Skip to main content

The TR {Y} power series family of probability distributions

Abstract

A new family of univariate probability distributions called the T − R {Y} power series family of probability distributions is introduced in this paper by compounding the T − R {Y} family of distributions and the power series family of discrete distributions. A treatment of the general mathematical properties of the new family is carried out and some sub-families of the new family are specified to depict the broadness of the new family. The maximum likelihood method of parameter estimation is suggested for the estimation of the parameters of the new family of distributions. A special member of the new family called the Gumbel–Weibull–{logistic}–Poisson (GUWELOP) distribution is defined and found to exhibit both unimodal and bimodal shapes. The GUWELOG distribution is further applied to a real multi-modal data set to buttress its applicability.

Introduction

Within the last two centuries, various methods for generating continuous univariate distributions have been put forward in the literature. These methods include the method based on differential equations (Pearson [1]; Burr [2]), method based on transformation (Johnson [3]), method based on quantiles (Tukey [4]; Aldeni et al. [5]), method for generating skewed distributions (Azzalini [6]), method of addition of parameter(s) and generalization (Mudholkar and Srivastava [7]; Marshall and Olkin [8]; Shaw and Buckley [9]), method of compounding the continuous univariate distributions and the discrete univariate distributions (Adamidis and Loukas [10]), method based on generators (Eugene et al. [11]; Jones [12]; Cordeiro and de Castro [13]), method based on the composition of densities (Cooray and Ananda [14]) and the Transformed–Transformer method (Alzaatreh et al. [15]; Alzaatreh et al. [16]). Researchers are also encouraged to see AL-Hussaini and Abdel-Hamid [17] for a survey on the generation of distribution functions.

The transformed–transformer method previously called the TX family of distributions (Alzaatreh [15]) and later renamed the TR{Y} family of distributions (Alzaatreh et al. [16]) has been thought of as the largest family of univariate distributions, in that it includes several families of univariate distributions as special cases. Alzaatreh et al. [16] defined the T–R{Y} system using the following arguments: Suppose T, R, and Y are random variables with respective cumulative distribution function (cdf) FT(x) = P(T ≤ x), FR(x) = P(R ≤ x) and FY(x) = P(Y ≤ x). Let the corresponding quantile functions be QT(p), QR(p) and QY(p), where the quantile function is defined as QW(p) = inf {w : FW(w) ≥ p }, 0 < p < 1. Suppose the corresponding densities of T, R and Y exist and denote them by fT(x), fR(x) and fY(x). Assume that (a, b) and (c, d)for − ∞  ≤ a < b ≤ ∞ and− ∞  ≤ c < d ≤  ∞ ,then the T–R{Y} family of distributions was defined by the cdf

$$ {F}_X(x)={\int}_a^{Q_Y\left({F}_R(x)\right)}{f}_T(t) dt=P\left[T\le {Q}_Y\left({F}_R(x)\right)\right]={F}_T\left({Q}_Y\left({F}_R(x)\right)\right),x\in \mathrm{\mathbb{R}}. $$
(1)

The corresponding probability density function (pdf) of the cdf in (1) was given by

$$ {f}_X(x)={f}_R(x)\times \frac{f_T\left({Q}_Y\left({F}_R(x)\right)\right)}{f_Y\left({Q}_Y\left({F}_R(x)\right)\right)},x\in \mathrm{\mathbb{R}}. $$
(2)

The discrete counterpart of univariate probability distributions has also received some attention over the years in the literature. One of the most common families of discrete univariate distributions is the power series family of discrete univariate distributions (Kosambi [18]; Noack [19]; Patil [20]; Patil [21]) defined by the probability mass function (pmf)

$$ P\left(N=n\right)=\frac{a_n{\theta}^n}{C\left(\theta \right)},n=1,2,\dots $$
(3)

where an ≥ 0 depends only on n, \( C\left(\theta \right)=\sum \limits_{n=1}^{\infty }{a}_n{\theta}^n \) and θ > 0 is such that C(θ) is finite and its first, second and third derivatives are defined and shown by C(θ), C′′(θ), and C′ ′ ′(θ). Observe that the pmf in (3) is truncated at zero and could be generalized to a zero-inflated one (Patil, [21]). In Table 1, some members of the power series family of distributions (truncated at zero) defined by (3) such as the Poisson, geometric, binomial and logarithmic distributions are presented alongside their respective an, C(θ), C(θ), C′′(θ), and C′ ′ ′(θ).

Table 1 Useful quantities for some power series distributions

In this paper, the compounding of the TR {Y} family of univariate distributions and the power series family of discrete univariate distributions is carried out. We shall present how the new family is constructed, examine the general mathematical properties of the new family, show how parameters of the new family can be estimated using the maximum likelihood method as well as define and apply a special member of the new family to a real data set.

Construction of the TR {Y} power series family of distributions

Let X1, X2, …, Xn be independent and identically distributed (iid) random variables constituting a sample of size n from the TR {Y} family of distributions as defined in (1). Let X(1), X(2), …, X(N) be the corresponding order statistic of the random sample. From the theory of order statistics, the cdf of first order statistic X(1) for a given N = n is expressed as

$$ {Z}_{X_{(1)}\left|N=n\right.}(x)=1-\prod \limits_{i=1}^n\left[1-{F}_{T_i}\left({Q}_Y\left({F}_R(x)\right)\right)\right]=1-{\left[1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right]}^n. $$

Suppose N is a discrete random variable and follows the power series distribution in (3), the marginal cdf of X(1) can be written as

$$ {F}_{\mathrm{T}-\mathrm{R}\ \left\{\mathrm{Y}\right\}-\mathrm{PS}}(x)=\sum \limits_{n=1}^{\infty }P\left(N=n\right){Z}_{X_{(1)}\left|N=n\right.}(x)=1-\frac{C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}{C\left(\theta \right)}. $$

Thus, the cdf of the TR {Y}–power series (TR {Y}–PS) family of distributions is given by

$$ {F}_{\mathrm{T}\hbox{-} \mathrm{R}\left\{\mathrm{Y}\right\}-\mathrm{PS}}(x)=1-\frac{C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}{C\left(\theta \right)},x\in \mathrm{\mathbb{R}}. $$
(4)

A physical interpretation of the family of models in (4) is as follows: consider that the failure of a system, device, product, or component occurs due to the presence of an unknown number, say N, of initial defects of the same kind, which can be identifiable only after causing the failure and repaired perfectly. If Xi denotes the time to the failure of the device due to the ith defect, for i ≥ 1, such that each Xi follows the TR {Y} distribution in (1), suppose N is discrete and follows a power series distribution in (3), then the distribution of the random variable X(1) which is the time of first failure is the distribution in (4).

