- Original research
- Open access
- Published:
Properties of neighborhood for certain classes associated with complex order and m-q-p-valent functions with higher order
Journal of the Egyptian Mathematical Society volume 30, Article number: 16 (2022)
Abstract
In this paper, by using q-calculus (Jackson’s q-derivative) \(D_{q,p}\) we defined new operator \(D_{\lambda ,q,p}^{n}f^{(m)}(z)\). After that, we used this operator to introduce two new subclasses of multivalent analytic functions with complex order. Also, we obtained coefficients estimates and consequent inclusion relationships involving the \(N_{j,\delta ,m}^{p,q}(f)\)-neighborhood of these classes
Introduction
Let \({\mathcal {A}}_{j}(p)\) denote the class of functions in the form:
which are analytic and p-valent in the open is open unit disk\({\mathbb {U}}= \{z:\left| z\right| <1\}.\)We note that \({\mathcal {A}}_{1}(p)= {\mathcal {A}}(p)\)(see [13, 30]) and \({\mathcal {A}}_{1}(1)={\mathcal {A}}.\) Also let T(p, j) denote the subclass of \({\mathcal {A}}_{j}(p)\)which can express in the form:
In recent years, the topic of q-calculus had attracted the attention of several researchers (see, for example, [2, 15, 16, 23, 34, 43,44,45]). Quantum calculus is the modern name for the investigation of calculus without limits. The quantum calculus or q-calculus began with Jackson in the early twentieth century, but this kind of calculus had already been worked out by Euler and Jacobi. In the general run, the q-calculus is used in various fields of Mathematics and Physics. Also, q-calculus appeared the connection between Mathematics and Physics. It had a lot of applications in different mathematical areas such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences quantum theory, mechanics and the theory of relativity. Several convolutional and fractional calculus q-operators were defined by many researchers. The generalization of derivative and integral in q-calculus is known as q-analogue derivative and q-analogue integral. Recently, many authors used the q- analogue derivative and q-analogue integral to generalize many classes and many operators in Geometric Function Theory (see, for example, [14, 33, 40, 42]).
For a function \(f(z)\in A(p)\) given by (1.1) (with \(j=1)\) Jackson’s q-derivative (or q-difference) \(D_{q,p}\) \((0<q<1)\)is defined as follows:
provided that \(f^{\prime }(0)\)exists. From (1.1) (with \(j=1\)) and (1.3), we deduce that
such that q-integer number k \(\left[ k\right] _{q}\) is defined by
We observe that
for a function fwhich is differentiable in a given subset of \({\mathbb {C}}\). For all \(f(z)\in T(p,j),\)we find ( see [25] )
where \(\theta (p,m)\)is defined by
For \(f\in T(p,j),\) we introduce the operator \(D_{\lambda ,q,p}^{n}f^{(m)}:T(p,j)\rightarrow T(p,j)\ (\lambda \ge 0,\ n,m\in {\mathbb {N}} _{0},0<q<1,\ j,p\in {\mathbb {N}} ,\ p>m)\)as follows:
From (1.2) and (1.8), we can obtain
where
We note that
-
(1)
\(D_{\lambda ,q,p}^{n}f^{(0)}(z)=I_{q,p}^{n}(\lambda )f(z),\)(Aouf and Madian [14], with \(\varrho =0\)]);
-
(2)
\(\lim _{q\rightarrow 1^{-}}D_{1,q,p}^{n}f^{(m)}(z)=D_{p}^{n}f^{(m)}(z),\)(Aouf [8, 9]);
-
(3)
\(\lim _{q\rightarrow 1^{-}}D_{1,q,p}^{n}f^{(0)}(z)=D_{p}^{n}f(z)\)(see [11, 18], Cătaş [24], with \(l=0\)] and [37]);
-
(4)
\(\lim _{q\rightarrow 1^{-}}D_{1,q,1}^{n}f^{(0)}(z)=D^{n}f(z)\)(see ([26, 27], with \(l=0\)));
-
(5)
