 Original research
 Open access
 Published:
Sensitivity and mathematical model analysis on secondhand smoking tobacco
Journal of the Egyptian Mathematical Society volume 28, Article number: 50 (2020)
Abstract
In this paper, we are concerned with a mathematical model of secondhand smoker. The model is biologically meaningful and mathematically well posed. The reproductive number \(R_{0}\) is determined from the model, and it measures the average number of secondary cases generated by a single primary case in a fully susceptible population. If \(R_{0}<1,\) the smokingfree equilibrium point is stable, and if \(R_{0}>1,\) endemic equilibrium point is unstable. We also provide numerical simulation to show stability of equilibrium points. In addition, sensitivity analysis of parameters involving in the dynamic system of the proposed model has been included. The parameters involving in reproductive number measure the relative change in \(R_{0}\) when the value of the parameter changes.
Introduction
Secondhand smoke is defined as “the combination of smoke emitted from the burning end of a cigarette or other tobacco products and smoke exhaled by the smoker” [1]. Thus, secondhand smoke exposure consists of an unintentional inhalation of smoke that occurs close to people smoking and/or in indoor environments where tobacco was recently used.
Subjects may be exposed to secondhand smoke in multiple sites, such as the home [2], public places, cars, homes of relatives [3], and the workplace [4]. Exposure to secondhand smoke is a significant risk factor for a plethora of diseases and adverse healthrelated outcomes at a global scale [5] and is estimated to cause over 600,000 deaths annually, the majority of which are due to ischemic heart disease among adults [6].
There is a connection between secondhand smoke and an increased risk of stroke. Regular exposure to secondhand smoke, such as in restaurants, increases one’s chance of stroke by 50 % [7]. Secondhand smoke is as damaging to a fetus as if the mother were inhaling the smoke directly from a cigarette [8]. Just 30 min of exposure to secondhand smoke can cause heart damage similar to that of habitual smokers [9].
Due to these, secondhand smoke exposure is a topic of great concern for us because of its wellknown adverse effects on human health [10]. Worldwide, 40% of children, 33% of male nonsmokers and 35% of female nonsmokers were exposed to secondhand smoke. The highest proportions exposed were estimated in Europe, the Western Pacific, and Southeast Asia, with more than 50% of population exposed. Proportion of people exposed was lowest in Africa [6]. The prevalence of secondhand smoke exposure among adolescents in Ethiopia is highest [11].
Different scholars discussed about secondhand smoke in relation to health problem. For instance, [12] discussed the global health burden of secondhand smoke, and [13] emphasized a new and alarming consequence of smoking in indoor environments.
All studies mentioned above showed secondhand smoke is a big problem in the world as the result of leading peoples to diseases and death. There are a number of studies on mathematical model of smoking by taking different assumption. We direct refer the reader to the papers [14,15,16,17].
In this article, we will see the effect of secondhand smoke in the society. We will prepare a mathematical model and interpret the model graphically. The model, we will develop extends the work of Eduardo L. L. M and Maribel L. B in paper [18]. We consider death \((\nu P)\) of secondhand smoker by this infection in addition to natural death [19, 20], and we discuss sensitivity analysis of \(R_{0}\). Different parameters will be used for the infection rate \(\lambda PS\) from P to S and infection rate \(\delta QS\) from Q to S. The infection rate \(\delta QS\) from Q to S means the infection rate when relapse smoking, that is, restarting smoking after a period of abstinence. In [21], relapse rates within the first year of abstinence ranged from 60 to 90%, while 2 years of continuous cessation indicated a likelihood of 80% to maintain longterm abstinence. A research conducted in the USA has the following results [22].

1
The prevalence of relapse is 6.8%.

2
Prevalence and odds of relapse were higher among young people compared with elders.

3
Former smokers living in smokefree homes had 60% lower odds of relapse compared with those living in homes that allowed smoking inside.

4
Odds of relapse were higher among never married, widowed, divorced and separated individuals, compared with the married group.

5
Continuous smoking cessation for 6 months or more significant decreased odds of relapse.
We organized this paper as follows. In Section 2, we prepare the proposed model. In Sections 3, 4 and 5, we discuss free equilibrium point, reproduction number, sensitivity analysis and endemic equilibrium point, respectively. In Section 6, we discuss stability of equilibrium solution. In Section 7, we see the numerical simulation for the equilibrium solution. Finally, conclusion, abbreviations and declaration are included.
Formulation of the model
Model assumption
We have the following assumptions in preparing the model.