The pdf corresponding to (4) is obtained by differentiating (4) w.r.t x and it is given by

$$ {\displaystyle \begin{array}{l}\kern0.6em {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-\mathrm{PS}}(x)\\ {}=\frac{\theta {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]{f}_X(x)}{C\left(\theta \right)},x\in \mathrm{\mathbb{R}}.\end{array}} $$
(5)

The survival and hazard functions of the TR {Y}–PS family of distributions are given respectively by

$$ {S}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-\mathrm{PS}}(x)=\frac{C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}{C\left(\theta \right)},x\in \mathrm{\mathbb{R}}, $$
(6)
$$ {\displaystyle \begin{array}{l}{h}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-\mathrm{PS}}(x)\\ {}=\frac{\theta {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]{f}_X(x)}{C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]},x\in \mathrm{\mathbb{R}}.\end{array}} $$
(7)

Some sub-families of the TR{Y}—PS family of distributions namely: TR {Y}—binomial (TR{Y}–B) distribution, TR {Y}–Poisson (TR{Y}–P) distribution, TR {Y}—geometric (TR{Y}–G) distribution and the TR {Y}–logarithmic (TR{Y}–L) distribution are defined in Table 2 by their cdfs. In Table 3, five standardized distributions of the random variable Y are presented alongside their various quantile functions QY(p) and the corresponding support of the random variable T which is needed to make (1) a valid cdf. These standardized distributions include the standard exponential, logistic, extreme value, log logistic, and uniform distributions. The use of standardized distributions is to reduce the number of parameters in the TR{Y}–PS distributions. For practical purposes and when highly necessary, these standardized distributions can be replaced with their non-standardized versions.

Table 2 Some sub-families of the TR{Y}–PS family of distributions
Table 3 Some distributions of Y with corresponding QY(p) and support of T

In Tables 4, 5, 6, and 7, different TR{Y}–B, TR{Y}–G, TR{Y}–L, and TR{Y}–P distributions are presented respectively for different choices of QY(p) in Table 3.

Table 4 Different TR{Y}–B distributions
Table 5 Different TR{Y}–G distributions
Table 6 Different TR{Y}–L distributions
Table 7 Different TR{Y}–P distributions

General mathematical properties of the TR {Y} power series family of distributions

Some useful statistical properties of the new family are presented. We begin by looking at some limiting distributions as contained in Propositions 1 and 2.

Limiting distributions and some useful representations

Proposition 1:

The TR{Y} distribution defined by (1) is a limiting case of the T – R{Y} − PS family of distributions defined in (4) when θ → 0+.

Proof:

Applying\( C\left(\theta \right)=\sum \limits_{n=1}^{\infty }{a}_n{\theta}^n \), one readily obtains

$$ \kern1.25em {F}_{T-R\left\{Y\right\}- PS}(x)=1-\frac{\sum \limits_{n=1}^{\infty }{a}_n{\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}^n}{\sum \limits_{n=1}^{\infty }{a}_n{\theta}^n}. $$

Considering θ → 0+, we have

$$ \underset{\theta \to {0}^{+}}{\lim }{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)=1-\underset{\theta \to {0}^{+}}{\lim}\frac{\sum \limits_{n=1}^{\infty }{a}_n{\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}^n}{\sum \limits_{n=1}^{\infty }{a}_n{\theta}^n}. $$

Evaluating using standard procedure gives

$$ \kern1em \underset{\theta \to {0}^{+}}{\lim }{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)=1-\frac{a_1\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}{a_1}={F}_T\left({Q}_Y\left({F}_R(x)\right)\right), $$

which is the cdf of the T – R {Y} distribution defined by (1).

Proposition 2:

For QY(FR(x)) = x and θ → 0+, the T – R{Y} − PS family of distributions defined in (4) reduces to the distribution of the random variable T.

Proof:

The proof follows directly and explicitly from substituting x for QY(FR(x)) in (1) and the proof of Proposition 1.

Proposition 3:

The pdf of the T – R{Y} − PS family of distributions can be expressed as linear combination of density of the first order statistic of the T – R{Y} distribution as

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)=\sum \limits_{n=1}^{\infty }P\left(N=n\right){f}_{X_{x_{(1)}}}\left(x;n\right), $$

where \( {f}_{X_{x_{(1)}}}\left(x;n\right) \) is the pdf of \( {X}_{(1)}=\min {\left\{\ {X}_i\right\}}_{i=1}^n \)

Proof:

Observe that\( {C}^{\prime}\left(\theta \right)=\sum \limits_{i=1}^{\infty }n{a}_n{\theta}^{n-1} \). Using (5), one readily obtains

$$ {f}_{T-R\left\{Y\right\}- PS}(x)=\sum \limits_{n=1}^{\infty}\frac{a_n{\theta}^n}{C\left(\theta \right)}n{f}_X(x){\left[1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right]}^{n-1}, $$

and \( {f}_{X_{x_{(1)}}}\left(x;n\right)=n{f}_X(x){\left[1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right),\right]}^{n-1} \). Hence, the proof.

Quantiles and moments

The quantile function and moments of a probability distribution provide the theoretical base upon which many statistical properties of a distribution are assessed with. The quantile function in particular is very useful in Monte Carlo simulations since it helps in producing simulated random variates for any distribution, especially when it is in closed form.

Theorem 1:

The quantile function Q(p) of the T – R{Y} − PS family of distributions is given by

$$ \kern8em Q(p)={Q}_R\left\{{F}_Y\left[{Q}_T\left(1-\frac{C^{-1}\left(\left(1-p\right)C\left(\theta \right)\right)}{\theta}\right)\right]\right\},\kern0.5em 0<p<1,\kern4.93em (8) $$

where C−1(.) is the inverse of C(.)

