An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was obtained in Yang and Srivastava (Commun Nonlinear Sci Numer Simul 29(1–3):499–504, 2015). In this paper, we obtain the numerical solution of damped forced oscillator problems by employing the operational matrix of integration of Bernoulli orthonormal polynomials. The operational matrix of integration is determined with the help of the integral operator on Bernoulli orthonormal polynomials. Numerical examples of two different problems of spring are given to delineate the performance and perfection of this approach and compared the results with the exact solution.

Introduction

The Bernoulli numbers were probably first appeared in the book of Jakob Bernoulli which was published in 1713. There are numerous applications of Bernoulli numbers in innumerable fields such as algebraic topology, number theory, combinatorics and the calculus of finite differences [11,12,13,14]. Many authors[3, 7, 9, 13, 15, 21, 25] studied the solutions of differential equations by Bernoulli polynomials. Dilcher [5] discussed the sums of products of Bernoulli numbers. Later, Tuenter [22] discussed a symmetry of power sum polynomials and Bernoulli numbers.

Srivastava and Todorov [16] gave an explicit formula for the generalized Bernoulli polynomials while Granville and Sun [6] investigated values of polynomials in the context of a problem posed by Emma Lehmer in 1938. A simple property of the Bernoulli and the Euler polynomials was studied by Cheon [2]. Also, a new approach to Bernoulli polynomials was investigated by Costabile et al. [4]. An identity related to symmetry for the Bernoulli polynomials was discussed by Yang [24]. Recently, Boutiche et al. [1] obtained explicit Formulas associated with some families of generalized Bernoulli and Euler Polynomials. Srivastava et al. [19] studied parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials and He et al. [8] investigated Higher-Order Convolutions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi Polynomials.

Very recently, Srivastava et al. [17, 19] obtained some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials and a study on identities and relations involving the modified degenerate hermite-based Apostol-Bernoulli. Srivastava et al. [18] introduced the notions of modified degenerate Hermite-based Apostol-Bernoulli, the modified degenerate Hermite-based Apostol-Euler and the modified Hermite-based Apostol-Genocchi polynomials.

The classifications of oscillating systems are expressed in Thomsen [20] and Rama and Dukkipati [10]. The mechanism that outcomes in dissipation of the energy of an oscillator is named damping. In mechanical oscillator, the damping may be due to (a) viscous drag (b) friction and (c) structure. An oscillator to which a continuous excitation is allowed by some outside agency is called forced oscillator.

Assume a mass M involved to the end of a spring of stiffness constant. A rigid support attached on one end of the spring. Let the driven force acting on the system be F(t). At any instant of time, the system will work under the influence of following forces:

(a)

Restoring force, \(F_1=-Sx\), where x is the displacement of the mass from the equilibrium position,

(b)

Damping force, \(F_2=-r\frac{\mathrm{d}x}{\mathrm{d}t}\), where r is damping constant,

(c)

Driven force, \(F_3=F(t)\).

The negative sign in the first two above expressions shows that both the restoring and damping forces opposes the displacement. By Newton second law of motion yields

An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives was undertaken by Yang and Srivastava [23].

Motivated by the work of Yang and Srivastava [23], we investigated the numerical solutions of damped forced oscillator problems by operational matrix of integration on Bernoulli orthonormal polynomials. In fact, used the operational matrix of integration of the Bernoulli orthonormal polynomials to find the approximate solutions of damped forced oscillator and spring problems and compared these solutions with their exact solutions.

Bernoulli polynomials

The Bernoulli polynomials of nth degree are defined on the closed interval [0, 1] as

Using Gram–Schmidt process on Bernoulli polynomials \(\mathcal {B}_m(x)\) and normalizing them, a class of orthonormal Bernoulli polynomials of order m , denoted by \(w_{0m} , w_{1m} ,\ldots , w_{mm}\) has been obtained [15].

The first ten Bernoulli orthonormal polynomials are given by

where \(P_{m+1}\) is the tridiagonal operational matrix of integration of order \((m+1)\times (m+1)\) associated with orthonormal Bernoulli polynomials and is given as

In this section, we obtain solutions (approximate) to two differential equations for damped motion and forced motion using operational matrix of integration of Bernoulli orthonormal polynomial and examine its capability and exactness. First, we discuss the differential equation for damped motion.

Example 1

Consider the basic differential equation for the damped motion

where m is the mass of spring, \(a>0\) is the damping constant, k is the spring constant, and F(t) is any external impressed force that acts upon the mass [12].

