WHO. "WHO". 2021. [Online]. http://www.who.int/en/news-room/fact-sheets/detail/cancer. Accessed 12 Jan 2021.

Tao, Y., Guo, Q., Aihara, K.: A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy. J. Math. Biol. **69**(4), 817–838 (2014)

Article
MathSciNet
MATH
Google Scholar

Malinzi, J.: Mathematical analysis of a mathematical model of chemovirotherapy: effect of drug infusion method. Comput Math Methods Med **2019**, 7576591 (2019)

Article
MathSciNet
MATH
Google Scholar

Cesano, A., Warren, S.: Bringing the next generation of immuno-oncology biomarkers to the clinic. Biomedicines **6**(14), 14–24 (2018)

Article
Google Scholar

Arabameri, A., Asemani, D., Hajati, J.: Mathematical modeling of in-vivo tumor-immune interactions for the cancer immunotherapy using matured dendritic cells. J. Biol. Syst. **26**(1), 1–22 (2018)

Article
MathSciNet
MATH
Google Scholar

de Pillis LG, Radunskaya AE. Modeling tumor-immune dynamics. In: Mathematical models of tumor-immune system dynamics. New York; 2014.

Makhlouf, A.M., El-Shennawy, L., Elkaranshawy, H.A.: Mathematical modelling for the role of CD4+T cells in tumor-immune interactions. Comput Math Methods Med **2020**, 1–16 (2020)

Article
Google Scholar

Elkaranshawy, H.A., Ezzat, H.M., Abouelseoud, Y., Ibrahim, N.N.: Innovative approximate analytical solution for standard model of viral dynamics: hepatitis C with direct-acting agents as an implemented case. Math Probl Eng **2019**, 1454739 (2019)

Article
MathSciNet
MATH
Google Scholar

Elkaranshawy HA, Ezzat HA, Ibrahim NN. Dynamical analysis of a multiscale model of hepatitis C virus infection using a transformed ODEs model. In: 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC), Montreal, QC, Canada; 2020.

Keya, K.N., Kamrujjaman, M., Islam, M.S.: The influence of density in population dynamics with strong and weak Allee effect. J Egypt Math Soc **29**, 4 (2021)

Article
MathSciNet
MATH
Google Scholar

Kamara, A.A., Mouanguissa, L.N., Barasa, G.O.: Mathematical modelling of the COVID-19 pandemic with demographic effects. J Egypt Math Soc **29**, 8 (2021)

Article
MathSciNet
MATH
Google Scholar

Deif, A.S., El-Naggar, S.A.: Modeling the COVID-19 spread, a case study of Egypt. J Egypt Math Soc **29**, 13 (2021)

Article
MathSciNet
MATH
Google Scholar

Zafar, Z.U.A., Ali, N., Baleanu, D.: Dynamics and numerical investigations of a fractional-order model of toxoplasmosis in the population of human and cats. Chaos Solitons Fract **151**, 111261 (2021)

Article
MathSciNet
Google Scholar

Zafar, Z.U.A., Ali, N., Younas, S., Abdelwahab, S.F., Nisar, K.S.: Numerical investigations of stochastic HIV/AIDS infection model. Alex Eng J **60**(6), 5341–5363 (2021)

Article
Google Scholar

Zafar, Z.U.A., Rezazadeh, H., Inc, M., Nisar, K.S., Sulaiman, T.A., Yusuf, A.: Fractional order heroin epidemic dynamics. Alex Eng J **60**(6), 5157–5165 (2021)

Article
Google Scholar

Elkaranshawy, H.A., Ezzat, H.M., Ibrahim, N.N.: Lyapunov function and global asymptotic stability for a new multiscale viral dynamics model incorporating the immune system response: Implemented upon HCV. PLoS ONE **16**(10), e0257975 (2021)

Article
Google Scholar

Elkaranshawy, H.A., Ali, A.M.E., Abdelrazik, I.M.: An effective heterogeneous whole-heart mathematical model of cardiac induction system with heart rate variability. Proc Inst Mech Eng [H] **235**(3), 323–335 (2021)