Proof:

The result in (8) is obtained by solving the equation FT – R{Y} − PS(Q(p)) = p for Q(p).

Corollary 1:

Random samples can be simulated from the T – R{Y} − PS family of distributions by making use of the relation

$$ \kern5.7em X={Q}_R\left\{{F}_Y\left[{Q}_T\left(1-\frac{C^{-1}\left(\left(1-U\right)C\left(\theta \right)\right)}{\theta}\right)\right]\right\},\kern0.5em 0<U<1,\kern4.25em (9) $$

where X is a T – R{Y} − PS random variable and U, a uniform random variable on the interval (0, 1).

Proof:

The proof follows by substituting U for p in (8), where U is a uniform random variable on the interval (0, 1).

An expression for the rth non-central moments of the T – R{Y} − PS family of distributions random variable follows from Proposition 3. The rth non-central moments of the T – R{Y} − PS family of distributions random variable X is given by

$$ {\mu}_r^{\prime }=E\left({X}^r\right)=\underset{-\infty }{\overset{\infty }{\int }}{x}^r{f}_{T-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx=\sum \limits_{n=1}^{\infty }P\left(N=n\right)E\left({X}_{(1)}^r\right),\kern7.85em (10) $$

where \( E\left({X}_{(1)}^r\right) \) is the rth non-central moment of the first order statistic of a TR{Y} random variable. Thus the rth non-central moments of the T – R{Y} − PS family of distributions can be expressed as a linear combination of the rth non-central moments of the first order statistics of the T – R{Y} distribution.

The moment generating function (mgf) of the T – R{Y} − PS family of distributions is defined by

$$ {M}_X(t)=E\left({e}^{tX}\right). $$

Using Proposition 3, the mgf can be expressed as

$$ {M}_X(t)=\sum \limits_{n=1}^{\infty }P\left(N=n\right){M}_{X_{(1)}}(t).\kern20.2em (11) $$

Thus the mgf of the T – R{Y} − PS family of distributions can be expressed as a linear combination of the mgf of the first order statistics of the T – R{Y} distribution.

Order statistics

Order statistics are among the most essential tools in non-parametric statistics and inference. Their importance is highly visible in the problems of estimation and hypotheses tests in a variety of ways. Their moments play an important role in quality control testing and reliability, where an analyst needs to predict the failure of future components or items based on the times of a few observed early failures. These predictors are most of the time based on moments of order statistics.

Theorem 2:

Let X1, X2, …, Xm be a random sample of size m from the T – R{Y} − PS family of distributions and suppose X1 : m < X2 : m < … < Xm : m denote the corresponding order statistics. The pdf of the kth order statistic can be expressed as

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}(x)=\frac{1}{B\left(k,m-k+1\right)}\sum \limits_{j=0}^{k-1}\sum \limits_{n=0}^{\infty}\sum \limits_{r=0}^{\infty }\ {\delta}_{r,n,m,k,j}{f}_{X_{x_{(1)}}}\left(x;n+m+j-k+r+1\right),\kern3.1em (12) $$

where B(., .) is the complete beta function.

$$ {\delta}_{r,n,m,k,j}=\left(\genfrac{}{}{0pt}{}{k-1}{j}\right)\frac{{\left(-1\right)}^j\left(r+1\right){\theta}^{m+j-k+n+r+1}{a}_1^{m+j-k+1}{b}_r{d}_{m+j-k,n}}{\left[m+j-k+n+r+1\right]{\left(C\left(\theta \right)\right)}^{m+j-k+1}}, $$
$$ {d}_{m+j-k,0}=1, $$
$$ {d}_{m+j-k,t}={t}^{-1}\sum \limits_{n=1}^t\left[n\left(m+j-k+1\right)-t\right]{b}_n{d}_{m+j-k,t-n},t\ge 1, $$
$$ {b}_0=1,\kern2.25em {b}_r={a}_{r+1}/{a}_{1\kern0.5em } for\kern0.5em r=1,2,3,\dots, $$
$$ {b}_0=1,\kern2.25em {b}_n={a}_{n+1}/{a}_1\ for\ n=1,2,3,\dots, $$

and \( {f}_{X_{x_{(1)}}}\left(x;n+m+j-k+r+1\right) \) denote the pdf of \( {X}_{(1)}=\min {\left\{\ {X}_i\right\}}_{i=1}^{n+m+j-k+r+1}. \)

Proof:

From definition, the pdf of the kth order statistic of the T – R{Y} − PS family of distributions can be written as

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{\mathrm{PS}}_{k:m}}(x)=\frac{1}{B\left(k,m-k+1\right)}{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x){\left[{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right]}^{k-1}{\left[1-{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right]}^{m-k}.\kern1.25em (13) $$

Using the binomial expansion formula, one readily obtains

$$ {\left[{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right]}^{k-1}={\left[1-\left(1-{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right)\right]}^{k-1}=\sum \limits_{j=0}^{k-1}{\left(-1\right)}^j\left(\genfrac{}{}{0pt}{}{k-1}{j}\right){\left[1-{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right]}^j. $$

Substituting into (13) gives

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}(x)=\frac{1}{B\left(k,m-k+1\right)}{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\sum \limits_{j=0}^{k-1}{\left(-1\right)}^j\left(\genfrac{}{}{0pt}{}{k-1}{j}\right){\left[1-{F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\right]}^{m+j-k}.\kern1.75em (14) $$

Substituting (4) and (5) into (14) gives

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}(x)=\frac{\theta {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]{f}_X(x)}{B\left(k,m-k+1\right)C\left(\theta \right)}\sum \limits_{j=0}^{k-1}{\left(-1\right)}^j\left(\genfrac{}{}{0pt}{}{k-1}{j}\right){\left[\frac{C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]}{C\left(\theta \right)}\right]}^{m+j-k}.\kern2.75em (15) $$

Now consider the term

$$ {\left(C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]\right)}^{m+j-k}={\left[\sum \limits_{n=1}^{\infty }{a}_n{\theta}^n{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^n\right]}^{m+j-k} $$
$$ \kern2.25em ={a}_1^{m+j-k}{\theta}^{m+j-k}{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^{m+j-k}{\left[\sum \limits_{n=0}^{\infty }{b}_n{\theta}^n{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^n\right]}^{m+j-k} $$

where b0 = 1, bn = an + 1/a1 for n = 1, 2, 3, ….

