Skip to main content

Separation Problem for Bi-Harmonic Differential Operators in Lp− spaces on Manifolds

Abstract

Consider the bi-harmonic differential expression of the form

\( A=\triangle _{M}^{2}+q\ \)

on a manifold of bounded geometry (M,g) with metric g, where M is the scalar Laplacian on M and q≥0 is a locally integrable function on M.

In the terminology of Everitt and Giertz, the differential expression A is said to be separated in Lp(M), if for all uLp(M) such that AuLp(M), we have quLp(M). In this paper, we give sufficient conditions for A to be separated in Lp(M),where 1<p<.

Introduction

In the terminology of Everitt and Giertz, the concept of separation of differential operators was first introduced in [1]. Several results of the separation problem are given in a series of pioneering papers [25]. For more backgrounds concerning to our problem, see [68]. Atia et al. [9] have studied the separation property of the bi-harmonic differential expression \(A=\triangle _{M}^{2}+q\ \), on a Riemannian manifold (M,g) without boundary in L2(M), where M is the Laplacian on M and \(0\leq q\in L_{loc}^{2}\left (M\right) \ \) is a real-valued function.

Recently, Atia [10] has studied the sufficient conditions for the magnetic bi-harmonic differential operator B of the form \(B=\triangle _{E}^{2}+q\ \) to be separated in L2(M), on a complete Riemannian manifold (M,g) with metric g, where E is the magnetic Laplacian on M and q≥0 is a locally square integrable function on M. In [11], Milatovic has studied the separation property for the Schrodinger-type expression of the form L=M+q, on non-compact manifolds in Lp(M). Let (M,g) be a Riemannian manifold without boundary, with metric g (i.e., M is a Cmanifold without boundary and g=(gjk) is a Riemannian metric on M) and dimM=n. We will assume that M is connected. We will also assume that we are given a positive smooth measure dμ, i.e., in any local coordinates x1,x2,…,xn, there exists a strictly positive C−density ρ(x) such that dμ=ρ(x)dx1dx2dxn. In the sequel, L2(M) is the space of complex-valued square integrable functions on M with the inner product:

$$ \left(u,v\right) =\int\limits_{M}\left(uv^{-}\right) d\mu, $$
(1)

and . is the norm in L2(M) corresponding to the inner product (1). We use the notation L2(Λ1TM) for the space of complex-valued square integrable 1-forms on M with the inner product:

$$ \left(W,\Psi \right)_{L^{2}\left(\Lambda^{1}T^{\ast }M\right) }=\int\limits_{M}\left\langle W,\overline{\Psi }\right\rangle d\mu, $$
(2)

where for 1-forms W=Wjdxj and Ψ=Ψkdxk, we define 〈W,Ψ〉=gjkWjΨk, where (gjk) is the inverse matrix to (gjk), and \(\overline {\Psi }=\overline {\Psi _{k}}dx^{k}\ \)(above, we use the standard Einstein summation convention).

The notation \(\left \Vert.\right \Vert _{L^{2}\left (\Lambda ^{1}T^{\ast }M\right) }\) stands for the norm in L2(Λ1TM) corresponding to the inner product (2). To simplify notations, we will denote the inner products (1) and (2) by (.,.). In the sequel, for 1≤p<,Lp(M) is the space of complex-valued p-integrable functions on M with the norm:

$$ \left\Vert u\right\Vert_{p}=\left(\int\limits_{M}\left\vert u\right\vert^{p}~d\mu \right)^{\frac{1}{p}}, $$
(3)

In what follows, by C1(M), we denote the space of continuously differentiable complex-valued functions on M, and by C(M), we denote the space of smooth complex-valued functions on M, by \(C_{c}^{\infty }\left (M\right) -\)the space of smooth compactly supported complex-valued functions on M, by Ω1(M)− the space of smooth 1-forms on M, and by \(\Omega _{c}^{1}\left (M\right)-\) the space of smooth compactly supported 1-forms on M. In the sequel, the operator d:C(M)→Ω1(M) is the standard differential and d:Ω1(M)→C(M) is the formal adjoint of d defined by the identity: \(\left (du,v\right)_{L^{2}\left (\Lambda ^{1}T^{\ast }M\right) }=\left (u,d^{\ast }v\right),\ \ \ \ \ \ \ \ u\in C_{c}^{\infty }\left (M\right),~v\in \Omega ^{1}\left (M\right).\)By ΔM=dd, we will denote the scalar Laplacian on M. We will use the product rule for d as follows:

$$ d^{\ast }(uv)=ud^{\ast }v-\left\langle du,v\right\rangle,~u\in C^{1}\left(M\right),~v\in \Omega^{1}\left(M\right). $$
(4)

We consider the bi-harmonic differential expression:

$$ A=\triangle_{M}^{2}+q,\ $$
(5)

where q≥0 is a locally integrable function on M.