1
There are deaths as a result of smoking and secondhand smoking.

2
The number of healthy and completely recovered people is not directly considered in the system.

3
People can be in one of the three groups:

(a)
Secondhand smokers or those at risk of others smoking, represented by P;

(b)
People who have stopped smoking but are at risk due to their smoking habit before, represented by Q.

(c)
People who are addicted to tobacco and now smoke it, represented by S.

(a)

4
There is a constant flow, \(\alpha\), of healthy people who become at risk of active smokers to the state P.

5
People leave from the states P or S or Q under study due to factors such as living in a completely nonsmoking population or the death of the individual.
Description of variables and parameters
In the following table, we describe the variables and parameters to create the mathematical model that represents the dynamics of transmission of the habit of smoking (Table 1).
The dynamic system
As we see in Fig. 1,

1
P increases by \(\alpha\) per unit time

2
P decreases due to natural death (\(\mu P\) people per unit time); the influence of factors that cause a person to move from the population at risk of being an active smoker to the population of healthy people (\(\sigma P\) people per unit time); death as secondhand smoker (\(\nu P\)); and the impact of smoking (\(\lambda PS\) people per unit time).

3
S increases by the impact of (\(\lambda PS\) and \(\delta QS\) people per unit time).

4
S decreases due to natural death (\(\mu S\)), death as a result of smoking tobacco (\(\kappa S\)), the influence of factors that cause a person to leave the population of active smokers and join the population of people who have stopped smoking.

5
Q increases due to the influence of factors that cause a person to leave the population of active smokers and join the population of people who have stopped smoking