Using the identity

$$ \kern15em {\left(\sum \limits_{n=0}^{\infty }{b}_n{z}^n\right)}^p=\sum \limits_{n=0}^{\infty }{d}_{p,n}{z}^n, $$

(see. Gradshteyn and Ryzhik [23]) for a positive integer m + j − k, one can write

$$ {\left(C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]\right)}^{m+j-k}={a}_1^{m+j-k}{\theta}^{m+j-k}{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^{m+j-k}\sum \limits_{n=0}^{\infty }{d}_{m+j-k,n}{\theta}^n{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^n. $$

Consequently,

$$ {\left(C\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]\right)}^{m+j-k}={a}_1^{m+j-k}\sum \limits_{n=0}^{\infty }{d}_{m+j-k,n}{\theta}^{m+j-k+n}{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^{m+j-k+n}\kern2.5em (16) $$

where dm + j − k, 0 = 1 and the coefficients for t ≥ 1 can be obtained from the recurrence equation

$$ \kern10.75em {d}_{m+j-k,t}={t}^{-1}\sum \limits_{n=1}^t\left[n\left(m+j-k+1\right)-t\right]{b}_n{d}_{m+j-k,t-n}. $$

An expression for C[θ(1 − FT(QY(FR(x))))] can also be defined. In particular,

$$ \kern9em {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]=\sum \limits_{r=1}^{\infty }r{a}_r{\theta}^{r-1}{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^{r-1}. $$

Thus,

$$ {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]={a}_1\sum \limits_{r=0}^{\infty}\left(r+1\right){b}_r{\theta}^r{\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^r,\kern5.25em (17) $$

where b0 = 1, br = ar + 1/a1 for r = 1, 2, 3, … Inserting (16) and (17) in (15) gives

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}(x)=\frac{1}{B\left(k,m-k+1\right)}\sum \limits_{j=0}^{k-1}\sum \limits_{n=0}^{\infty}\sum \limits_{r=0}^{\infty }\ {\delta}_{r,n,m,k,j}\left[m+j-k+n+r+1\right]{f}_X(x){\left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)}^{\left[m+j-k+n+r+1\right]-1},\kern0.5em $$

hence

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}(x)=\frac{1}{B\left(k,m-k+1\right)}\sum \limits_{j=0}^{k-1}\sum \limits_{n=0}^{\infty}\sum \limits_{r=0}^{\infty }\ {\delta}_{r,n,m,k,j}{f}_{X_{x_{(1)}}}\left(x;n+m+j-k+r+1\right), $$

where

$$ {\delta}_{r,n,m,k,j}=\left(\genfrac{}{}{0pt}{}{k-1}{j}\right)\frac{{\left(-1\right)}^j\left(r+1\right){\theta}^{m+j-k+n+r+1}{a}_1^{m+j-k+1}{b}_r{d}_{m+j-k,n}}{\left[m+j-k+n+r+1\right]{\left(C\left(\theta \right)\right)}^{m+j-k+1}}, $$

and

\( {f}_{X_{x_{(1)}}}\left(x;n+m+j-k+r+1\right) \) denote the pdf of \( {X}_{(1)}=\min {\left\{\ {X}_i\right\}}_{i=1}^{n+m+j-k+r+1}. \)

One readily observes that the pdf of the T – R{Y} − PS family order statistics is an infinite linear combination of the density of\( \kern0.5em {X}_{(1)}=\min {\left\{\ {X}_i\right\}}_{i=1}^{n+m+j-k+r+1} \), where the quantities δr, n, m, k, j depend only on the power series family.

The sth moment of the T – R{Y} − PS family kth order statistics is given as

$$ \kern0.5em E\left({X}_{k:m}^s\right)={\int}_{\mathrm{\mathbb{R}}}{x}_{k:m}^s\kern0.5em {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}-{PS}_{k:m}}\left({x}_{k:m}\right) dx. $$

Thus,

$$ E\left({X}_{k:m}^s\right)=\frac{1}{B\left(k,m-k+1\right)}\sum \limits_{j=0}^{k-1}\sum \limits_{n=0}^{\infty}\sum \limits_{r=0}^{\infty}\sum \limits_{q=0}^{m+j-k+n+r}{\delta}_{r,n,m,k,j}{\delta}_{r,n,m,k,j,q}\times {\int}_{\mathrm{\mathbb{R}}}{x}_{k:m}^s{f}_X\left({x}_{k:m}\right){\left({F}_T\left({Q}_Y\left({F}_R\left({x}_{k:m}\right)\right)\right)\right)}^q dx,\kern10.53em (18) $$

where

$$ {\delta}_{r,n,m,k,j,q}={\left(-1\right)}^q\left(\genfrac{}{}{0pt}{}{m+j-k+n+r}{q}\right)\left[m+j-k+n+r+1\right]. $$

A characterization for the new family

Following a dual concept in statistical mechanics, Shannon [24] introduced the probabilistic definition of entropy. The Shannon entropy which is sometimes referred to as a measure of uncertainty plays an essential role in information theory. To measure randomness or uncertainty, the entropy of a random variable comes handy since it can be defined in terms of its probability distribution. Suppose X is a continuous random variable with density function f. Then, the Shannon entropy of X is defined by

$$ {\mathrm{\mathbb{H}}}_{Sh}(f)=-{\int}_{\mathrm{\mathbb{R}}}f\log fdx.\kern23.30em (19) $$

Another powerful method often employed in the field of probability and statistics and closely related to the Shannon entropy is the “maximum entropy method” pioneered by Jaynes [25]. The method considers a family of density functions

$$ \mathbbm{F}=\left\{f:{E}_f\left({T}_i(X)\right)={\alpha}_i,i=0,\dots, m\right\}, $$

where T1(X), …, Tm(X) are absolutely integrable functions with respect to f, and T0(X) = α0 = 1. In the continuous case, the maximum entropy principle suggests deriving the unknown density function of the random variable X by the model that maximizes the Shannon entropy (19) subject to the information constraints defined in the family \( \mathbbm{F} \) (see. Shore and Johnson [26]). The maximum entropy method has been used for the characterization of several standard probability distributions; see for example, Zografos and Balakrishnan [27].