Definition 1

The set Dp:

Let A be as in (5), we will use the notation

$$ D_{p}=\{u\in L^{p}\left(M\right) :Au\in L^{p}\left(M\right) \}. $$
(6)

Remark 1

In general, it is not true that for all uDp, we have \(\triangle _{M}^{2}u\in L^{p}\left (M\right) \) and quLp(M) separately. Using the terminology of Everitt and Giertz, we will say that the differential expression \(A=\triangle _{M}^{2}+q\) is separated in Lp(M) when the following statement holds true: for all uDp, we have quLp(M).

We will give sufficient conditions for A to be separated in Lp(M). Assume that the manifold (M,g) has bounded geometry, that is

(a) infxMrinj(x)>0, where rinj(x) is the injectivity radius of (M,g),

(b) all covariant derivatives jR of the Riemann curvature tensor R are bounded: |jR|≤Kj, j=0,1,2,...,where Kj are constants.

Let (M,g) be a manifold of bounded geometry. Then, there exists a sequence of functions (called cut-off functions) {ϕj} in \( C_{c}^{\infty }\left (M\right) \) such that for all j=1,2,3...,

(i) 0≤ϕj≤1;

(ii) ϕjϕj+1;

(iii) for every compact set SM, there exists j such that ϕj|S=1;

(iv) supxM|dϕj|≤C1, supxM|Mϕj|≤C1, and \(\sup _{x\in M}\left \vert \triangle _{M}^{2}\phi _{j}\right \vert \leq C_{1},\) where C1>0 is a constant independent of j. For the construction of ϕj satisfying the above properties, see [12].

Preliminary lemma

In the following, we introduce a preliminary lemma which will be used in the sequel.

Lemma 1

Assume that (M,g)is a connected C−Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that there exist a constant γ such that 0<γqC1(M), and

$$ \left\vert \triangle_{M}q(x)\right\vert \leq \sigma q^{\frac{3}{2} }(x),~for~all~x\in M, $$
(7)

where \(0<\sigma <\frac {2}{\sqrt {p-1}},~1< p<\infty \), and |Mq(x)| denotes the norm of \(\triangle _{M}q(x)\in T_{x}^{\ast }M\) with respect to the inner product in \(T_{x}^{\ast }M\) induced by the metric g. Assume that fLp(M) and that uLp(M)∩C1(M) is a solution of the equation

$$ \triangle_{M}^{2}u+qu=f. $$
(8)

Additionally assume that for all \(k\in \left [ -\frac {1}{2},p-1\right ],\)

$$ \left\vert u\right\vert^{p}q^{k+\frac{1}{2}}\in L^{1}\left(M\right) \text{ and }{\lim}_{j\rightarrow \infty }\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) =0. $$
(9)

Then, the following properties hold:

$$ {\lim}_{j\rightarrow \infty }\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) =0, $$
(10)

and

$$ q^{k+1}\left\vert u\right\vert^{p}\in L^{1}\left(M\right),\text{ and } \int_{M}q^{k+1}\left\vert u\right\vert^{p}~~d\mu \leq C_{1}\left\Vert f\right\Vert_{p}^{p}, $$
(11)

for all \(k\in \left [ -\frac {1}{2},p-1\right ] \), where {ϕj} is as in (i-iv) and C1≥0 is a constant independent of u.

Proof

We first prove (10): Since uLp(M)∩C1(M), using integration by parts, product rule of d, the definition of ΔM=dd, and the formula \(d(u_{\epsilon })=\frac {udu}{ u_{\epsilon }},\) we have

$$\begin{array}{@{}rcl@{}} \left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u,q^{k}u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(du,d\left(q^{k}u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(dudq^{k},u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(duq^{k}du,(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \\ &&+(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(duq^{k}du,u^{2}(u_{\epsilon })^{p-4}\triangle_{M}\phi_{j}\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(du,q^{k}u(u_{\epsilon })^{p-2}d(\triangle_{M}\phi_{j})\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(du,dq^{k}u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right)\\&&\quad +{\lim}_{\epsilon \rightarrow 0^{+}}\left(du,q^{k}u(u_{\epsilon })^{p-2}d(\triangle_{M}\phi_{j})\right) \\ &&+(p-1)\left(du,q^{k}du\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,d^{\ast }\left(dq^{k}u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,d^{\ast }\left(q^{k}u(u_{\epsilon })^{p-2}d(\triangle_{M}\phi_{j})\right) \right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(u,d^{\ast }\left(q^{k}du(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \right), \end{array} $$