\(\lim _{q\rightarrow 1^{-}}D_{\lambda ,q,1}^{n}f^{(0)}(z)=D_{\lambda }^{n}f(z)\)(see [1, 17, 21]);
-
(6)
\(D_{1,q,1}^{n}f^{(0)}(z)=D_{q}^{n}f(z)\)(see [32] ), \(\lim _{q\rightarrow 1^{-}}D_{q}^{n}f(z)=D^{n}f(z)\)(see Sălă gean [39] see also [10, 12]);
-
(7)
\(\lim _{q\rightarrow 1^{-}}D_{1,q,p}^{n}f^{(m)}(z)=D_{p}^{n}f^{(m)}(z)\)(see Aouf et al. [22]);
-
(8)
\(\lim _{q\rightarrow 1^{-}}D_{\lambda ,q,p}^{n}f^{(m)}(z)=I_{\lambda ,p}^{n}f^{(m)}(z)\)
$$\begin{aligned} =\left\{ \begin{array}{c} f\in T(p,j):I_{\lambda ,p}^{n}f^{(m)}(z)=\theta (p,m)z^{p-m}-\sum \limits _{k=j+p}^{\infty }\left( \left[ \frac{p-m+\lambda \left( k-p\right) }{ p-m}\right] \right) ^{n}\theta (k,m)a_{k}z^{k-m}, \\ n,m\in {\mathbb {N}} _{0},\ j,p\in {\mathbb {N}} ,\lambda \ge 0,\ p>m \end{array} \right\} ; \end{aligned}$$ -
(9)
\(D_{1,q,p}^{n}f^{(m)}(z)=I_{q,p}^{n}f^{(m)}(z)\)
$$\begin{aligned} =\left\{ \begin{array}{c} f\in T(p,j):I_{q,p}^{n}f^{(m)}(z)=\theta (p,m)z^{p-m}-\sum \limits _{k=j+p}^{\infty }\left( \frac{\left[ k-m\right] _{q}}{\left[ p-m \right] _{q}}\right) ^{n}\theta (k,m)a_{k}z^{k-m}, \\ n,m\in {\mathbb {N}} _{0},0<q<1,\ j,p\in {\mathbb {N}} ,p>m \end{array} \right\} ; \end{aligned}$$ -
(10)
\(D_{1,q,p}^{n}f^{(0)}(z)=D_{q,p}^{n}f(z)\)
$$\begin{aligned} =\left\{ \begin{array}{c} f\in T(p,j):D_{q,p}^{n}f(z)=z^{p}-\sum \limits _{k=j+p}^{\infty }\left( \frac{ \left[ k\right] _{q}}{\left[ p\right] _{q}}\right) ^{n}a_{k}z^{k}, \\ n\in {\mathbb {N}} _{0},\ j,p\in {\mathbb {N}} ,\ 0<q<1 \end{array} \right\} . \end{aligned}$$Now by using \(D_{\lambda ,q,p}^{n}f^{(m)}(z),\)we defined the classes \(F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\)and \(G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\)in below definitions:
Definition 1
Assume\(f(z)\in T(p,j),\)then \(f(z)\in F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\)if it satisfies the following inequality:
We observe that:
-
(1)
\(\lim _{q\rightarrow 1^{-}}F_{q,p}^{n,m}(j,1,\sigma ,b,\beta )=S_{j}(n,p,m,\sigma ,b,\beta )\) see Aouf et al. [22];
-
(2)
\(F_{q,p}^{n,0}(j,\lambda ,\sigma ,b,\beta )=S_{q}^{n}(j,\lambda ,p,\sigma ,b,\beta )\)see Aouf and madian [14], with \(\varrho =0\)];
-
(3)
\(\lim _{q\rightarrow 1^{-}}F_{q,p}^{0,0}(j,\lambda ,\sigma ,b,\beta )=S_{j}(p,\sigma ,b,\beta )\) see Aouf and Mostafa [19], with \(b_{k}=1\);
-
(4)
\(\lim _{q\rightarrow 1^{-}}F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )=F_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{z(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime }+\sigma z^{2}(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime \prime }}{(1-\sigma )I_{\lambda ,p}^{n}f^{(m)}(z)+\sigma z(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime }}-\left( p-m\right) \right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0\le \sigma \le 1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(5)
\(F_{q,p}^{n,m}(j,1,\sigma ,b,\beta )=F_{q,p}^{n,m}(j,\sigma ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{(1-\sigma )zD_{q,p}(I_{q,p}^{n}f^{(m)}(z))+\sigma zD_{q,p}(zD_{q,p}(I_{q,p}^{n}f^{(m)}(z)))}{(1-\sigma )I_{q,p}^{n}f^{(m)}(z)+\sigma zD_{q,p}(I_{q,p}^{n}f^{(m)}(z))}-\left[ p-m \right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0\le \sigma \le 1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(6)