The maximum entropy distribution is the density of the family\( \mathbbm{F} \), denoted fME, obtained as the solution of the optimization problem

$$ {f}^{ME}={\arg}_{f\epsilon \mathbbm{F}}^{\mathrm{max}}\kern0.2em {\mathrm{\mathbb{H}}}_{Sh}. $$

As demonstrated by Jaynes [25], the maximum entropy distribution fME determined by the constrained maximization problem depicted above “is the only unbiased assignment we can make; to use any other would amount to arbitrary assumption of information which by hypothesis we do not have” To provide a maximum entropy characterization for the T – R{Y} − PS family, a derivation of important constraints is undertaken.

Proposition 4:

If X is a random variable with density (5) and Z follows a T – R{Y} distribution with density given by (2), the following constraints hold

$$ C1\kern0.5em E\left\{\log\ {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(X)\right)\right)\right)\right]\right\}=\frac{\theta }{C\left(\theta \right)}E\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\log {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\ \right\}, $$
$$ C2\kern0.5em E\left\{\log\ f(X)\right\}=\frac{\theta }{C\left(\theta \right)}E\left\{\log f(Z){C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\ \right\}. $$

Proof:

The proof is trivial and hence it is omitted.

Theorem 3:

The density function fT – R{Y} − PS(.) given in (5) for the random variable X following the T – R{Y} − PS family of distributions, is the unique solution of the optimization problem

$$ {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}={\arg}_{h\epsilon \mathbbm{F}}^{\mathrm{max}}\ {\mathrm{\mathbb{H}}}_{Sh}(h) $$

under the constraints C1 and C2 given in Proposition 4.

Proof:

Suppose v(.) is a pdf which satisfies the constraints C1 and C2. The Kullback-Leibler divergence between the densities v and fT – R{Y} − PS is

$$ D\left(v,{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right)={\int}_{\mathrm{\mathbb{R}}}v\log \left(\frac{v}{f_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}}\right) dx. $$

Following Cover and Thomas [28], one obtains

$$ 0\le D\left(v,{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right)={\int}_{\mathrm{\mathbb{R}}}v\log vdx-{\int}_{\mathrm{\mathbb{R}}}v\log {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS} dx $$
$$ \kern8.5em =-{\mathbb{H}}_{Sh}(v)-{\int}_{\mathrm{\mathbb{R}}}v\log {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS} dx. $$

Let Z have the pdf given by (2). From the definition of fT – R{Y} − PS and based on the constraints C1 and C2, the following result holds:

$$ {\int}_{\mathrm{\mathbb{R}}}v\log {f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS} dx={\int}_{\mathrm{\mathbb{R}}}\frac{\theta }{C\left(\theta \right)}{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(z)\right)\right)\right)\right]f(z)\log \left\{\frac{\theta }{C\left(\theta \right)}{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(z)\right)\right)\right)\right]f(z)\right\} dz $$

Since the density v satisfies the constraints C1 and C2.

$$ {\int}_{\mathrm{\mathbb{R}}}\upsilon\;\log\;{f}_{\mathrm{T}\hbox{-} \mathrm{R}\left\{\mathrm{Y}\right\}- PS}\; dx=\frac{\theta }{C\left(\theta \right)}{\int}_{\mathrm{\mathbb{R}}}{C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(z)\right)\right)\right)\right]f(z)\left\{\log \theta +\log \left\{{C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(z)\right)\right)\right)\right]f(z)\right\}-\log C\left(\theta \right)\right\} dz=\log \theta -\log C\left(\theta \right)+\frac{\theta }{C\left(\theta \right)}E\left\{{C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\log {C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\right\}+\frac{\theta }{C\left(\theta \right)}E\left\{\log f(Z){C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\right\}=-{\mathrm{\mathbb{H}}}_{Sh}\left({f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right) $$
(20)

Thus,

$$ 0\le {\mathbb{H}}_{Sh}\left({f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right)-{\mathbb{H}}_{Sh}(v), $$

hence,

$$ {\mathbb{H}}_{Sh}(v)\le {\mathbb{H}}_{Sh}\left({f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right), $$

with equality if and only if v(x) = fT – R{Y} − PS(x) for all x except for a null measure set. This proves Theorem 3.

Corollary 2:

The Shannon entropy of the T – R{Y} − PS family of distributions is given by

$$ {\mathrm{H}}_{sh}=\left({f}_{\mathrm{T}\hbox{-} \mathrm{R}\left\{\mathrm{Y}\right\}- PS}\right)=\log C\left(\theta \right)-\log \theta -\frac{\theta }{C\left(\theta \right)}E\left\{{C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\log {C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\right\}-\frac{\theta }{C\left(\theta \right)}E\left\{\log f(Z){C}^{\hbox{'}}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(Z)\right)\right)\right)\right]\right\}. $$
(21)

Proof:

The result follows from (20).

The mode of the family

The mode(s) of the T – R{Y} − PS family of distributions can be obtained as the solution of the equation

$$ {f}_{\mathrm{T}-\mathrm{R}\ \left\{\mathrm{Y}\right\}-\mathrm{PS}}^{\prime }(x)=0 $$

for x. It follows that the mode(s) of a T – R{Y} − PS distribution can be obtained by solving for x in the equation

$$ \left[{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]{f}_X^{\prime \prime }(x)-\theta {C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R(x)\right)\right)\right)\right]{\left({f}_X(x)\right)}^2\right]=0.\kern6.25em (22) $$

