Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 66, pp. 99–105. ASME, FED 231/MD, San Francisco (1995)

Google Scholar

Ittedi, S., Ramya, D., Joga, S.: MHD heat transfer of nanofluids over a stretching sheet with slip effects and chemical reaction. Int. J. of Lat. Eng. Res. Appl. **02**, 10–20 (2017)

Google Scholar

Sreekala, B., Janardhan, K., Ramya, D., Shravani, I.: MHD boundary layer nanofluid flow of heat transfer over a nonlinear stretching sheet presence of thermal radiation and partial slip with suction. Glob. J. of Pure Appl. Math. **13**, 4927–4941 (2017)

Google Scholar

Yohannes, K.Y., Shankar, B.: Heat and mass transfer in MHD flow of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Carib. J. Sci. Tech. **1**, 1–17 (2013)

Google Scholar

Ibrahim, W.: Magnetohydrodynamic (MHD) boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting. Prop. Power Res. **6**(3), 214–222 (2017) https://doi.org/10.1016/j.jppr.2017.07.002

Article
Google Scholar

Kasaeian, A., Azarian, R.D., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., Pop, I.: Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int. J. of Heat Mass Transf. **107**, 778–791 (2017) https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074

Article
Google Scholar

Ittedi, S., Ramya, D., Joga, S.: Partial slip effect of MHD boundary layer flow of nanofluids and radiative heat transfer over a permeable stretching sheet. Glob. J. of Pure Appl. Math. **13**(7), 3083–3103 (2017)

Google Scholar

Sulochana, C., Samrat, S.P., Sandeep, N.: Thermal radiation effect on MHD nanofluid flow over a stretching sheet. Int. J. of Eng. Res. in Africa. **23**, 89–102 (2016). https://doi.org/10.4028/www.scientific.net/JERA.23.89

Article
Google Scholar

Haroun, N.A.H., Mondal, S., Sibanda, P.: Unsteady natural convective boundary-layer flow of MHD nanofluid over a stretching surface with chemical reaction using the spectral relaxation method: a revised model. Proc. Eng. **127**, 18–24 (2015). https://doi.org/10.1016/j.proeng.2015.11.317

Article
Google Scholar

Reddy, C.H.A., Shankar, B.: Magnetohydrodynamics stagnation point flow of a nanofluid over an exponentially stretching sheet with an effect of chemical reaction, heat source and suction/injunction. World. J. Mech. 5, 211 – 221 (2015). https://doi.org/10.4236/wjm.2015.511020

Article
Google Scholar

Li, Z., Ramzan, M., Shafee, A., Saleem, S., Al-Mdallal, Q.M., Chamkha, A.J.: Numerical approach for nanofluid transportation due to electric force in a porous enclosure. Micro. Tech. **25**(6), 2501–2514 (2019)

Article
Google Scholar

Ramzan, M., Mohammad, M., Howari, F., Chung, J.D.: Entropy analysis of carbon nanotubes based nanofluid flow past a vertical cone with thermal radiation. Entropy. **21**(7), 1–17 (2019). https://doi.org/10.3390/e21070642

Article
MathSciNet
Google Scholar

Bilal, M., Ramzan, M.: Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media. J. of Therm. Analy. Calori. 1–11 (2019) https://doi.org/10.1007/s10973-019-08324-3

Article
Google Scholar

Lu, D., Ramzan, M., Mohammad, M., Howari, F., Chung, J.D.: A thin film flow of nanofluid comprising carbon nanotubes influenced by Cattaneo-Christov heat flux and entropy generation. Coatings. **9**(5), 1–16 (2019). https://doi.org/10.3390/coatings9050296

Article
Google Scholar

Suleman, M., Ramzan, M., Ahmad, S., Lu, D., Muhammad, T., Chung, J.D.: A numerical simulation of silver–water nanofluid flow with impacts of Newtonian heating and homogeneous - heterogeneous reactions past a nonlinear stretched cylinder. Symm. **11**(2), 1–13 (2019). https://doi.org/10.3390/sym11020295

Article
Google Scholar

Suleman, M., Ramzan, M., Ahmad, S., Lu, D.: Numerical simulation for homogeneous–heterogeneous reactions and Newtonian heating in the silver-water nanofluid flow past a nonlinear stretched cylinder. Phys. Scr. **94**(8), 1–9 (2019) https://doi.org/10.1088/1402-4896/ab03a8