Article
Google Scholar

Jones, D.S., Plank, M.J., Sleeman, B.D.: Differential equations and mathematical biology, 2nd edn. CRC Press, Boca Raton (2009)

Book
MATH
Google Scholar

Tao, Y., Guo, Q., Aihara, K.: A mathematical model of prostate tumor growth under hormone therapy with mutation inhibitor. J Nonlinear Sci **20**(2), 219–240 (2010)

Article
MathSciNet
MATH
Google Scholar

Wei, X., Cui, S.: Existence and uniqueness of global solutions for a mathematical model of antiangiogenesis in tumor growth. Nonlinear Anal Real World Appl **9**(5), 1827–1836 (2008)

Article
MathSciNet
MATH
Google Scholar

Frieboes, H.B., Jin, F., Chuang, Y.L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth-II : tumor invasion and angiogenesis. J Theor Biol **264**(4), 1254–1278 (2010)

Article
MathSciNet
MATH
Google Scholar

Lee, H.G., Kim, Y., Kim, J.: Mathematical model and its fast numerical method for the tumor growth. Math Biosci Eng **12**(6), 1173–1187 (2015)

Article
MathSciNet
MATH
Google Scholar

Zhang, Y., He, Y., Chen, H.: Boundary element method for a free boundary problem modeling three dimensional tumor growth. Comput Math Appl **73**(7), 1627–1641 (2017)

Article
MathSciNet
MATH
Google Scholar

Knopoff, D.A., Fernández, D.R., Torres, G.A., Turner, C.V.: adjoint method for a tumor growth PDE-constrained optimization problem. Comput Math Appl **66**(6), 1104–1119 (2013)

Article
MathSciNet
Google Scholar

Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A., Perelson, A.S.: Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol **56**(2), 295–321 (1994)

Article
MATH
Google Scholar

F. A. Rihan, Delay Differential Equations and Applications to Biology, Springer, 2021.

Rihan, F.A., Lakshmanan, S., Maurer, H.: Optimal control of tumour-immune model with time-delay and immuno-chemotherapy. Appl Math Comput **353**, 147–165 (2019)

MathSciNet
MATH
Google Scholar

Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J Math Biol **47**(3), 270–294 (2003)

Article
MathSciNet
MATH
Google Scholar

Xu, S., Bai, M.: Stability of solutions to a mathematical model for necrotic tumor growth with time delays in proliferation. J Math Anal Appl **421**(1), 955–962 (2015)

Article
MathSciNet
MATH
Google Scholar

Rihan, F.A., Abdel Rahman, D.H., Lakshmanan, S., Alkhajeh, A.S.: A time delay model of tumour-immune system interactions: Global dynamics, parameter estimation, sensitivity analysis. Appl Math Comput **232**, 606–623 (2014)

MathSciNet
MATH
Google Scholar

Rihan, F.A., Rajivganthi, C.: Dynamics of tumor-immune system with random noise. Mathematics **9**(21), 2707 (2021)

Article
Google Scholar

Nutini, A., Sohail, A.: Deep learning of the role of interleukin IL-17 and its action in promoting cancer. Bio-Algorithms Med-Syst **16**(4), 20200052 (2020)

Article
Google Scholar

de Pillis, L.G., Fister, K.R., Gu, W., Head, T., Maples, K., Neal, T., Murgan, A., Kozai, K.: Optimal control of mixed immunotherapy and chemotherapy of tumors. J Biol Syst **16**(1), 51–80 (2008)

Article
MATH
Google Scholar

de Pillis, L.G., Savage, H., Radunskaya, A.E.: Mathematical model of colorectal cancer with monoclonal antibody treatments. Br J Med Med Res **4**(16), 3101–3131 (2014)

Article
Google Scholar

de Pillis, L.G., Gua, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations. J Theor Biol **238**(4), 841–862 (2006)