Mean deviations of the family

The dispersion and the spread in a population from the center are often measured by the deviation from the mean, and the deviation from the median. The mean absolute deviation about the mean, D(μ), and the mean absolute deviation about the median, D(M), for the new family are defined as

$$ D\left(\mu \right)={\int}_{-\infty}^{\infty}\left|x-\mu \right|{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\ dx, $$

and

$$ D(M)={\int}_{-\infty}^{\infty}\left|x-M\right|{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x)\ dx, $$

respectively, where μ = E(X) and M = Q(0.5). Consequently,

$$ D\left(\mu \right)={\int}_{-\infty}^{\infty}\left|x-\mu \right|{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx={\int}_{-\infty}^{\mu}\left(\mu -x\right){f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx+{\int}_{\mu}^{\infty}\left(x-\mu \right){f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx. $$

Thus,

$$ D\left(\mu \right)=2\mu {F}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}\left(\mu \right)-2\mu +2{\int}_{\mu}^{\infty }x{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx.\kern10.5em (23) $$

Also,

$$ D(M)={\int}_{-\infty}^{\infty}\left|x-M\right|{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx={\int}_{-\infty}^M\left(M-x\right){f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx+{\int}_M^{\infty}\left(x-M\right){f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx $$

Thus,

$$ D(M)=-\mu +2{\int}_M^{\infty }x{f}_{\mathrm{T}-\mathrm{R}\left\{\mathrm{Y}\right\}- PS}(x) dx.\kern16.75em (24) $$

Remark: Many results obtained so far can be determined numerically by employing any symbolic computing software such as MATLAB, MATHEMATICA, and R. The infinity limit in the sums can be substituted by a large number for applied purposes.

Maximum likelihood estimation of the parameters of the new family

Suppose ξ is a p × 1 vector containing all the parameters of the T – R{Y} distribution, for a complete random sample x1, x2, …, xn of size n from the T – R{Y} − PS family, the total log-likelihood function is given by

$$ \kern0.5em \ell =n\ \log \left(\theta \right)-n\ \log \left(C\left(\theta \right)\right)+\sum \limits_{i=1}^n\log \left({C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right)+\sum \limits_{i=1}^n\log \left({f}_X\left({x}_i;\xi \right)\right).\kern22.3em (25) $$

Let Θ = (θ ξ)T be the unknown parameter vector of the T – R{Y} − PS family, the associated score function is given by

$$ \kern12.75em \boldsymbol{U}\left(\Theta \right)={\left(\frac{\partial \ell }{\partial \theta }\ \frac{\partial \ell }{\partial \xi}\right)}^T, $$

where \( \frac{\partial \ell }{\partial \theta }\ \mathrm{and}\frac{\partial \ell }{\partial \xi } \) are given by

$$ \kern5.5em {U}_{\theta }=\frac{\partial \ell }{\partial \theta }=\frac{n}{\theta }-\frac{n\ {C}^{\prime}\left(\theta \right)}{C\left(\theta \right)}+\sum \limits_{i=1}^n\frac{\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial \theta }{C^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]}, $$
$$ \kern1.25em {U}_{\xi_k}=\frac{\partial \ell }{\partial {\xi}_k}=\sum \limits_{i=1}^n\frac{\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\xi}_k}{C^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]}+\sum \limits_{i=1}^n\frac{\partial \left({f}_X\left({x}_i;\xi \right)\right)/\partial {\xi}_k}{f_X\left({x}_i;\xi \right)}. $$

The maximum likelihood estimate of Θ, \( \hat{\Theta}, \) can be obtained by solving the non-linear systems of equations, U(Θ) = 0. Since the resulting systems of equations are not in closed form, the solutions can be found numerically using some specialized numerical iterative scheme such as the Newton-Raphson type algorithms, which can be implemented on several computing software like R, SAS, MATHEMATICA, and MATLAB.

For interval estimation of the parameters of the T – R{Y} − PS family, one would require the Fisher information matrix (FIM) given by the (1 + p) × (1 + p) symmetric matrix

$$ \boldsymbol{I}\left(\Theta \right)=-{E}_{\Theta}\left(\begin{array}{ccc}{U}_{\theta \theta}& \left.\ \right|& {U}_{\theta \xi}^T\\ {}--& --& --\\ {}{U}_{\theta \xi}& \left.\ \right|& {U}_{\xi \xi}\end{array}\right), $$

where p is the number of parameter(s) in the T – R{Y} distribution and

$$ {U}_{\theta \theta}=-\frac{n}{\theta^2}-n\left\{\frac{C\left(\theta \right){C}^{\prime \prime}\left(\theta \right)-{\left[{C}^{\prime}\left(\theta \right)\right]}^2}{{\left[C\left(\theta \right)\right]}^2}\right\}+\sum \limits_{i=1}^n\frac{\partial^2\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\theta}^2}{C^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]}-\sum \limits_{i=1}^n\frac{{\left(\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial \theta \right)}^2}{{\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}}^2}, $$
$$ {U}_{\theta {\xi}_k}=\sum \limits_{i=1}^n\frac{\partial^2\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial \theta \partial {\xi}_k}{C^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]} $$
$$ -\sum \limits_{i=1}^n\frac{\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\xi}_k\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial \theta }{{\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}}^2}, $$
$$ {U}_{\xi_k{\xi}_l}=\sum \limits_{i=1}^n\frac{\partial^2\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\xi}_k\partial {\xi}_l}{C^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]} $$
$$ -\sum \limits_{i=1}^n\frac{\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\xi}_k\partial \left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}/\partial {\xi}_l}{{\left\{{C}^{\prime}\left[\theta \left(1-{F}_T\left({Q}_Y\left({F}_R\left({x}_i;\xi \right)\right)\right)\right)\right]\right\}}^2}+\sum \limits_{i=1}^n\frac{\partial^2\left({f}_X\left({x}_i;\xi \right)\right)/\partial {\xi}_k\partial {\xi}_l}{f_X\left({x}_i;\xi \right)}-\sum \limits_{i=1}^n\frac{\partial \left({f}_X\left({x}_i;\xi \right)\right)/\partial {\xi}_k\partial \left({f}_X\left({x}_i;\xi \right)\right)/\partial {\xi}_l}{{\left({f}_X\left({x}_i;\xi \right)\right)}^2}. $$

The total FIM, I(Θ), can be approximated by

$$ \boldsymbol{J}\left(\hat{\Theta}\right)\approx {\left[-{\left.\frac{\partial^2\ell }{\partial {\Theta}_i\partial {\Theta}_j}\right|}_{\Theta =\hat{\Theta}}\right]}_{\left(1+p\right)\times \left(1+p\right)}. $$

For real data, \( \boldsymbol{J}\left(\hat{\Theta}\right) \) is obtained after the maximum likelihood estimate of Θ is gotten, which implies the convergence of the iterative numerical procedure involved in finding such estimate.