Article
Google Scholar

Madhu, M., Kishan, N., Chamkha, A.: Boundary layer flow and heat transfer of a non-Newtonian nanofluid over a non-linearly stretching sheet. Int. J. of Numer. Meth. for Heat & Fluid Flow. **26**(7), 2198–2217 (2016)

Article
Google Scholar

Madhu, M., Kishan, N.: Finite element analysis of heat and mass transfer by MHD mixed convection stagnation-point flow of a non-Newtonian power-law nanofluid towards a stretching surface with radiation. J. of the Egyp. Math. Soci. **24**(3), 458–470 (2016)

Article
MathSciNet
Google Scholar

Macha, M., Naikoti, K., Chamkha, A.J.: MHD flow of a non-Newtonian nanofluid over a non-linearly stretching sheet in the presence of thermal radiation with heat source/sink. Eng. Comput. **33**(5), 1610–1626 (2016) https://doi.org/10.1108/EC-06-2015-0174

Article
Google Scholar

Alebraheem, J., Ramzan, M.: Flow of nanofluid with Cattaneo- Christov heat flux model. Appl. Nano- sci. 1–11 (2019)

Farooq, U., Lu, D.C., Munir, S., Suleman, M., Ramzan, M.: Flow of rheological nanofluid over a static wedge. J. of Nanofluids. **8**(6), 1362–1366 (2019)

Article
Google Scholar

Farooq, U., Lu, D., Munir, S., Ramzan, M., Suleman, M., Hussain, S.: MHD flow of Maxwell fluid with nanomaterials due to an exponentially stretching surface. Sci. reports. **9**(1), 1–11 (2019) https://doi.org/10.1038/s41598-019-43549-0

Article
Google Scholar

Macha, M., Reddy, C.S., Kishan, N.: Magnetohydrodynamic flow and heat transfer to Sisko nanofluid over a wedge. Int. J. of Fluid Mech. Res. **44**(1), (2017)

Aman, F., Ishak, A.: Mixed convection boundary layer flow towards a vertical plate with a convective surface boundary condition. Math. Prob. in Eng. **2012**, 1–11 (2012)

Article
MathSciNet
Google Scholar

Mahanthesh, B., Gireesha, B.J., Gorla, R.S.R.: Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex. Eng. J. **55**, 569–581 (2016) https://doi.org/10.1016/j.aej.2016.01.022

Article
Google Scholar

Ahamed, S.M., Mondal, S., Sibanda, P.: Unsteady mixed convection flow through a permeable stretching flat surface with partial slip effects through MHD nanofluid using spectral relaxation method. Open Phys. **15**, 323–334 (2017)

Article
Google Scholar

Haroun, N.A.H., Sibanda, P., Mondal, S., Motsa, S.S.: On unsteady MHD mixed convection in a nanofluid due to a stretching/shrinking surface with suction/injection using the spectral relaxation method. Bound. Value Prob. **24**, 1–17 (2015). https://doi.org/10.1186/s13661-015-0289-5

Article
MathSciNet
MATH
Google Scholar

Haroun, N.A.H., Mondal, S., Sibanda, P.: Effects of thermal radiation on mixed convection in a MHD nanofluid flow over a stretching sheet using a spectral relaxation method. Int. J. of Math. Comput. Phys. Elec. Comp. Eng. **11**(2), 33–42 (2017)

Google Scholar

Khan, A.Q., Rasheed, A.: Mixed convection magnetohydrodynamics flow of a nanofluid with heat transfer: a numerical study. Math. Prob. in Eng. **2019**, 1–14 (2019) https://doi.org/10.1155/2019/8129564

Article
MathSciNet
Google Scholar

Reddy, C.R., Surender, O., Rao, C.V.: Effects of Soret, Hall and ion-slip on mixed convection in an electrically conducting Casson fluid in a vertical channel. Nonlinear Eng. **5**(3), 167–175 (2016)

Google Scholar

Reddy, C.R., Surender, O., Rao, C.V., Pradeepa, T.: Adomian decomposition method for Hall and ion-slip effects on mixed convection flow of a chemically reacting Newtonian fluid between parallel plates with heat generation/absorption. Prop. Power Res. **6**(4), 296–306 (2017) https://doi.org/10.1016/j.jppr.2017.11.001