\(\ F_{q,p}^{n,0}(j,1,\sigma ,b,\beta )=F_{q,p}^{n}(j,\sigma ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{(1-\sigma )zD_{q,p}(D_{q,p}^{n}f(z))+\sigma zD_{q,p}(zD_{q,p}(D_{q,p}^{n}f(z)))}{ (1-\sigma )D_{q,p}^{n}f(z)+\sigma zD_{q,p}(D_{q,p}^{n}f(z))}-\left[ p\right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0\le \sigma \le 1,\ 0<\beta \le 1\overset{}{}\right\} ; \end{aligned}$$ -
(7)
\(\lim _{q\rightarrow 1^{-}}F_{q,p}^{n,m}(j,\lambda ,0,b,\beta )=SF_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{z(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime }}{I_{\lambda ,p}^{n}f^{(m)}(z)}-\left( p-m\right) \right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(8)
\(F_{q,p}^{n,m}(j,1,0,b,\beta )=SF_{q,p}^{n,m}(j,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{ zD_{q,p}(I_{q,p}^{n}f^{(m)}(z))}{I_{q,p}^{n}f^{(m)}(z)}-\left[ p-m\right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(9)
\(\ F_{q,p}^{n,m}(j,\lambda ,0,b,\beta )=S_{q,p}^{n,m}(j,\lambda ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \dfrac{ zD_{q,p}(D_{\lambda ,q,p}^{n}f^{(m)}(z))}{D_{\lambda ,q,p}^{n}f^{(m)}(z)}- \left[ p-m\right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}}^{*},m,n\in {\mathbb {N}}_{0},p,j\in {\mathbb {N}},\ 0<q<1,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(10)
\(\lim _{q\rightarrow 1^{-}}F_{q,p}^{n,m}(j,\lambda ,1,b,\beta )=KF_{p}^{n,m}(j,\lambda ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ 1+\tfrac{z(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime \prime }}{(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime } }-\left( p-m\right) \right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(11)
\(F_{q,p}^{n,m}(j,1,1,b,\beta )=KF_{q,p}^{n,m}(j,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \tfrac{ D_{q,p}(zD_{q,p}(I_{q,p}^{n}f^{(m)}(z)))}{D_{q,p}(I_{q,p}^{n}f^{(m)}(z))}- \left[ p-m\right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(12)
\(\ F_{q,p}^{n,m}(j,\lambda ,1,b,\beta )=K_{q,p}^{n,m}(j,\lambda ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \dfrac{ D_{q,p}(zD_{q,p}(D_{\lambda ,q,p}^{n}f^{(m)}(z)))}{D_{q,p}(D_{\lambda ,q,p}^{n}f^{(m)}(z))}-\left[ p-m\right] _{q}\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} . \end{aligned}$$
Definition 2
Assume \(f(z)\in T(p,j),\;\)if it satisfies (1.11), then\(f(z)\in G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)
We note that:
-
(1)
\(\lim _{q\rightarrow 1^{-}}G_{q,p}^{n,m}(j,1,\sigma ,b,\beta )=K_{j}(n,p,m,\sigma ,b,\beta )\;\) see Aouf et al. [22];
-
(2)
\(G_{q,p}^{n,0}(j,\lambda ,\sigma ,b,\beta )=K_{q}^{n}(j,\lambda ,p,\sigma ,b,\beta )\;\)see Aouf and Madian [14], with \(\varrho =0\)];
-
(3)
\(\lim _{q\rightarrow 1^{-}}G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )=G_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ (1-\sigma )\frac{ I_{\lambda ,p}^{n}f^{(m)}(z)}{z^{p-m}}+\sigma \frac{(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime }}{(p-m)z^{p-m-1}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}}^{*},m,n\in {\mathbb {N}}_{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0\le \sigma \le 1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(4)
\(\ G_{q,p}^{n,m}(j,1,\sigma ,b,\beta )=G_{q,p}^{n,m}(j,\sigma ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left\{ (1-\sigma )\frac{ I_{q,p}^{n}f^{(m)}(z)}{z^{p-m}}+\sigma \frac{D_{q,p}(I_{q,p}^{n}f^{(m)}(z))}{ [p-m]_{q}z^{p-m-1}}-\theta (p,m)\right\} \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}}^{*},m,n\in {\mathbb {N}}_{0},p,j\in {\mathbb {N}},\ 0<q<1,0\le \sigma \le 1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(5)