Given that \( \hat{\Theta} \) is the maximum likelihood estimate of Θ and under the conditions that are fulfilled for the parameters Θ in the interior of the parameter space but not on the boundary, it follows that \( \sqrt{n}\left(\hat{\Theta}-\Theta \right)\overset{d}{\to }{N}_{1+p}\left(\mathbf{0},{\boldsymbol{I}}^{-\mathbf{1}}\left(\Theta \right)\right), \) where I1(Θ) is the inverse of the expected FIM. The asymptotic behavior is still valid if I1(Θ) is replaced by\( {\boldsymbol{J}}^{-\mathbf{1}}\left(\hat{\Theta}\right) \). The multivariate normal distribution with zero mean vector 0 and covariance matrix I1(Θ) is used to construct confidence intervals for the T – R{Y} − PS family parameters. The approximate 100(1 − α)% two-sided confidence interval for the parameters θ and ξ are given by

$$ \hat{\theta}\pm {Z}_{\alpha /2}\sqrt{\ {\boldsymbol{I}}_{\theta \theta}^{-1}\left(\hat{\Theta}\right)},\kern3.75em \hat{\xi}\pm {Z}_{\alpha /2}\sqrt{\ {\boldsymbol{I}}_{\xi \xi}^{-1}\left(\hat{\Theta}\right)}, $$

respectively, where \( {\boldsymbol{I}}_{\theta \theta}^{-1}\left(\hat{\Theta}\right)\ \mathrm{and}\ {\boldsymbol{I}}_{\xi \xi}^{-1}\left(\hat{\Theta}\right) \)are diagonal elements of \( {\boldsymbol{I}}^{-\mathbf{1}}\left(\hat{\Theta}\right) \) and Zα/2 is the upper (α/2)th percentile of a standard normal distribution.

A specific member from the new family: the Gumbel–Weibull {logistic}–Poisson (GUWELOP) distribution

Taking T, R, and Y as random variables following the Gumbel, Weibull and logistic distributions, respectively, Al-Aqtash et al. [29] defined the Gumbel–Weibull {logistics} (GW) distribution by the cdf and pdf expressed respectively as

$$ {F}_{GW}(x)=\exp \left\{-\beta {\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-1/\gamma}\right\},\kern18.4em (26) $$
$$ {f}_{GW}(x)=\frac{\alpha \beta}{\lambda \gamma}{\left(\frac{x}{\lambda}\right)}^{\alpha -1}{e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}{\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-1-1/\gamma}\exp \left\{-\beta {\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-1/\gamma}\right\},\kern6.25em (27) $$
$$ x>0,\alpha, \beta, \lambda, \gamma >0. $$

Taking the power series distribution as the Poisson distribution with properties as specified in Table 1 and substituting (26) and (27) into (4) and (5), we define the Gumbel – Weibull {logistic} Poisson (GUWELOP) distribution by the cdf and pdf given respectively by

$$ {F}_{\mathrm{GUWELOP}}(x)=1-\frac{\exp \left\{\theta \left[1-\exp \left(-\beta {\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-\frac{1}{\gamma }}\right)\right]\right\}-1}{{\mathrm{e}}^{\theta }-1},\kern8.5em (28) $$
$$ {f}_{\mathrm{GUWELOP}}(x)=\frac{\alpha \beta \theta}{\lambda \gamma \left({\mathrm{e}}^{\theta }-1\right)}{\left(\frac{x}{\lambda}\right)}^{\alpha -1}{e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}{\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-1-\frac{1}{\gamma }}\exp \left\{-\beta {\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-\frac{1}{\gamma }}\right\}\times $$
$$ \exp \left\{\theta \left[1-\exp \left(-\beta {\left({e}^{{\left(\frac{x}{\lambda}\right)}^{\alpha }}-1\right)}^{-1/\gamma}\right)\right]\right\},\kern17em (29) $$
$$ x>0,\alpha, \beta, \lambda, \gamma >0,\theta \epsilon \mathit{\mathbb{R}}. $$

A graph of the pdf of the GUWELOP distribution is shown in Fig. 1. The graph of the pdf reveals that the GUWELOP density can be right-skewed, left-skewed, almost symmetric, and bimodal. To buttress the applicability of members of the new family in modeling complex real life data, the GUWELOP distribution is used to fit a multi-modal data set. The data set represents Kevlar 49/epoxy strands failure times data (pressure at 70%) reported in Al-Aqtash et al. [29] The data are multimodal, platykurtic, and approximately symmetric. (Skewness = 0.1, kurtosis = − 0.79). The data set is given in Table 8. The maximum likelihood method is used to fit the GUWELOP distribution, GW distribution, and the beta-normal (BN) distribution (Eugene et al. [11] to the data set. The results of the fit and other summary statistics are presented in Table 9. The graph of the fitted densities alongside the histogram of the data set is shown in Fig. 2.

Fig. 1
figure1

GUWELOP density for varying parameter values (λ = 1, γ = 6)

Table 8 Kevlar 49/epoxy strands failure times data (pressure at 70%)
Table 9 Maximum likelihood estimates for Kevlar 49/epoxy strands failure times data (pressure at 70%)
Fig. 2
figure2

Histogram and fitted densities of Kevlar 49/epoxy strands failure times data (pressure at 70%)

Results from Table 9 show that the three distributions provided good fits to the data set since all the distributions have high p values of the KS statistics. However, The GUWELOP distribution has the highest p value and hence provided the best fit to the data. This application suggests the adequacy of the GUWELOP distribution in fitting multi-modal data sets.