6
Q decreases due to natural death (\(\mu Q\)), deaths as a result of smoker some days before (\(\eta Q\)) and the influence of factors that cause a person to move from the population to other areas and also medical treatment to the population of healthy people (\(\xi Q\)).
We now describe the dynamic system as follows.
Positivity and boundedness of the solution
Theorem 1
If the initial population sizes of the model are positive, then the population sizes at any time are nonnegative. In other words, if \(P(0)>0, S(0)>0\) and \(Q(0)>0,\) then \(P(t)>0, S(t)>0\) and \(Q(t)>0\) for all t.
Proof
Equation (1) can be expressed as an inequality
Integrating both sides from 0 to t, the solution is obtained as
Since \(P(0)>0, P(t)>0.\) In the same manner from Eqs. (2) and (3), we obtain
and
, respectively. The latter one is justified by \(\zeta S(t)\ge 0\). \(\square\)
Theorem 2
All the solutions P(t), S(t) and Q(t) of system (1), (2) and (3) are bounded.
Proof
The population size N(t) is given by
Differentiating both sides with respect to t, we obtain
Substituting (1), (2) and (3) in (4), we have
The solution of Eq. (5) is
As \(t\rightarrow \infty ,\) we have
Therefore, the solution of the dynamic system (1), (2) and (3) is bounded. \(\square\)
So, let the total population size at time t be denoted by N(t). So, \(N(t)=P(t)+Q(t)+S(t).\) We assume that N(t) is constant, and for the purpose of computation, we take P(t), Q(t) and S(t) as proportions of N(t) where \(P(t)+Q(t)+S(t)=1.\) Thus, the region that we consider for our model is
In this paper, P(t), Q(t) and S(t) are proportions of N(t).
Free equilibrium point
Smokingfree equilibrium points are steadystate solutions of a mathematical model indicating that there is no smoking (only presented secondhand smoker). Thus, setting \(\dfrac{\hbox {d}P}{\hbox {d}t}=0,\dfrac{\hbox {d}S}{\hbox {d}t}=\,0\) and \(\dfrac{\hbox {d}Q}{\hbox {d}t}=\,0,\) we obtain
From (7), we get \(S=0.\) Substituting this value in (6) and (8) and calculating P and Q, we have respectively \(P=\dfrac{\alpha }{\nu +\mu +\sigma }\) and \(Q=0.\) Thus, the free equilibrium point of the dynamic systems [(1), (2), (3)] is
Reproduction number
The basic reproduction number, \(R_{0}\), of an infectious disease is the average number of secondary cases generated by a single primary case in a fully susceptible population [23]. \(R_{0}\) is the most widely used epidemiological measurement of the transmission potential in a given population. Statistical estimation of \(R_{0}\) has been performed for various infectious diseases [24, 25], aiming toward understanding the dynamics of transmission and evolution and designing effective public health intervention strategies. In particular, \(R_{0}\) has been used for determining the minimum coverage of immunization, because the threshold condition to prevent a major epidemic in a randomlymixing.
It is primarily used as a threshold parameter: If \(R_{0} < 1,\) the disease will fade out of the population, but if \(R_{0} > 1\), the disease will persist and become endemic to the population. Furthermore, the larger the magnitude of \(R_{0}\), the faster the disease will spread and presumably the more difficult it will be to control.
Even though there are different methods in which \(R_{0}\) can be calculated, we use the nextgeneration method. This is the most common method of calculating \(R_{0}.\) In this method, we place appropriate terms from the infected class equations into the vectors F and V. Terms that describe appearances of new infections in each compartment belong in F, and other terms belong in V. The Jacobian matrices obtained by differentiating F and V with respect to the relevant subset of variables are computed and evaluated at a nontrivial diseasefree equilibrium, resulting in the matrices DF and DV , respectively. So, the reproductive number \(R_{0}\) is defined as the spectral radius of the matrix \(DF(DV)^{1},\) denoted by \(\rho (DF(DV)^{1}).\)
Let \(X=(P,S,Q).\) Then,
where
Let \(M_{0}=\left( \dfrac{\alpha }{\nu +\mu +\sigma },0,0\right) .\) Then,
and
Here,
Hence,
where
And
Here, \(R_{0}\) represents the average number of smokers that a single smoker would produce during their period of infection in a population of exposed people.
Sensitivity analysis
Sensitivity analysis tells us how important each parameter is to interpret the model. Sensitivity allows us to measure the relative change in a variable when a parameter changes. The sensitivity of \(R_{0}\) with respect to a parameter is the ratio of the relative change in the variable (\(R_{0}\)) to the relative change in the parameter. When the variable is a differentiable function of the parameter, the sensitivity index may be alternatively defined using partial derivatives [26]. Thus, for a parameter p, we denote sensitivity of \(R_{0}\) with respect to p by \(\mathcal {S}^{R_{0}}_{p}\) and as in [27] defined by
We calculate the sensitivity analysis of parameters involved in \(R_{0}\) as follows.
We can see that \(\mathcal {S}^{R_{0}}_{\lambda }\) and \(\mathcal {S}^{R_{0}}_{\alpha }\) are positive. This indicates that \(\lambda\) and \(\alpha\) are directly proportional to \(R_{0}.\) This means an increase (or decrease) in \(\lambda\) and \(\alpha\) will cause an increase (or decrease) in \(R_{0}\) with the same proportion. So, the average number of secondary cases of infection increases (or decreases) in the community. It can also be seen that the remaining five parameters \(\nu ,\mu ,\sigma ,\kappa\) and \(\zeta\) are inversely proportional to \(R_{0}.\) So, an increase (or decrease) in these parameters leads to minimizing (or maximizing) the endemic nature of smoking in the community. The relationship between \(R_{0}\) and the above parameters can be described graphically as shown below (Fig. 2).
Endemic equilibrium point
Endemic equilibrium is steadystate solutions when the smoking persists in the population. Assume that the smoking will persist in the population. Thus, in (7), if \(S\ne 0,\) then
Substituting (18) and (19) in (17), we obtain the quadratic equation (in a variable S)
where \(R_{0}\) is given as in (9), \(L=\nu +\mu +\sigma ,M=\mu +\kappa +\zeta ,\) and \(N=\eta +\mu +\xi .\) From Eq. (20), we can calculate
where \(U=\lambda \delta \zeta \lambda \delta M, V=\delta ML(R_{0}1)+\delta \zeta L\lambda NM\) and \(W=LMN(R_{0}1).\) If \(R_{0}>1,\), then
since \(U<0.\) In this case, P and Q can be found by substituting Eq. (22) into Eqs. (18) and (19), respectively. If \(R_{0}<1,\) then \(V>0\) and \(W<0\), and thus either S is negative real number or complex number. In this case, S does not exist and hence P and Q. If \(R_{0}=1,\) then \(V=\delta \zeta L\lambda N M\) and \(W=0.\) Consequently,
We write the above discussion as a theorem as follows.
Theorem 3
The endemic equilibrium point of the dynamic system (1), (2) and (3) exists if \(R_{0}>1\) or \(R_{0}=1\) and \(\delta \zeta L>\lambda N M\) and does not exist if \(R_{0}<1.\) For \(R_{0}>1\) or \(R_{0}=1\) and \(\delta \zeta L>\lambda N M,\) the endemic equilibrium point is the ordered triple (P, S, Q), where S, P and Q are given as in (22), (18) and (19), respectively.
Stability
The physical stability of the equilibrium solution of the dynamic system (6), (7) and (8) is related to its eigenvalue.
Definition 4
The equilibrium solution of the dynamic system is stable if all the eigenvalues of the Jacobian matrix of the dynamic system evaluated at the equilibrium solution have negative real part, otherwise the solution is unstable.
The Jacobian matrix of the dynamic system is
Free equilibrium point
At the free equilibrium point, the Jacobian matrix (23) becomes
The eigenvalues of this matrix are
We see that \(\lambda _{1}\) and \(\lambda _{3}\) are negative. If \(R_{0}<1,\) then \(\lambda _{2}<0\) and hence the free equilibrium point is stable. If \(R_{0}>1,\) then \(\lambda _{2}>0\) and hence the free equilibrium point is unstable. From this discussion, we now have the following theorem.
Theorem 5
If \(R_{0}<1,\) then the free equilibrium point is stable. If \(R_{0}>1,\) then the free equilibrium point is unstable.
Endemic equilibrium point
The Jacobian matrix (23) of the dynamic system (6), (7) and (8) at the endemic equilibrium point is
where \((P^{*},S^{*},Q^{*})=(P,S,Q),\) here P, S and Q are given as in (18), (19) and (22). Its characteristic polynomial is
where
Here, our objective is to show all the roots of the characteristic polynomial (24) have negative real part. However, it is difficult to show this due to the complexity of \(a_{1},a_{2}\) and \(a_{3}.\) Later, we will illustrate the stability of the endemic equilibrium solution using numerical simulations, by imposing the value of parameters or variables. It is easy to see that if \(a_{3}>0\) and \(a_{1}a_{2}a_{3}>0,\) then all the roots of (24) have negative real part. In this case, the endemic equilibrium point is stable by Routh–Hurwitz criteria. By this criteria, if \(a_{3}<0\) or \(a_{1}a_{2}a_{3}<0,\) then the endemic equilibrium point is unstable.
Numerical simulation
The following initial values (IV) for P, S and Q have been taken at \(t=0\).
IV1  IV2  IV3  IV4  