using the product rule (4) of d, we get

$$\begin{array}{@{}rcl@{}} \left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) &=&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(ud\left(u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right),dq^{k}\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\triangle_{M}q^{k}\right) \\ &&-(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(ud\left(q^{k}(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right),du\right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(u,q^{k}(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\triangle_{M}u\right) \\ &&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(ud\left(q^{k}u(u_{\epsilon })^{p-2}\right),d(\triangle_{M}\phi_{j})\right) \\&&\quad+{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,q^{k}u(u_{\epsilon })^{p-2}\triangle_{M}^{2}\phi_{j}\right), \end{array} $$

using the product rule of d again, we get

$$\begin{array}{@{}rcl@{}} \left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) &=&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(ud\left(\triangle_{M}\phi_{j}\right),u(u_{\epsilon })^{p-2}dq^{k}\right) \\ &&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(u\triangle_{M}\phi_{j}du,(u_{\epsilon })^{p-2}dq^{k}\right) \\ &&-(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(u\triangle_{M}\phi_{j}du,u^{2}(u_{\epsilon })^{p-4}dq^{k}\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\triangle_{M}q^{k}\right) \\&&\quad+{\lim}_{\epsilon \rightarrow 0^{+}}\left(u,q^{k}u(u_{\epsilon })^{p-2}\triangle_{M}^{2}\phi_{j}\right) \end{array} $$
$$\begin{array}{@{}rcl@{}} &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(udq^{k},(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}du\right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(uq^{k}d\left(\triangle_{M}\phi_{j}\right),(u_{\epsilon })^{p-2}du\right) \\ &&-(p-1)(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(uq^{k}du,u(u_{\epsilon })^{p-4}\triangle_{M}\phi_{j}du\right) \\ &&-(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(u,q^{k}(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\triangle_{M}u\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(udq^{k},u(u_{\epsilon })^{p-2}d(\triangle_{M}\phi_{j})\right) \\ &&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(udq^{k}du,(u_{\epsilon })^{p-2}d(\triangle_{M}\phi_{j})\right) \\ &&-(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(udq^{k}du,u^{2}(u_{\epsilon })^{p-4}d(\triangle_{M}\phi_{j})\right). \end{array} $$

Hence, we obtain

$$\begin{array}{@{}rcl@{}} p\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) &=&\left(u\triangle_{M}q^{k},u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +\left(u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}^{2}\phi_{j}\right) \\ &&-(p-1)(p-2)\left(uq^{k}du,u\left\vert u\right\vert^{p-4}\triangle_{M}\phi_{j}du\right). \end{array} $$

Taking the limit as j, we get

$$\begin{array}{@{}rcl@{}} p{\lim}_{j\rightarrow \infty }\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) &=&{\lim}_{j\rightarrow \infty }\left(u\triangle_{M}q^{k},u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) \\&&\quad+{\lim}_{j\rightarrow \infty }\left(u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}^{2}\phi_{j}\right) \\ &&-(p-1)(p-2){\lim}_{j\rightarrow \infty }\left(uq^{k}du,u\left\vert u\right\vert^{p-4}\triangle_{M}\phi_{j}du\right). \end{array} $$

By properties of {ϕj}, it follows that for all xM,ϕj(x)→1, dϕj(x)→0, Mϕj(x)→0 and \(\triangle _{M}^{2}\phi _{j}(x)\rightarrow 0\) as j, we apply dominated convergence theorem by using the assumption (7), the assumption \(\left \vert u\right \vert ^{p}q^{k+\frac {1}{2}}\in L^{1}\left (M\right) \) and the condition (iv), we obtain (10).