Taking, \(m=\frac{w}{g}=\frac{16}{32}=\frac{1}{2},a=2,k=10\) and \(F(t)=5\cos 2t\) Eq. (14) becomes

In order to choose suitable value of m, convergence study has been accomplished for different values of y(t) for \(t= 0.0,0.1,\) to 1.0 and for \(m=2,3,5,7,\) and 9. The results of this study are presented in Table 1. It is observed that the value of the approximate convergence is nearing to the exact solution as we increase the value of m. Note that m is fixed at 9 as no further rectification or improvement was found. The calculations are worked out using Mathematica 7.0 by Wolfram.

Now, we give the calculations for the absolute error calculated using the formula \(\Vert y_e-y_a\Vert\) and presented in Table 2.

Next, we give Fig. 1, which depicts the exact and approximate numerical solutions of Eq. (15). Table 1 illustrates that value of exact and approximate solution of Eq. (15) for different values of t and m .

The graphs of absolute errors for \(m=2,3,5,7\) and 9 can be seen in the Fig. 2.

In the following example, we shall discuss the approximate solution of the differential equation for forced motion using Bernoulli orthonormal polynomials compare the result with the exact solution of the equation.

Example 2

Consider the following forced motion equation given by

The convergence study suitable value of m has been done for different values of y(t) for \(t= 0.0,0.1,\) to 1.0 and for \(m=2,3,5,7,\) and 9. The outcome of this study are given in Table 3. It has been observed that the value of the approximate convergence is sufficiently near to the exact solution for the increasing value of m. Also,the value of m is fixed at 9 as no further improvement is found. The calculations are worked out using Mathematica 7.0 by Wolfram.

Table 3 shows that value of exact and approximate numerical solution of Eq. (26) for different values of t and m.

Figure 3 illustrates the exact and approximate numerical solutions of Eq. (26).

The calculations for the absolute error calculated using the formula \(\Vert y_e-y_a\Vert\) and presented in Table 4.

Let us now see the graphs of absolute errors for \(m=2,3,5,7\) and 9 in the figures given below (Fig. 4):

Conclusions

Damped forced oscillatory differential equations have a very important role in physics, mathematics and engineering. Through this work, we use the operational matrix of integration of Bernoulli orthonormal polynomials to find approximate solutions of damped forced oscillator and spring problems. A simple procedure of forming the operational matrix of integration of the Bernoulli orthonormal polynomials is given. It is observed that the exact and approximate solutions of these problems are approximately coinciding. This method is more precise, easy to use and stable as shown in the given numerical examples.

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

Boutiche, M.A., Rahmani, M., Srivastava, H.M.: Explicit formulas associated with some families of generalized Bernoulli and Euler polynomials. Mediterr. J. Math. 14(2), 10 (2017)

Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

Singh, M., Sharma, S., Rawan, S.: Solution of linear differential equations using operational matrix of Bernoulli orthonormal polynomials. Poincare J. Anal. Appl. 7(1), 51–60 (2020)

Srivastava, H.M., Masjed-Jamei, M., Beyki, M.R.: A parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Appl. Math. Inf. Sci. 12(5), 907–916 (2018)

Srivastava, H.M., Masjed-Jamei, M., Beyki, M.R.: Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Rocky Mt. J. Math. 49(2), 681–697 (2019)

Toutounian, F., Tohidi, E.: A new Bernoulli matrix method for solving second order linear partial differential equations with the convergence analysis. Appl. Math. Comput. 223, 298–310 (2013)

Yang, X.-J., Srivastava, H.M.: An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 499–504 (2015)

The authors pay their sincere thanks to Prof. Shiv Kumar Kaushik, Associate Professor, Department of Mathematics, Kirori Mal College, University of Delhi, Delhi, India and the reviewer for his/her critical remarks and suggestions for the improvement of this paper.

Funding

This research is not funded by any research funding agency.

Author information

Authors and Affiliations

Rajkiya Engineering College, Churk, Sonbhadra, Uttar Pradesh, India

Mithilesh Singh

Gurukula Kangri Vishwavidyalaya (Kanya Gurukula Campus), Haridwar, Uttarakhand, India

Seema Sharma

Gurukula Kangri Vishwavidyalaya, Haridwar, Uttarakhand, India

SR carried out the study of Bernoulli orthonormal polynomials and performed the statistical analysis. Further, SR participated in the design of the study and was a major contributor in writing the manuscript. MS participated in the sequence alignment. SS conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Singh, M., Sharma, S. & Rawan, S. An efficient algorithm to solve damped forced oscillator problems by Bernoulli operational matrix of integration.
J Egypt Math Soc29, 6 (2021). https://doi.org/10.1186/s42787-021-00115-w