acute{\alpha})&=&(\theta_{x}\vee\theta_{a})\cap(\theta_{x}\vee\theta_{b})\\ &=&\theta_{x\vee a}\cap\theta_{x\vee b}\text{ by Proposition 4(2)}\\ &=&\theta_{(x\vee a)\wedge(x\vee b)}\text{ by Proposition 4(1)}\\ &=&\theta_{x\vee(a\wedge b)}\text{ by distributivity of }L\\ &=&\theta_{x}\vee(\theta_{a}\cap\theta_{b})\text{ by Proposition 4(2) and (1), respectively}\\ &=&\theta_{x}\vee(\alpha\cap\acute{\alpha})\\ &=&\theta_{x}\vee\Delta\hbox { as }\alpha\cap\acute{\alpha}=\Delta\\ &=&\theta_{x}\hbox { as }\Delta\subseteq\theta_{x}\text{for all }x\in L. \end{array} $$

Then, θx is balanced. □

We close this section with the following two important results.

Theorem 11

Let L be a double MS-algebra. Then, the Boolean center B(L) of L is precisely the set {θa:a∈C(L)}.

Theorem 12

Let L be a double MS-algebra. Then, the Boolean center B(L) is a Boolean algebra and the mapping a↦θa is an isomorphism of C(L) onto B(L).

Proof

The set of all balanced factor congruences of L is B(L)={θa:a∈C(L)} by Theorem 11. It is clear that θ1=∇ is the greatest element of B(L) and θ0=Δ is the smallest element of B(L) by Proposition 3(4). Also, by Proposition 4(1),(2), respectively, we have θa∩θb=θa∧b and θa∨θb=θa∨b for all θa,θb∈B(L). Then, (B(L);∩,∨,θ0,θ1) is a bounded lattice. For all θa,θb,θc∈B(L), by distributivity of C(L), we get θa∩(θb∨θc)=θa∩θb∨c=θa∧(a∨b)=θ(a∨b)∧(a∨c)=θa∨b∩θa∨c=(θa∨θb)∩(θa∨θc). Thus, B(L) is a distributive lattice. The complement of θa is \(\phantom {\dot {i}\!}\theta _{a^{\circ }}\). Then, B(L) is a Boolean algebra. The proof of the rest part of this theorem is straightforward. □

References

  1. Blyth, T. S, Varlet, J. C: On a common abstraction of de Morgan algebras and Stone algebras. Proc. Roy. Soc. Edinburgh. 94A, 301–308 (1983).

    Article  MathSciNet  Google Scholar 

  2. Blyth, T. S, Varlet, J. C: Subvarieties of the class of MS-algebras. Proc. Roy. Soc. Edinb. 95 A, 157–167 (1983).

    Article  MathSciNet  Google Scholar 

  3. Badawy, A, Guffova, D, Haviar, M: Triple construction of decomposable MS-algebras. Acta Univ. Palacki. Olomuc. Fac. Rer. Nat. Math. 51(2), 53–65 (2012).

    MathSciNet  MATH  Google Scholar 

  4. Badawy, A: d L-Filters of principal MS-algebras. J. Egypt. Math. Soc. 23, 463–469 (2015).

    Article  Google Scholar 

  5. Badawy, A, El-Fawal, R: Homomorphism and subalgebras of decomposable MS-algebras. J. Egypt. Math. Soc. 25, 119–124 (2017).

    Article  MathSciNet  Google Scholar 

  6. Blyth, T. S, Varlet, J. C: Double MS-algebras. Proc. Roy. Soc. Edinb. 94, 157–169 (1984).

    MATH  Google Scholar 

  7. Congwen, L: The class of double MS-algebras satisfying the complement property. Bull. Soc. Sci. Liège. 70(1), 51–59 (2001).

    MathSciNet  Google Scholar 

  8. Haviar, M: Affine complete algebras abstracting double Stone and Kleene algebras. Acta Univ. M. Belii. Math. 4, 39–52 (1996).

    MathSciNet  MATH  Google Scholar 

  9. Wang, L: Congruence pairs of algebras abstracting double Kleene and Stone algebras. Chamchuri J. of Math. 5, 1–9 (2013).

    MathSciNet  MATH  Google Scholar 

  10. Badawy, A: Regular double MS-algebras. Appl. Math. Inf. Sci. 11(2), 115–122 (2017).

    Article  MathSciNet  Google Scholar 

  11. Blyth, T. S, Varlet, J. C: Ockham Algebras (1994).

  12. Blyth, T. S: Lattices and ordered algebric structures (2005).

  13. Badawy, A, Atallah, M: MS-intervals of an MS -algebra. Hacet. J. of Math. and Stat (2019). in press.

  14. Badawy, A.: Congruences and de Morgan filters of decomposable MS-algebras. SE Asian Bull. Math. 43, 13–25 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank the referees for valuable comments and suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to Abd El-Mohsen Badawy.

Ethics declarations

Competing interests

The author declares that he has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawy, A.EM. Balanced factor congruences of double MS-algebras. J Egypt Math Soc 27, 6 (2019). https://doi.org/10.1186/s42787-019-0008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s42787-019-0008-y

Keywords

Mathematics Subject Classification