We now prove (11): Since uLp(M)∩C1(M), using (8), integration by parts, product rule of d, the definition of ΔM=dd, and the formula \(d(u_{\epsilon })= \frac {udu}{u_{\epsilon }}\), we have

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &=&\left(\triangle_{M}^{2}u,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}^{2}u,q^{k}u(u_{\epsilon })^{p-2}\phi_{j}\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(d\left(\triangle_{M}u\right),d\left(q^{k}u(u_{\epsilon })^{p-2}\phi_{j}\right) \right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \end{array} $$
$$\begin{array}{@{}rcl@{}} &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(d\left(\triangle_{M}u\right),q^{k}u(u_{\epsilon })^{p-2}d\phi_{j}\right) +{\lim}_{\epsilon \rightarrow 0^{+}}\left(d\left(\triangle_{M}u\right),q^{k}(u_{\epsilon })^{p-2}\phi_{j}du\right) \\ &&+(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(d\left(\triangle_{M}u\right),q^{k}u^{2}(u_{\epsilon })^{p-4}\phi_{j}du\right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(d\left(\triangle_{M}u\right),u(u_{\epsilon })^{p-2}\phi_{j}dq^{k}\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \\ &=&\left(d\left(\triangle_{M}u\right),q^{k}u\left\vert u\right\vert^{p-2}d\phi_{j}\right) +\left(d\left(\triangle_{M}u\right),u\left\vert u\right\vert^{p-2}\phi_{j}dq^{k}\right) \\ &&+(p-1)\left(d\left(\triangle_{M}u\right),q^{k}\left\vert u\right\vert^{p-2}\phi_{j}du\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \\ &=&{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u,d^{\ast }\left(q^{k}u(u_{\epsilon })^{p-2}d\phi_{j}\right) \right) +(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u,d^{\ast }\left(q^{k}(u_{\epsilon })^{p-2}\phi_{j}du\right) \right) \\ &&+{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u,d^{\ast }\left(u(u_{\epsilon })^{p-2}\phi_{j}dq^{k}\right) \right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right), \end{array} $$

using the product rule (4) of d, we get

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &\,=\,&-\!{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}ud\left(q^{k}u(u_{\epsilon })^{p-2}\right),d\phi_{j}\right) \,+\,{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u,q^{k}u(u_{\epsilon })^{p-2}\triangle_{M}\phi_{j}\right) \\ &&\,-\,{\lim}_{\epsilon \rightarrow 0^{+}}\left(\! \triangle_{M}ud\left(u(u_{\epsilon })^{p-2}\phi_{j}\right),dq^{k}\right) \,+\,{\lim}_{\epsilon \rightarrow 0^{+}}\left((\triangle_{M}u)u(u_{\epsilon })^{p-2}\phi_{j},\triangle_{M}q^{k}\!\right) \\ &&-(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}ud\left(q^{k}(u_{\epsilon })^{p-2}\phi_{j}\right),du\right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}uq^{k}(u_{\epsilon })^{p-2}\phi_{j},\triangle_{M}u\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right), \end{array} $$

using the product rule of d again, we get

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &=&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}udq^{k},u(u_{\epsilon })^{p-2}d\phi_{j}\right) -{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}uq^{k}du,(u_{\epsilon })^{p-2}d\phi_{j}\right) \\ &&-(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}uq^{k}du,u^{2}(u_{\epsilon })^{p-4}d\phi_{j}\right) \\ &&+\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}ud\phi_{j},u(u_{\epsilon })^{p-2}dq^{k}\right) \\ &&-{\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u\phi_{j}du,(u_{\epsilon })^{p-2}dq^{k}\right) +\left((\triangle_{M}u)u\left\vert u\right\vert^{p-2}\phi_{j},\triangle_{M}q^{k}\right) \\ &&-(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}u\phi_{j}du,u^{2}(u_{\epsilon })^{p-4}dq^{k}\right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}udq^{k},(u_{\epsilon })^{p-2}\phi_{j}du\right) \\ &&+(p-1){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}uq^{k},(u_{\epsilon })^{p-2}d\phi_{j}du\right) \\ &&-(p-1)(p-2){\lim}_{\epsilon \rightarrow 0^{+}}\left(\triangle_{M}uq^{k}du,u(u_{\epsilon })^{p-4}\phi_{j}du\right) \\ &&+(p-1)\left(\triangle_{M}uq^{k}\left\vert u\right\vert^{p-2}\phi_{j},\triangle_{M}u\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right). \end{array} $$

Hence, we obtain

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &=&-(p-1)(p-2)\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) \notag \\ &&+\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +(p-1)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) \notag \\ &&+\left(\triangle_{M}u,u\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}q^{k}\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right). \end{array} $$
(12)

We now estimate the term (Mu,u|u|p−2ϕjMqk).