\(\ G_{q,p}^{n,0}(j,1,\sigma ,b,\beta )=G_{q,p}^{n}(j,\sigma ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left\{ (1-\sigma )\frac{ D_{q,p}^{n}f(z)}{z^{p}}+\sigma \frac{D_{q,p}(D_{q,p}^{n}f(z))}{[p]_{q}z^{p-1} }-1\right\} \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}}^{*},n\in {\mathbb {N}}_{0},p,j\in {\mathbb {N}},\ 0<q<1,\ 0\le \sigma \le 1,\ 0<\beta \le 1\overset{}{}\right\} ; \end{aligned}$$ -
(6)
\(\lim _{q\rightarrow 1^{-}}G_{q,p}^{n,m}(j,\lambda ,1,b,\beta )=L_{p}^{n,m}(j,\lambda ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{(I_{\lambda ,p}^{n}f^{(m)}(z))^{\prime }}{(p-m)z^{p-m-1}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(7)
\(\ G_{q,p}^{n,m}(j,1,1,b,\beta )=M_{q,p}^{n,m}(j,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{ D_{q,p}(I_{q,p}^{n}f^{(m)}(z))}{[p-m]_{q}z^{p-m-1}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(8)
\(\ G_{q,p}^{n,0}(j,1,1,b,\beta )=G_{q,p}^{n}(j,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{ D_{q,p}(D_{q,p}^{n}f(z))}{[p]_{q}z^{p-1}}-1\right] \right|<\beta \right. \\&\left. b\in {\mathbb {C}} ^{*},n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0\le \sigma \le 1,\ 0<\beta \le 1\overset{}{}\right\} ; \end{aligned}$$ -
(9)
\(\lim _{q\rightarrow 1^{-}}G_{q,p}^{n,m}(j,\lambda ,0,b,\beta )=O_{p}^{n,m}(j,\lambda ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{I_{\lambda ,p}^{n}f^{(m)}(z)}{z^{p-m}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(10)
\(\ G_{q,p}^{n,m}(j,1,0,b,\beta )=R_{q,p}^{n,m}(j,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{ I_{q,p}^{n}f^{(m)}(z)}{z^{p-m}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(11)
\(\ G_{q,p}^{n,0}(j,1,0,b,\beta )=P_{q,p}^{n}(j,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{D_{q,p}^{n}f(z)}{ z^{p}}-1\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\ 0<q<1,\ 0<\beta \le 1\overset{}{}\right\} ; \end{aligned}$$ -
(12)
\(G_{q,p}^{n,m}(j,\lambda ,1,b,\beta )=G_{q,p}^{n,m}(j,\lambda ,b,\beta )\;\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{D_{q,p}(D_{,\lambda ,q,p}^{n}f^{(m)}(z))}{[p-m]_{q}z^{p-m-1}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<q<1,\ 0<\beta \le 1,p>m\overset{}{}\right\} ; \end{aligned}$$ -
(13)
\(G_{q,p}^{n,m}(j,\lambda ,0,b,\beta )=GL_{p}^{n,m}(j,\lambda ,b,\beta )\)
$$\begin{aligned}&\left\{ f\in T(p,j):\left| \frac{1}{b}\left[ \frac{I_{\lambda ,p}^{n}f^{(m)}(z)}{z^{p-m}}-\theta (p,m)\right] \right|<\beta ,\right. \\&\left. b\in {\mathbb {C}} ^{*},m,n\in {\mathbb {N}} _{0},p,j\in {\mathbb {N}} ,\lambda \ge 0,\ 0<\beta \le 1,p>m\overset{}{}\right\} . \end{aligned}$$
Now, as a results of Authors articles see ([3,4,5,6,7] [29, 31, 34, 35, 38]), we define the neighborhood \((j,\delta )\)for \(f\in T(p,j)\)by
In specially, if
we obtain
Now, we define the \(\left( q,j,\delta ,m\right) -\)neighborhood for \(f\in T(p,j)\) by
In particular, if \(h(z)\;\)given by (1.12), we immediately have
We note that
-
(i)
\(\ N_{j,\delta ,0}^{p,q}(f)=N_{j,\delta }^{p,q}(f)\;\)and\(\ N_{j,\delta ,0}^{p,q}(h)=N_{j,\delta }^{p,q}(h)\;\)(see [14, 20]);
-
(ii)
\(\ \lim _{q\rightarrow 1^{-}}N_{j,\delta ,0}^{p,q}(f)=N_{j,\delta }^{p}(f)\;\)and\(\ \lim _{q\rightarrow 1^{-}}N_{j,\delta ,0}^{p,q}(h)=N_{j,\delta }^{p}(h)\;\)(see [20] and Aouf et al. [22] ).