Summary and conclusion

A new family of probability distributions called the TR {Y}—power series family of distributions has been introduced in this paper. The new family was realized by compounding the TR {Y} family of distribution and the power series family. Several mathematical properties of the new family were explored alongside the maximum likelihood method for the estimation of the parameters of the new family. A special member of the new family called the Gumbel–Weibull {logistics} Poisson distribution was defined and applied to a real data set in order to buttress the applicability of members of the new family in fitting real life data sets. Finally, we hope that the new family will attract usage in complex applications in the literature on compounded family of probability distributions.

Availability of data and materials

Not applicable

Abbreviations

AIC:

Akaike Information Criterion

BN:

beta normal

cdf:

cumulative distributions function

GUWELOP:

Gumbel – Weibull {logistic} Poisson

GW:

Gumbel – Weibull

K – S:

Kolmogorov –Smirnov

mgf:

moment generating function

pdf:

probability density function

T – R {Y} – B:

T – R {Y} – binomial

T – R {Y} – G:

T – R {Y} – geometric

T – R {Y} – L:

T – R {Y} – logarithmic

T – R {Y} – P:

T – R {Y} – Poisson

References

  1. 1.

    K. Pearson: Contribution to the mathematical theory of evolution. II. Skew variation in homogenous material. Philosophical Transactions of the Royal Society London A, 186, (1895), 343 – 414.

  2. 2.

    Burr, I.W.: Cumulative frequency functions. Annals of Mathematical Statistics. 13, 215–232 (1942)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Johnson, N.L.: Systems of frequency curves generated by methods of translation. Biometrika. 36, 149–176 (1949)

    MathSciNet  Article  Google Scholar 

  4. 4.

    J. W. Tukey: The Practical Relationship Between the Common Transformations of Percentages of Counts and amounts. Technical Report 36. Statistical Techniques Research Group, Princeton University, Princeton, NJ, (1960).

  5. 5.

    M. Aldeni, C. Lee and F. Famoye: (2017). Families of distributions arising from the quantile of generalized lambda distribution. Journal of Statistical Distributions and Applications, (2017), 4:25.

  6. 6.

    Azzalini, A.: A class of distributions which includes the normal ones. Scandinavian Journal of Statistics. 12, 171–178 (1985)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Mudholkar, G.S., Srivastava, D.K.: Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability. 42, 299–302 (1993)

    Article  Google Scholar 

  8. 8.

    Marshall, A.W., Olkin, I.: A new method for adding parameter to a family of distributions with application to the exponential and Weibull families. Biometrika. 84, 641–652 (1997)

    MathSciNet  Article  Google Scholar 

  9. 9.

    W.T. Shaw and I.R. Buckley: The alchemy of probability distributions: Beyond Gram-Charlier expansions and a skew-kurtotic-normal distribution from a rank transmutation map. arXiv:0901.0434[q-fin.ST], (2009).

  10. 10.

    Adamidis, K., Loukas, S.: A lifetime distribution with decreasing failure rate. Statistics and Probability Letters. 39, 35–42 (1998)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Eugene, N., Lee, C., Famoye, F.: Beta-normal distribution and its applications. Communications in Statistics - Theory & Methods. 31, 497–512 (2002)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Jones, M.C.: Kumaraswamy’s distribution: A beta-type distribution with tractability advantages. Statistical Methodology. 6, 70–81 (2009)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Cordeiro, G.M., de Castro, M.: A new family of generalized distributions. Journal of Statistical Computation and Simulation. 81, 883–898 (2011)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Cooray, K., Ananda, M.M.A.: Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal. 5, 321–334 (2005)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. Metron. 71, 63–79 (2013)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Alzaatreh, A., Lee, C., Famoye, F.: T – normal family of distributions: a new approach to generalize the normal distribution. Journal of Statistical Distributions and Applications. 1, 16 (2014)

    Article  Google Scholar 

  17. 17.

    E.K. AL-Hussaini and Abdel-Hamid, A.H. Generation of distribution functions: A survey. Journal of Statistics Applications and Probability, 7, (2018), 91 – 103.

  18. 18.

    Kosambi, O.D.: Characteristic properties of series distributions. Proceedings of the National Institute of Science, India. 15, 109–113 (1949)

    MathSciNet  Google Scholar 

  19. 19.

    A. Noack: A class of random variables with discrete distributions. Annals of Mathematical Statistics, 21, (1950), 12 7- 132.

  20. 20.

    G.P. Patil: Contribution to the estimation in a class of discrete distributions. Ph.D Thesis, Ann Arbor, MI: University of Michigan, (1961).

  21. 21.

    Patil, G.P.: Certain properties of the generalized power series distributions. Annals of the Institute of Statistical Mathematics. 14, 179–182 (1962)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Morais, A., Barreto-Souza, W.: A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis. 55, 1410–1425 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, San Diego (2000)

    Google Scholar 

  24. 24.

    Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal. 27, 379–432 (1948)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Jaynes, E.T.: Information theory and statistical mechanics. Physical Reviews. 106, 620–630 (1957)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Transactions on Information Theory. 28, 26–37 (1980)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Zografos, K., Balakrishnan, N.: On families of beta-and generalized gamma-generated distributions and associated inference. Statistical Methodology. 6, 344–368 (2009)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley and Sons, New York (1991)

    Google Scholar 

  29. 29.

    Al-Aqtash, R., Lee, C., Famoye, F.: Gumbel - Weibull distribution: Properties and application. Journal of Modern Applied Statistical Method. 13, 201–225 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to members of the Statistics Research Group (SRG), University of Benin, Benin city, Nigeria, for useful comments which greatly helped to improve this paper when it was first presented at the Quarterly Seminar of the group.

Funding

The authors declare that they had no funding.

Author information

Affiliations

Authors

Contributions

The authors read and approved the final manuscripts

Corresponding author

Correspondence to Patrick Osatohanmwen.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osatohanmwen, P., Oyegue, F.O. & Ogbonmwan, S.M. The TR {Y} power series family of probability distributions. J Egypt Math Soc 28, 29 (2020). https://doi.org/10.1186/s42787-020-00083-7

Download citation

Keywords

  • T − R{Y} family
  • Power series family
  • Continuous distribution
  • Discrete distribution
  • Maximum Likelihood estimation

Mathematics Subject Classification

  • 62B15
  • 60E05
  • 62F10
  • 62N05