Using the assumption (7), we get

$$ \left\vert \triangle_{M}q^{k}\right\vert \leq \sigma \left\vert k\right\vert q^{k+\frac{1}{2}}. $$
(13)

Using (13) and the inequality \(ab\leq (p-1)a^{2}+\frac {b^{2}}{4(p-1)},\) for all 0≤a,bR, we have

$$\left\vert \left(\triangle_{M}u,u\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}q^{k}\right) \right\vert \leq \int\limits_{M}\left\vert \triangle_{M}u\right\vert \left\vert \triangle_{M}q^{k}\right\vert \left\vert u\right\vert^{p-1}\phi_{j}~d\mu $$
$$\begin{array}{@{}rcl@{}} &\leq &\int\limits_{M}\sigma \left\vert \triangle_{M}u\right\vert \left\vert k\right\vert q^{k+\frac{1}{2}}\left\vert u\right\vert^{p-1}\phi_{j}~d\mu \notag \\ &=&\int\limits_{M}\left(\left\vert \triangle_{M}u\right\vert \left\vert u\right\vert^{\frac{p-2}{2}}\phi_{j}^{\frac{1}{2}}q^{\frac{k}{2}}\right) \left(\sigma \left\vert k\right\vert q^{\frac{k+1}{2}}\phi_{j}^{\frac{1}{2} }\left\vert u\right\vert^{\frac{p}{2}}\right) ~d\mu \notag \\ &\leq &(p-1)\int\limits_{M}\left\vert \triangle_{M}u\right\vert^{2}\left\vert u\right\vert^{p-2}\phi_{j}q^{k}~d\mu +\frac{\sigma^{2}k^{2} }{4(p-1)}\int\limits_{M}q^{k+1}\phi_{j}\left\vert u\right\vert^{p}~d\mu \notag \\ &=&(p-1)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) +\frac{\sigma^{2}k^{2}}{4(p-1)}\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \notag \\ &=&(p-1)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) +(1-\alpha)\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right), \end{array} $$
(14)

where \(\alpha =1-\frac {\sigma ^{2}k^{2}}{4(p-1)}\), and α(0,1].

From (14), we get

$$\left(\triangle_{M}u,u\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}q^{k}\right) \geq -\left\vert \left(\triangle_{M}u,u\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}q^{k}\right) \right\vert $$
$$ \geq (1-p)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) +(\alpha -1)\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right). $$
(15)

From (15) into (12), we obtain

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &\geq &-(p-1)(p-2)\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) \notag \\ &&+\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +(p-1)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) \notag \\ &&+(1-p)\left(\triangle_{M}u,q^{k}\left\vert u\right\vert^{p-2}\phi_{j}\triangle_{M}u\right) \notag \\ &&+(\alpha -1)\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) +\left(qu,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \notag \\ &=&-(p-1)(p-2)\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) \notag \\ &&+\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +\alpha \left(u,q^{k+1}u\left\vert u\right\vert^{p-2}\phi_{j}\right). \end{array} $$
(16)

Now, we use the inequality:

$$ \left\vert ab\right\vert \leq \frac{\left\vert a\right\vert^{p}}{\lambda^{p}}+\lambda \left\vert b\right\vert^{t},\text{ } $$
(17)

where \(\frac {1}{p}+\frac {1}{t}=1, a,~b\in R\), and λ(0,1). Since ϕj≤1 and \(t=\frac {p}{p-1}>1,\) this implies (ϕj)tϕj.

Using this and (17), we have

$$\begin{array}{@{}rcl@{}} \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) &\leq &\left\vert \left(f,q^{k}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \right\vert \notag \\ &\leq &\frac{1}{\lambda^{p}}\int\limits_{M}\left\vert f\right\vert^{p}d\mu +\lambda \int\limits_{M}(\phi_{j})^{t}q^{kt}\left\vert u\right\vert^{t}\left\vert u\right\vert^{(p-2)t}~d\mu \notag \\ &\leq &\lambda^{-p}\left\Vert f\right\Vert_{p}^{p}+\lambda \int\limits_{M}\phi_{j}q^{kt}\left\vert u\right\vert^{t}\left\vert u\right\vert^{(p-2)t}~d\mu \notag \\ &=&\lambda^{-p}\left\Vert f\right\Vert_{p}^{p}+\lambda \left(q^{\frac{kp}{ p-1}}\left\vert u\right\vert,\phi_{j}\left\vert u\right\vert^{p-1}\right). \end{array} $$
(18)

From (18) into (16), we get

$$\begin{array}{@{}rcl@{}} &&\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +\alpha \left(u,q^{k+1}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \\ &&-(p-1)(p-2)\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) \leq \lambda^{-p}\left\Vert f\right\Vert_{p}^{p}+\lambda \left(q^{\frac{kp}{p-1}}\left\vert u\right\vert,\phi_{j}\left\vert u\right\vert^{p-1}\right). \end{array} $$