Preliminaries
On the other hand, we assume through the article that, \(b\in {\mathbb {C}} ^{*},\ n,m\in {\mathbb {N}} _{0},\ p,j\in {\mathbb {N}} ,\ \lambda \ge 0,\ 0<q<1,\ 0\le \sigma \le 1\) ,\(\ 0<\beta \le 1,p>m\) and\(\ \Psi _{q,p}^{n,m}(k,\lambda )\;\)is given by (1.9). To prove the main outcomes in the article we need Lemmas 1 and 2 below.
Lemma 1
Let\(f\in T(p,j)\) is given by (1.2), then\(f\in F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\)
if and only if
Proof
If \(f\in F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ).\) Then we have
or, equivalently,
By setting \(\left| {\small z}\right|\) \(=r (0\le r<1)\)in (2.3), the term in the denominator of the left hand side of (2.3) is positive for \(0\le r<1\). Therefore, by Putting \(r\longrightarrow 1\) through real values, (2.3) helps us to the desired assertion of Lemma 1.
Conversely, assume \(\left| z\right| =1\)and apply the hypothesis (2.1), from (2.3) we have
So, we have \(f(z)\in F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)by applying the maximum modulus theorem, which completes the proof of Lemma 1. \(\square\)
Remark 1
Letting \(q\rightarrow 1^{-}\) and \(n=m=0\) in Lemma 1, we obtain the result obtained by Aouf and Mostafa [19], Lemma 1, with \(b_{k}=1\)].
The following lemma can be established similarly.
Lemma 2
Let \(f\in T(p,j)\) is given by (1.2). Then\(f\in G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\)
if and only if
3- Inclusion results
In this part, we showed inclusion relations for each of the classes \(F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)and \(G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\;\)including \((q,j,\delta ,m)-\;\) neighborhood were defined by (1.15) and (1.16).
Theorem 1
Suppose\(f\in T(p,j)\;\)includes in \(F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\;\) then
since h(z) is defined by (1.13) and \(\eta\)is given by
Proof
Let \(f\in F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\), then by using (2.1) of Lemma 1, we obtain
which quickly gives
Making use of (2.1) with (3.4), we obtain
Hence
by means of (1.14), we obtained (3.1) which asserted by Theorem 1. \(\square\)
Remark 2
Letting \(q\rightarrow 1^{-}\) and \(n=m=0\;\)in Theorem 1, we obtain the result obtained by Aouf and Mostafa [19], Theorem 2, with \(b_{k}=1\)].
In a similar manner, we proved the following inclusion relationship by using (2.4) of Lemma 2 recompensed (2.1) of Lemma 1 on functions in \(G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ).\)
Theorem 2
Assume \(f\in T(p,j)\;\)includes in \(G_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\) then
such that\(h(z)\;\)is defined by (1.13) and \(\delta \;\)is introduced by
4- Neighborhoods properties
In this section, we determine the neighborhood for each of the classes \(F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\)and \(G_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\). If there exists a function \(\rho (z)\in F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta ),\) satisfies (4.1), then \(f(z)\in T(p,j)\)is said to be in the class \(F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\)
Analogously,if we find a function \(\rho (z)\in G_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\;\)which the inequality (4.1) achieve, then we can say for \(f(z)\in T(p,j),\ f(z)\in G_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta ).\)
Theorem 3
Let \(f\in T(p,j)\)includes in \(F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\)and
then
where
Proof
Assume \(f\in N_{j,\eta ,m}^{p,q}(h).\) From (1.15) we find that
which readily implies that
Next, since \(\rho (z)\in F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta ),\;\)by using (3.4), we have
so that
provided that \(\gamma\) is given by (4.2) and by the above definition, \(f\in F_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\), so the proof of Theorem 3 is finished. \(\square\)
The proof of Theorem 4 below is similar to the proof of Theorem 3, we omit the details involved.