P(0)  0.75  0.65  0.55  0.45 
S(0)  0.15  0.20  0.25  0.30 
Q(0)  0.10  0.15  0.20  0.25 
For numerical simulation, we use Runge–Kutta 4–5 methods and MATLAB 2018 software. It will be seen separately for free and endemic equilibrium point.
Free equilibrium point
The values of parameters used for simulation are \(\alpha =0.5, \delta =0.5, \nu =0.02, \mu =0.0135, \sigma =0.2, \kappa =0.02, \zeta =0.3, \eta =0.02, \xi =0.1\), and the remaining parameter \(\lambda\) can be chosen by considering \(R_{0}.\)
\(\lambda\)  

\(R_{0}<1\)  0.035 
\(R_{0}>1\)  0.165 
Since the free equilibrium point does not depend on \(\lambda ,\) in both cases, we have
We will construct the graphs in each case for \(t\in [0,400]\) as follows.

(i)
\(\lambda =0.035\)
As it can be seen in Fig. 3, for \(R_{0}<1\) we conclude that the graphs of P, S and Q for different initial values approach \(P=2.1413,S=0\) and \(Q=0\), respectively, as \(t\rightarrow \infty\) respectively. We recall that the point \((P,S,Q)=(2.1413,0,0)\) is smokingfree equilibrium point of the model. Hence, the smokingfree equilibrium point is stable.