Article
Google Scholar

Srinivasacharya, D., Shafeeurrahaman, M.: Mixed convection flow of nanofluid in a vertical channel with hall and ion-slip effects. Front. in Heat Mass Transf. **8**(11), 1–8 (2017). https://doi.org/10.5098/hmt.8.11

Article
Google Scholar

Srinivasacharya, D., Shafeeurrahaman, M.: Hall and ion slip effects on mixed convection flow of nanofluid between two concentric cylinders. J. of the Assoc. of Arab Univ. for Basic Appl. Sci. **24**, 223–231 (2017) https://doi.org/10.1016/j.jaubasr.2017.03.002

Google Scholar

Md. Shafeeurrahman, D. Srinivasacharya, Radiation effect on mixed convection flow of nanofluid between two concentric cylinders with Hall and Ion-slip effects, AAM: Int. J. Special Issue __No__. 4 (2019) 82 – 96.

Su, X.: Hall and ion-slip effects on the unsteady MHD mixed convection of Cu-water nanofluid over a vertical stretching plate with convective heat flux. Indian J. of Pure Appl. Phys. **55**, 564–573 (2017)

Google Scholar

Motsa, S.S., Shateyi, S.: The effects of chemical reaction, Hall, and ion-slip currents on MHD micropolar fluid flow with thermal diffusivity using a novel numerical technique. J. of Appl. Math. **2012**, 1–30 (2012). https://doi.org/10.1155/2012/689015

Article
MATH
Google Scholar

Bilal, M., Hussain, S., Sagheer, M.: Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity. Bull. of the polish acad. of sci. tech. sci. **65**(3), 383–390 (2017). https://doi.org/10.1515/bpasts-2017-0043

Article
Google Scholar

Ghara, N., Maji, S.L., Das, S., Jana, R., Ghosh, S.K.: Effects of Hall current and ion-slip on unsteady MHD Couette flow. Open J. of Fluid Dynam. **2**, 1–13 (2012) https://doi.org/10.4236/ojfd.2012.21001

Article
Google Scholar

Ali, F.M., Nazar, R., Arifin, N.M., Pop, I.: Effect of Hall current on MHD mixed convection boundary layer flow over a stretched vertical flat plate. Meccanica. **46**, 1103–1112 (2011). https://doi.org/10.1007/s11012-010-9371-3

Article
MathSciNet
MATH
Google Scholar

Motsa, S.S., Makukula, Z.G.: On spectral relaxation method approach for steady von K\( \overset{\acute{\mkern6mu}}{a} \)rm\( \overset{\acute{\mkern6mu}}{a} \)n flow of a Rreiner-Rivlin fluid with Joule heating, viscous dissipation and suction/injection. Cent. Europ. J. Phys. **11**(3), 363–374 (2013). https://doi.org/10.2478/s11534-013-0182-8

Article
Google Scholar

Shateyi, S., Marewo, G.T.: A new numerical approach for the laminar boundary layer flow and heat transfer along a stretching cylinder embedded in a porous medium with variable thermal conductivity. J. of Appl. Math. **2013**, 1–7 (2013) https://doi.org/10.1155/2013/576453

Article
MathSciNet
Google Scholar

Shateyi, S., Marewo, G.T.: A new numerical approach of MHD flow with heat and mass transfer for the UCM fluid over a stretching surface in the presence of thermal radiation. Math. Prob. in Eng. **2013**, 1–8 (2013) https://doi.org/10.1155/2013/670205

MathSciNet
MATH
Google Scholar

Ramzan, M., Bilal, M., Chung, J.D., Farooq, U.: Mixed convective flow of Maxwell nanofluid past a porous vertical stretched surface – an optimal solution. Results in Phys. **6**, 1072–1079 (2016) https://doi.org/10.1016/j.rinp.2016.11.036

Article
Google Scholar

L. N. Trefethen, Spectral methods in MATLAB. vol. 10 of *Software, Environments, and Tools*, SIAM, Philadelphia, Pa, U.S.A. (2000).

Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. ASME J. Heat Transf. **107**, 248–250 (1985)

Article
Google Scholar