Theorem 4
Let \(f\in T(p,j)\)includes in \(G_{q,p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\)and
then
where
Remarks
(1) Taking \(m=0\;\)in our outcomes, we obtain the outcomes obtained by Aouf and Madian [14], with \(\varrho =0\)]; (2) Taking \(q\rightarrow 1^{-}\;\) and \(\lambda =1\;\)in our outcomes, we obtain the outcomes obtained by Aouf et al. [16]; (3) Taking \(q\rightarrow 1^{-}\;\)and \(n=0\;\)in our outcomes, we obtain the outcomes obtained by El- El-Ashwah et al. [28], with \(b_{k}=1\) and \(m=0\)]; (4) Taking \(q\rightarrow 1^{-}\) in Theorems 1,2,3 and 4, respectively, we obtain new outcomes for the classes \(F_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\ G_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),\) \(F_{p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta )\;\)and \(G_{p}^{n,m(\gamma )}(j,\lambda ,\sigma ,b,\beta ),\;\) respectively; (5) Taking (a) \(\lambda =1\), (b) \(\lambda =1\;\)and \(m=0,\;\)(c) Letting \(q\rightarrow 1^{-}\) and \(\sigma =0,\;\)(d)\(\ \lambda =1\;\)and \(\sigma =0,\;\)(E) \(\sigma =0,\;\)(F) Letting \(q\rightarrow 1^{-}\) and \(\sigma =1,\;\)(G)\(\ \lambda =1\;\)and \(\sigma =1,\;\)(H) \(\sigma =1,\;\)in Lemma 1, Theorems 1 and 3, respectively, we get to new outcomes for the classes \(F_{q,p}^{n,m}(j,\sigma ,b,\beta ),\ F_{q,p}^{n}(j,\sigma ,b,\beta ),SF_{p}^{n,m}(j,\lambda ,\sigma ,b,\beta ),SF_{q,p}^{n,m}(j,b,\beta ),S_{q,p}^{n,m}(j,\lambda ,b,\beta ),\) \(KF_{p}^{n,m}(j,\lambda ,b,\beta ),\ KF_{q,p}^{n,m}(j,b,\beta )\;\)and\(\ K_{q,p}^{n,m}(j,\lambda ,b,\beta ),\;\) respectively; (6) Taking (a) \(\lambda =1\), (b) \(\lambda =1\;\)and \(m=0,\;\)(c) Letting \(q\rightarrow 1^{-}\) and \(\sigma =1,\;\)(d)\(\ \lambda =1\;\)and \(\sigma =1,\;\)(E) \(\lambda =\sigma =1\;\)and \(m=0,\;\)(F) Letting \(q\rightarrow 1^{-}\) and \(\sigma =0,\;\)(G)\(\ \lambda =1\;\)and \(\sigma =0,\;\) (H) \(\lambda =1\;\)and \(m=\sigma =0,\)(I) \(\sigma =1\;\)(J) \(\sigma =0\;\)in Lemma 2, Theorems 2 and 4, respectively, we get to new outcomes for the classes \(G_{q,p}^{n,m}(j,\sigma ,b,\beta ),\ G_{q,p}^{n}(j,\sigma ,b,\beta ),L_{p}^{n,m}(j,\lambda ,b,\beta ),M_{q,p}^{n,m}(j,b,\beta ),G_{q,p}^{n}(j,b,\beta ),O_{p}^{n,m}(j,\lambda ,b,\beta ),\)
\(R_{q,p}^{n,m}(j,b,\beta ),\ P_{q,p}^{n}(j,b,\beta ),G_{q,p}^{n,m}(j,\lambda ,b,\beta )\;\)and \(GL_{p}^{n,m}(j,\lambda ,b,\beta ),\)respectively.
Conclusions
Throughout the paper, we defined new subclasses of complex order \(F_{q,p}^{n,m}(j,\lambda ,\sigma ,b,\beta )\)and \(G_{q,p}^{n,m}(j, \lambda ,\sigma ,b,\beta )\;\)by using \(D_{\lambda ,q,p}^{n}f^{(m)}(z)\;\) operator. Also, we introduced coefficients estimates theorems and neighborhoods properties for this classes. This paper generalized many results for different authors. There was connection between q-analysis and (p,q)-analysis see Srivastava [41]. Srivastava [41], page 340] applied some obvious parametric, argument variations and considered \(0<q<p\le 1,\) also translated the classical q-number \(\left[ n\right] _{q}\) to \(\left[ n\right] _{p,q}\;\)as follows:
Availability of data and material
During the current study the data sets are derived arithmetically.