Article
MathSciNet
MATH
Google Scholar

Eftimie, R., Bramson, J.L., Earn, D.J.D.: Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma. J Theor Biol **265**(3), 467–480 (2010)

Article
MathSciNet
MATH
Google Scholar

Anderson, L., Jang, S., Yu, J.L.: Qualitative behavior of systems of tumor-CD4+-cytokine interactions with treatments. Math Methods Appl Sci **38**(17), 4330–4344 (2015)

Article
MathSciNet
MATH
Google Scholar

Hu, X., Jang, S.R.J.: Dynamics of tumor-CD4+-cytokine-host cells interactions with treatments. Appl Math Comput **321**, 700–720 (2018)

MathSciNet
MATH
Google Scholar

Elkaranshawy HA, Makhlouf AM, Abouelseoud Y. Using Padé approximant method to solve the mathematical model of tumor-immune interactions. In:2020 42nd annual international conference of the ieee engineering in medicine & biology society (EMBC), Montreal, QC, Canada; 2020.

Zi, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst Biol **5**(6), 336–346 (2011)

Article
Google Scholar

Gul, R., Schütte, C., Bernhard, S.: Mathematical modeling and sensitivity analysis of arterial anastomosis in the arm. Appl Math Model **40**(17–18), 7724–7738 (2016)

Article
MathSciNet
MATH
Google Scholar

Kirch, J., Thomaseth, C., Jensch, A., Radde, N.E.: The effect of model rescaling and normalization on sensitivity analysis on an example of a MAPK pathway model. EPJ Nonlinear Biomed Phys **4**, 3 (2016)

Article
Google Scholar

Bighamian, R., Parvinian, B., Scully, C.G., Kramer, G., Hahn, J.O.: Control-oriented physiological modeling of hemodynamic responses to blood volume perturbation. Control Eng Pract **73**, 149–160 (2018)

Article
Google Scholar

Makhlouf, A.M., Elkaranshawy, H.A.: Sensitivity analysis for a mathematical model of tumor-immune interactions. UPB Sci Bull Ser A **83**(2), 317–326 (2021)

MathSciNet
Google Scholar

Wang, F., Idrees, M., Sohail, A.: “AI-MCMC”for the parametric analysis of the hormonal therapy of cancer. Chaos Solitons Fract **154**, 111618 (2022)

Article
MathSciNet
Google Scholar

Yu, Z., Arif, R., Fahmy, M.A., Sohail, A.: Self organizing maps for the parametric analysis of COVID-19 SEIRS delayed model. Chaos Solitons Fract **150**, 111202 (2021)

Article
MathSciNet
Google Scholar

Berraondo, P., Sanmamed, M.F., Ochoa, M.C., Etxeberria, I., Aznar, M.A., Pérez-Gracia, J.L., Rodríguez-Ruiz, M.E., Ponz-Sarvise, M., Castañón, E., Melero, I.: Cytokines in clinical cancer immunotherapy. Br J Cancer **120**, 6–15 (2019)

Article
Google Scholar

Worschech, A., Chen, N., Yu, Y.A., Zhang, Q., Pos, Z., Weibel, S., Raab, V., Sabatino, M., Monaco, A., Liu, H., Monsurró, V., Buller, R.M., Stroncek, D.F., Wang, E., Szalay, A.A., Marincola, F.M.: Systemic treatment of xenografts with vaccinia virus GLV-1h68 reveals the immunologic facet of oncolytic therapy. BMC Genomics **10**, 301 (2009)

Article
Google Scholar

Murphy, H., Jaafari, H., Dobrovolny, H.M.: Differences in predictions of ODE models of tumor growth: a cautionary example. BMC Cancer **16**, 163 (2016)

Article
Google Scholar

Bates, D.M., Watts, D.G.: Nonlinear regression analysis and its applications. Wiley, New York (1988)

Book
MATH
Google Scholar

Gill, P.E., Murray, W., Wright, M.H.: Practical optimization, California. Emerald Group Publishing Limited, Boston (1982)

Google Scholar