Since kp−1 and λ(0,1) is arbitrary, we can choose a sufficiently small λ>0 such that

$$\begin{array}{@{}rcl@{}} &&-(p-1)(p-2)\left(\triangle_{M}uq^{k}du,u\left\vert u\right\vert^{p-4}\phi_{j}du\right) \notag \\ &&+\left(\triangle_{M}u,q^{k}u\left\vert u\right\vert^{p-2}\triangle_{M}\phi_{j}\right) +\frac{\alpha }{2}\left(u,q^{k+1}u\left\vert u\right\vert^{p-2}\phi_{j}\right) \leq \lambda^{-p}\left\Vert f\right\Vert_{p}^{p}. \end{array} $$
(19)

By Fatou’s lemma, we have

$$ \int\limits_{M}q^{k+1}\left\vert u\right\vert^{p}~d\mu \leq {\lim}_{j\rightarrow \infty }\inf \left(u,q^{k+1}u\left\vert u\right\vert^{p-2}\phi_{j}\right). $$
(20)

Combining (19) and (20) and using (9) and (10), we obtain \(\int \limits _{M}q^{k+1} \left \vert u\right \vert ^{p}~d\mu \leq C_{1}\left \Vert f\right \Vert _{p}^{p}, \) where C1≥0 is a constant independent of u, which is the proof of (11) and the lemma. □

Preparatory result

The following proposition is the most important result of this section.

Proposition 1

Assume that (M,g)is a connected C−Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that the hypotheses (7), (8), and (9) of the Lemma 1 are satisfied. Then

$$ \left\Vert qu\right\Vert_{p}\leq C\left\Vert f\right\Vert_{p}, $$
(21)

where C≥0 is a constant independent of u.

Proof

Let m be an integer such that \(\frac {m}{2}< p\leq \frac {m+1}{2}.\) By the result (11) in Lemma 1 with \(k=-\frac {1}{2},~0,~\frac {1}{2},~1,~\frac {3}{2},...,\frac {m}{2},\) we get \(q^{\frac {1}{2}}\left \vert u\right \vert ^{p}\in L^{1}\left (M\right),~q\left \vert u\right \vert ^{p}\in L^{1}\left (M\right),...,q^{\frac {m}{2}+1}\left \vert u\right \vert ^{p}\in L^{1}\left (M\right).\) Since q(x)≥γ>0, thus \(\left \vert u\right \vert ^{p}q^{p-\frac {1}{2 }}=\left \vert u\right \vert ^{p}q^{\frac {m}{2}+1}q^{\beta }\leq \left \vert u\right \vert ^{p}q^{\frac {m}{2}+1}\gamma ^{\beta },\)where \(\beta =p-\frac {m+1 }{2}\leq 0.\) This implies \(\left \vert u\right \vert ^{p}q^{(p-1)+\frac {1}{2} }\in L^{1}\left (M\right),\) so by (11) (for k=p−1), we obtain qp|u|pL1(M) and \( \int \limits _{M}q^{p}\left \vert u\right \vert ^{p}~d\mu \leq C_{1}\left \Vert f\right \Vert _{p}^{p},\) which implies \(\left \Vert qu\right \Vert _{p}^{p}\leq C_{1}\left \Vert f\right \Vert _{p}^{p},\) that is qupCfp,where C≥0 is a constant independent of u. Hence, the proof of the proposition. □

Lemma 2

Let (M,g) be a Remannian manifold, and let \(u\in L_{loc}^{1}\left (M\right),~\triangle _{M}u\in L_{loc}^{1}\left (M\right).\) Then, \(\triangle _{M}^{2}\left \vert u\right \vert \leq \text {Re}\left ((\triangle _{M}^{2}u)sign\overline {u}\right),\) where \(signu(x)=\left \{\begin {array}{ll}\frac {u(x)}{\left \vert u(x)\right \vert } & if~u(x)\neq 0\\ 0 & otherwise \end {array}\right.\). See [13].

Distributional inequality For 1<p< and λ>0, we consider the inequality, \(\left (\triangle _{M}^{2}+\lambda \right) u=v\geq 0,~u\in L^{p}\left (M\right),\)where v≥0 means that v is a positive distribution, i.e., 〈v,ϕ〉≥0 for every \( 0\leq \phi \in C_{c}^{\infty }\left (M\right).\) See [14].

Lemma 3

Let (M,g) be a manifold of bounded geometry and let 1<p<. If uLp(M) satisfies the distributional inequality: \(\left (\triangle _{M}^{2}+\lambda \right) u\geq 0,\)then u≥0 (almost every where or, equivalently, as a distribution). See [15].