References
Al-Aboudi, F.: On univalent functions defined by a generalized Sălăgean operator. Internat. J. Math. Math. Sci. 27, 481–494 (2004)
Ahmad, B., Khan, M.G., Frasin, B.A., Aouf, M.K., Abdeljawad, T., Mashwani, W.K., Arif, M.: On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Math. 6(4), 3037–3052 (2021). https://doi.org/10.3934/math.2021185
Altintaş, O., Ozkan, O., Srivastava, H.M.: Neighborhoods of a class of analytic functions with negative coefficients. Appl. Math. Comput. 13(3), 63–67 (2000)
Altintaş, O., Ozkan, O., Srivastava, H.M.: Neighborhoods of a certain family of multivalent functions with negative coefficients. Comput. Math. Appl. 47, 1667–1672 (2004)
Altintaş, O., Irmak, H., Srivastava, H.M.: Neighborhoods of certain subclasses of multivalently analytic functions defined by using a differential operator. Comput. Math. Appl. 55(3), 331–338 (2008)
Aouf, M.K. : Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., Art ID 3825, 1–6 (2006)
Aouf, M.K.: Neighborhood of a certain family of multivalent functions defined by using a fractional derivative operator. Bull. Belgian Math. Soc. Simon Stevin 16, 31–40 (2009)
Aouf, M.K.: Generalization of certain subclasses of multivalent functions with negative coefficients defined by using a differential operator. Comput. Math. Modell. 50(9–10), 1367–1378 (2009)
Aouf, M.K.: On certain multivalent functions with negative coefficients defined by using a differential operator. Indian J. Math. 51(2), 433–451 (2009)
Aouf, M.K.: A subclass of uniformly convex functions with negative coefficients. Math. Tome 52(2), 99–111 (2010)
Aouf, M.K., Bulboaca, T., Mostafa, M.O.: Subordination properties of p-valent functions defined by Săl ăgean operator. Complex Var. Ellip. Eq. 55(1–3), 185–199 (2010)
Aouf, M.K., Cho, N.E.: On a certain subclasses of analytic functions with negative coefficients. Tr. J. Math. 22, 15–32 (1998)
Aouf, M.K., Hossen, H.M., Srivastava, H.M.: Some families multivalent functions. Comput. Math. Appl. 39(7–8), 39–48 (2000)
Aouf, M.K., Madian, S.M.: Inclusion and properties neighborhood for certain p-valent functions associated with complex order and q-p-valent Cătaş operator. J. Taibah Univ. Sci. 14(1), 1226–1232 (2020)
Aouf, M.K., Madian, S.M.: Certain classes of analytic functions Associated With q-Analogue of p-valent catas operator. Moroccan J. Pure Appl. Anal. 7(3), 430–447 (2021)
Aouf, M.K., Madian, S.M.: Subordination factor sequence results for Starlike and convex classes defined by q-Căta ş operator. Afrika Matematika (2021). https://doi.org/10.1007/s13370-021-00896-4
Aouf, M.K., Mostafa, A.O.: Some properties of a subclass of uniformly convex functions with negative coefficients. Demonstratio Math. 41(2), 353–370 (2006)
Aouf, M.K., Mostafa, A.O.: On a subclass of n-p-valent prestarlike functions. Comput. Math. Appl. 55(4), 851–861 (2008)
Aouf, M.K., Mostafa, A.O.: Neighborhood of a certain p-valent analytic prestarlike functions. Comput. Math. Appl. 55(4), 851–861 (2008)
Aouf, M.K., Mostafa, A.O., Al-Quhali, F.Y.: Properties for class of \(\beta\)-uniformly univalent functions defined by Sălăgean type q- difference operator, Int. J. Open Probl. Complex Anal. 2, 1–16 (2019)
Aouf, M.K., Shamandy, A., Mostafa, A.O.: F-El-Emam, Subordination results associated with uniformly convex and starlike functions. Proc. Pak. Acad. Sci. 46(2), 97–101 (2009)
Aouf, M.K., Shamandy, A., Mostafa, A.O., Madian, S.M.: Neighborhood properties for certain p-valent analytic functions associated with complex order. Indian J. Math. 52(3), 491–506 (2010)
Aouf, M.K., Seoudy, T.M.: Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator,. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113, 1279–1288 (2019)
Cătaş, A.: On certain classes of p-valent functions defined by multiplier transformations, Proceedings of the Internat. Symposium on Geometry Function Theory and Appl., Istambul, Turkey, (2007)