(ii)
\(\lambda =0.165\)
As it is described in Fig. 4, for \(R_{0}>1\) we conclude that the graphs of P, S and Q for different initial values do not approach \(P=2.1413,S=0\) and \(Q=0\), respectively, as \(t\rightarrow \infty\). We again recall that the point \((P,S,Q)=(2.1413,0,0)\) is smokingfree equilibrium point of the model. Thus, smokingfree equilibrium point is unstable.
Endemic equilibrium point
We take \(\alpha =0.3, \nu =0.01, \mu =0.0035, \sigma =0.2, \lambda =0.2, \delta =0.05,\kappa =0.01,\zeta =0.2, \eta =0.02\) and \(\xi =0.1.\) In this case, the endemic equilibrium point is
We will construct the graphs for \(t\in [0,400]\) as follows. In Fig. 5, we see that for \(R_{0}>1\) we conclude that the graphs of P, S and Q for different initial values approach \(P=0.8846,S=0.7085\) and \(Q=0.8916\) as \(t\rightarrow \infty\), respectively. Therefore, the endemic equilibrium point is stable.
We next consider \(\alpha =0.3, \nu =0.01, \mu =0.035, \sigma =0.2, \lambda =0.2001,\delta =0.2,\kappa =0.01,\zeta =0.2, \eta =0.02\) and \(\xi =0.1.\) Here, the endemic equilibrium point is
We will construct the graphs for \(t\in [0,600]\) as follows. In Fig. 6, we notice that for \(R_{0}=1\) and \(\delta \zeta L>\lambda NM\) we conclude that the graphs of P, S and Q for different initial values approach \(P=0.6125,S=1.2232\) and \(Q=0.6121\) as \(t\rightarrow \infty\), respectively. So, here the endemic equilibrium point is stable.
Conclusion

1
The average number of new smokers from a single addicted smoker is given by
$$\begin{aligned} \dfrac{\alpha \lambda }{(\nu +\mu +\sigma )(\mu +\kappa +\zeta )}. \end{aligned}$$Secondhand smoker persists in the population if \(R_{0}>1\) or \(R_{0}=1\) and \(\delta \zeta L>\lambda N M.\) Secondhand smoker will be disappeared over time if \(R_{0}<1.\)

2
An increase (or decrease) in \(\lambda\) leads an increase (or decrease) secondhand smoker in the community.

3
An increase (or decrease) in the parameters \(\nu ,\mu ,\sigma ,\kappa\) and \(\zeta\) leads to minimizing (or maximizing) the endemic nature of smoking in the community. So secondhand smoker will be minimized or maximized.

4
If the average number of smokers that a single addicted smoker produces is less than one, the population of secondhand smokers disappears over time.