Lemma 4

If uLp(M) satisfies the equation \(\triangle _{M}^{2}u+qu=0,\) (which is understood in distributional sense), then u=0.

Proof

Since \(q\in C^{1}\left (M\right) \subset L_{loc}^{\infty }\left (M\right),\) it follows that \(qu\in L_{loc}^{1}\left (M\right).\) Since we have \( \triangle _{M}^{2}u+qu=0,\) it follows that \(\triangle _{M}^{2}u=-qu\in L_{loc}^{1}\left (M\right).\) From Lemma 2 and the assumption qγ>0, we get

$$\triangle_{M}^{2}\left\vert u\right\vert \leq \text{Re}\left((\triangle_{M}^{2}u)sign\overline{u}\right) =-\text{Re}\left((qu)sign\overline{u} \right) =-qu\frac{\overline{u}}{\left\vert \overline{u}\right\vert }=-q\frac{ \left\vert u\right\vert^{2}}{\left\vert u\right\vert }=-q\left\vert u\right\vert \leq -\gamma \left\vert u\right\vert, $$

which implies \(\left (\triangle _{M}^{2}+\gamma \right) \left \vert u\right \vert \leq 0.\) From Lemma 3, we get |u|≤0. This implies u=0, hence the proof. □

The Main result

We now introduce our main result of this paper.

Theorem 1

Assume that (M,g)is a connected C−Riemannian manifold without boundary, with metric g and has bounded geometry. Assume that the assumption (7) of the Lemma 1 is satisfied. Then

$$ \left\Vert qu\right\Vert_{p}\leq C\left\Vert Au\right\Vert_{p},~\text{for all }u\in D_{p}, $$
(22)

where C≥0 is a constant independent of u.

Proof

Let uDp and

$$ \left(\triangle_{M}^{2}+q\right) u=f, $$
(23)

so fLp(M). Thus, there exist a sequence (fj) in \(C_{c}^{\infty }\left (M\right) \) such that fjf in Lp(M) as j. Let T be the closure of \(\left (\triangle _{M}^{2}+q\right) |_{C_{c}^{\infty }\left (M\right) }\) in Lp(M). By [15], it follows that:

(i) Dom(T)=Dp, and \(Tu=\left (\triangle _{M}^{2}+q\right) u\) for all uDp.

(ii) The operator T is invertible, and T−1:Lp(M)→Lp(M) is a bounded linear operator.

Consider the sequence T−1fj=wj, since T−1:Lp(M)→Lp(M) is a bounded linear operator, so wjT−1f in Lp(M) as j. Let w=T−1f. Using the property (i) of T, we get

$$ \left(\triangle_{M}^{2}+q\right) w=f. $$
(24)

From (23) and (24), we get \(\left (\triangle _{M}^{2}+q\right) (u-w)=0.\) By Lemma 4, we obtain u=w. Since T−1fj=wj, it follows that wjDp, and by the property (i) of T, we get

$$ \left(\triangle_{M}^{2}+q\right) w_{j}=f_{j}. $$
(25)

In (25), we have qC1(M) and \(f_{j}\in C_{c}^{\infty }\left (M\right),\) so by elliptic regularity, we get \(w_{j}\in W_{loc}^{2,p}\left (M\right).\) By Sobolev embedding theorem [16], we get \(w_{j}\in W_{loc}^{2,p}\left (M\right) \subset L_{loc}^{t}\left (M\right),\) where \( \frac {1}{t}=\frac {1}{p}-\frac {2}{m}.\) Hence, \(qw_{j}\in L_{loc}^{t}\left (M\right).\) Using elliptic regularity again, we get \(w_{j}\in W_{loc}^{2,t}\left (M\right) \) with t>p. Applying the same procedure, we will obtain wjC1(M). Thus, wjC1(M)∩Lp(M) satisfies the conditions of Proposition 1. From (25) for j, r=1,2,..., we get \(\left (\triangle _{M}^{2}+q\right) (w_{j}-w_{r})=f_{j}-f_{r}.\) Also, from (21), we get

$$ \left\Vert q(w_{j}-w_{r})\right\Vert_{p}\leq C\left\Vert f_{j}-f_{r}\right\Vert_{p}. $$
(26)

Since (fj) is a cauchy sequence in Lp(M), from (26), it follows that (qwj) is also a cauchy sequence in Lp(M), which implies (qwj) converges to sLp(M). Let \(\Psi \in C_{c}^{\infty }\left (M\right),\) then 0=(qwj,Ψ)−(wj,qΨ)→(s,Ψ)−(w,qΨ)=(sqw,Ψ). So qw=s (because \(C_{c}^{\infty }\left (M\right) \) is dense in Lp(M)). Hence, qwjqw in Lp(M) as j. But, we have u=w, so qu=qw. Since we have qwjpCfjp, by taking the limit as j, we obtain qupCfp=CAup, where C≥0 is a constant independent of u. This concludes the proof of the Theorem. □

References

  1. 1

    Everitt, W. N., Giertz, M.: Some properties of the domains of certain differential operators. Proc. Lond. Math. Soc. 23, 301–324 (1971).