Chen, M.-P., Irmak, H., Srivastava, H.M.: Some families of multivalently analytic functions with negative coefficient. J. Math. Anal. Appl. 214, 674–690 (1997)
Cho, N.E., Kim, I.H.: Multiplier transformations and strongly close-to-convex functions. Bull. Korean Math. Soc. 40, 399–410 (2003)
Cho, N.E., Srivastava, H.M.: Argument estimates of certain analytic functions defined by a class of multiplier transformations. Math. Comput. Model. 37, 39–49 (2003)
El-Ashwah, R.M., Aouf, M.K., El-Deeb, S.M.: Inclusion and neighborhood properties of certain subclasses of p-valent functions of complex order defined by convolution. Annales Univ. Mariae Curie-Skłodo. Lublin. Polonia 65(1), 33–48 (2011)
Frasin, B.A.: Neighborhood of certain multivalent functions with negative coefficients. Appl. Math. Comput. 193, 1–6 (2007)
Goodman, A.W.: On the Schwarz–Christoffel transformation and p-valent functions. Trans. Amer. Math. Soc. 68, 204–223 (1950)
Goodman, A.W.: Univalent functions and non analytic curves. Proc. Amer. Math. Soc. 8, 598–601 (1957)
Govindaraj, M., Sivasubaramanian, S.: On a class of analytic functions related to conic domain involving q-calculus. Anal. Math. 43(3), 475–487 (2017)
Kanas, S., Răducanu, D.: Some class of analytic functions related to conic domains. Math. slovaca. 64(5), 1183–1196 (2014)
Khan, Q., Arif, M., Raza, M., Srivastava, G., Tang, H., ur Rehman, S.: Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 7(12), 1178 (2019). https://doi.org/10.3390/math7121178
Mostafa, A.O., Aouf, M.K.: Neighborhoods of certain p-valent analytic functions with complex order. Comput. Math. Appl. 58, 1183–1189 (2009)
Murugusundaramoorthy, G., Srivastava, H.M.: Neighborhoods of certain classes of analytic functions of complex order. J. Inequal. Pure Appl. Math. 5(2), 1–8 (2004)
Orhan, H., Kamali, M.: Neighborhoods of a class of analytic functions with negative coefficients. Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 21(1), 55–61 (2005)
Ruscheweyh, S.: Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 81, 521–527 (1981)
Sălăgean, G.S.: Subclasses of univalent functions, In Lecture Notes in Math., Vol. 1013, 362-372, Springer-Verlag, Berlin, Heidelberg and New York, (1983)
Srivastava, H.M.: Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited,Chichester), pp. 329–354, Wiley, New York, Chichester, Brisbane and Toronto, (1989)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A: Sci. 44, 327–344 (2020)
Srivastava, H.M., Bansal, D.: Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Nonlinear Var. Anal. 1(1), 61–69 (2017)
Srivastava, H.M., Mostafa, A.O., Aouf, M.K., Zayed, H.M.: Basic and fractional q- calculus and associated Fekete-Szgo problem for p-valent q- starlike functions and p-valent q-convex functions of complex order. Miskolc Math. Notes 20(1), 489–509 (2019)
Srivastava, H.M., Tahir, M., Khan, B., Ahmad, Q.Z., Khan, N.: Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 11, 292 (2019). https://doi.org/10.3390/sym11020292
Zayed, H.M., Aouf, M.K.: Lsubclasses of analytic functions of complex order associated with q- Mittage leffler function. J. Egypt. Math. Soc. 26(2), 278–286 (2018)
Acknowledgements
Not applicable.
Funding
Not applicable
Author information
Authors and Affiliations
Contributions
The author approve and read the article
Corresponding author
Ethics declarations
Competing interests
The authors don’t have competing for any interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Madian, S. Properties of neighborhood for certain classes associated with complex order and m-q-p-valent functions with higher order. J Egypt Math Soc 30, 16 (2022). https://doi.org/10.1186/s42787-022-00149-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s42787-022-00149-8