5
If the average number of smokers that a single addicted smoker produces is greater than one, the population of secondhand smokers persists.
Availability of data and materials
Data sharing was not applicable to this article as no datasets were generated or analyzed during the current study.
References
World Health Organization: Protection from exposure to secondhand tobacco smoke, policy recommendations. Geneva: World Health Organization (2007). https://whqlibdoc.who.int/publications/2007/9789241563413eng.pdf. Accessed 24 Mar 2011
Kusel, J., Timm, B., Lockhart, I.: The impact of smoking the home on the health outcomes of nonsmoker occupants in the UK. Tob. Induc. Dis. 11(3), 1–10 (2013). https://doi.org/10.1186/16179625113
Biagini Myers, J.M., Khurana Hershey, G.K., Deka, R., Burkle, J.W., Levin, L.S., Bernstein, D.I., Villareal, M., Lockey, J., Reponen, T., Gareri, J., Lubetsky, A., Koren, G., LeMasters, G.K.: Asking the right questions to ascertain early childhood secondhand smoke exposures. J. Pediatr. 160, 1050–1051 (2012). https://doi.org/10.1016/j.jpeds.2012.02.040
Coultas, D.B., Peake, G.T., Samet, J.M.: Questionnaire assessment of lifetime and recent exposure to environmental tobacco smoke. Am. J. Epidemiol. 130(2), 338–347 (1988). https://doi.org/10.1093/oxfordjournals.aje.a115340
US Department of Health and Human Services: The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. Centers for disease control and prevention, Atlanta (2006)
Oberg, M., Jaakkola, M.S., Woodward, A., Peruga, A., PrussUstun, A.: Worldwide burden of disease from exposure to secondhand smoke: a retrospective analysis of data from 192 countries. Lancet 377(9760), 139–146 (2011). https://doi.org/10.1016/S01406736(10)613888
Zhang, X., et al.: Association of passive smoking by husbands with prevalence of stroke among Chinese women nonsmokers. Am. J. Epidemiol. 161(3), 213–218 (2005). https://doi.org/10.1093/aje/kwi028
Grant, S.G.: Qualitatively and quantitatively similar effects of active and passive maternal tobacco smoke exposure on in utero mutagenesis at the HPRT locus. BMC Pediatr. 5, 20 (2005). https://doi.org/10.1186/14712431520
Otsuka, R., et al.: Acute effects of passive smoking on the coronary circulation in healthy young adults. J. Am. Med. Assoc. 286, 436–441 (2001). https://doi.org/10.1001/jama.286.4.436
International Agency for Research on Cancer: Tobacco smoke and involuntary smoking. IARC Monogr. Eval. Carcinog. Risk Hum. 83, 1–1452 (2004)
Abazinab, S., Dereje, N., Girma, A.: Secondhand tobacco smoke exposure among adolescents in an Ethiopian school. Healthc. Low Resour. Settings 4, 5584 (2016). https://doi.org/10.4081/hls.2016.5584
Lubick, N.: Smoking and secondhand smoke. Global estimate of SHS burden. Environ. Health Perspect. 119, A66–A67 (2011). https://doi.org/10.1289/ehp.119a66
Burton, A.: Does the smoke ever really clear? Thirdhand smoke exposure raises new concerns. Environ. Health Perspect. 119, A70–A74 (2011). https://doi.org/10.1289/ehp.119a70
Alkhudhari, Z., AlSheikh, S., AlTuwairqi, S.: Global Dynamics of a Mathematical Model on Smoking. Hindawi Publishing Corporation, Cairo (2014). https://doi.org/10.1155/2014/847075
Asfaw, M.A., Tibebu, T.M.: A mathematical model analysis of smoking tobacco in the case of Haremaya Town; Ethiopia. Int. J. Res.Stud. Sci. Eng. Technol. 6(2), 14–24 (2019)
Ullah, R., Khan, M., Gul Zaman, G., Saeed Islam, S., Khan, M.A., Jan, S., Taza Gul, G.: Dynamical features of a mathematical model on smoking. J. Appl. Environ. Biol. Sci. 6(1), 92–96 (2016)
Verma, V., Agarwal, M.: Global dynamics of a mathematical model on smoking with media campaigns. Res. Article 4(1), 500–512 (2015). ISSN 23197315
PulecioMontoya, Ana María, LópezMontenegro, Luis Eduardo, Benavides, Leidy Maribel: Analysis of a mathematical model of smoking. Contemp. Eng. Sci. 12(3), 117–129 (2019). https://doi.org/10.12988/ces.2019.9517
Öberg, M., Jaakkola, M.S., Woodward, A., Peruga, A., PrüssUstün, A.: Worldwide burden of disease from exposure to secondhand smoke: a retrospective analysis of data from 192 countries. Lancet (2011). https://doi.org/10.1016/S01406736(10)613888
Kenfield, S.A., Stampfer, M.J., Rosner, B.A., Colditz, G.A.: Smoking and smoking cessation in relation to mortality. JAMA 299(17), 2037–2047 (2008). https://doi.org/10.1001/jama.299.17.2037
Krall, E.A., Garvey, A.J., Garcia, R.I.: Smoking relapse after 2 years of abstinence: findings from the Va normative aging study. Nicotine Tob. Res. 4, 95–100 (2002). https://doi.org/10.1080/14622200110098428
Alboksmaty, A., Agaku, I.T., Odani, S., Filippidis, Filippos T.: Prevalence and determinants of cigarette smoking relapse among US adult smokers: a longitudinal study. BMJ Open 9(11), e031676 (2019). https://doi.org/10.1136/bmjopen2019031676
Diekmann, O., Heesterbeek, J.A., Metz, J.A.: On the definition and the computation of the basic reproduction ratio R_{0} in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–381 (1990). https://doi.org/10.1007/BF00178324
Becker, N.G.: Analysis of Infectious Disease Data. Chapman & Hall, Boca Raton (1989)
Dietz, K.: The estimation of the basic reproduction number for infectious diseases. Stat. Methods Med. Res. 2, 23–41 (1993). https://doi.org/10.1177/096228029300200103
Rodrigues, H.S., Monteiro, T.T., Torres, D.F.M.: Sensitivity analysis in a dengue epidemiological model. In: Hindawi Publishing Corporation Conference Papers in Mathematics, vol. 2013. Article ID 721406. https://doi.org/10.1155/2013/721406
Chitnis, N., Hyman, J.M., Cushing, J.M.: Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008). https://doi.org/10.1007/s1153800892990
Acknowledgements
The authors are grateful to the anonymous reviewers for their very constructive comments and suggestions, which have helped to improve the paper considerably.
Funding
No funding.
Author information
Authors and Affiliations
Contributions
BF and BM contributed equally in preparing and writing this manuscript. The authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fekede, B., Mebrate, B. Sensitivity and mathematical model analysis on secondhand smoking tobacco. J Egypt Math Soc 28, 50 (2020). https://doi.org/10.1186/s42787020001081
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s42787020001081