    MathSciNet  Article  Google Scholar 

  2. 2

    Atia, H. A.: Separation problem for second order elliptic differential operators on Riemannian manifolds. J. Comput. Anal. Appl. 19(2), 229–240 (2015).

    MathSciNet  MATH  Google Scholar 

  3. 3

    Biomatov, K. Kh.: Coercive estimates and separation for second order elliptic differential equations. Sov. Math. Dokl. 38(1), 157–160 (1989).

    Google Scholar 

  4. 4

    Everitt, W. N., Giertz, M.: Inequalities and separation for Schrodinger-type operators in L 2(R n). Proc. Roy. Soc. Edin.79 A, 257–265 (1977).

    MATH  Google Scholar 

  5. 5

    Milatovic, O.: Separation property for Schrodinger operators on Riemannian manifolds. J. Geom. Phys. 56, 1283–1293 (2006).

    MathSciNet  Article  Google Scholar 

  6. 6

    Eichhorn, J.: Elliptic differential operators on non compact manifolds. Teubner-Texte Math. 106, 4–169 (1988). Teubnet, Leipzig, Berlin, 1986/87.

    Google Scholar 

  7. 7

    Masamune, J.: Essential self adjointness of Laplacians on Riemannian manifolds with fractal boundary. Commun. Partial Differ. Equat. 24(3–4), 749–757 (1999).

    MathSciNet  Article  Google Scholar 

  8. 8

    Shubin, M. A.: Essential self-adjointness for semi bounded magnetic Schrodinger operators on non-compact manifolds. J. Funct. Anal. 186, 92–116 (2001).

    MathSciNet  Article  Google Scholar 

  9. 9

    Atia, H. A., Alsaedi, R. A., Ramady, A.: Separation of bi-harmonic differential operators on Riemannian manifolds. Forum Math. 26(3), 953–966 (2014).

    MathSciNet  Article  Google Scholar 

  10. 10

    Atia, H. A.: Magnetic bi-harmonic differential operators on Riemannian manifolds and the separation problem. J. Contemp. Math. Anal. 51(5), 222–226 (2016).

    MathSciNet  Article  Google Scholar 

  11. 11

    Milatovic, O.: Separation property for Schrodinger operators in L p-spaces on non-compact manifolds. Complex Variables Elliptic Equat. 58(6), 853–864 (2013).

    Article  Google Scholar 

  12. 12

    Shubin, M. A.: Spectral theory of elliptic operators on non-compact manifolds. Asterisque. 207, 35–108 (1992).

    MATH  Google Scholar 

  13. 13

    Braverman, M., Milatovic, O., Shubin, M.: Essential self-adjointness of Schrodinger type operators on manifolds. Russ. Math. Surv. 57(4), 641–692 (2002).

    Article  Google Scholar 

  14. 14

    Gelfand, I. M., Vilenkin, N. Ya.: Generalized Functions, applications of harmonic analysis. Academic Press, New York (1964).

    Google Scholar 

  15. 15

    Milatovic, O.: On m-accretive Schrodinger operators in L p -spaces on manifolds of bounded geometry. J. Math. Anal. Appl. 324, 762–772 (2006).

    MathSciNet  Article  Google Scholar 

  16. 16

    Gilbarg, D., Trudinger, N. S.: Elliptic partial differential equations of second order. Springer, New York (1998).

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Author information

Affiliations

Authors

Contributions

The author read and approved the final manuscript.

Corresponding author

Correspondence to H. A. Atia.

Ethics declarations

Competing interests

The author declare that he have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atia, H.A. Separation Problem for Bi-Harmonic Differential Operators in Lp− spaces on Manifolds. J Egypt Math Soc 27, 24 (2019). https://doi.org/10.1186/s42787-019-0029-6

Download citation

Keywords

  • Separation problem
  • Bi-harmonic differential operator
  • Manifold

AMS Subject Classification

  • 47F05
  • 58J99